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A key aspect of the pathogenesis of the Gram positive bacterium Staphylococcus aureus
is its ability to rapidly adapt to the host environment during the course of an infection. To
successfully establish infection, the organism deploys a variety of survival and immune
evasion strategies, ranging from the acquisition of essential nutrients and expression of
adhesins, which promote colonization and survival, to the elaboration of virulence factors
such as capsule, which aids host immune evasion. The ability of S. aureus to deploy differ-
ent virulence factors must be taken into account for S. aureus vaccine design. Here, we
present a strategy for designing an effective vaccine against S. aureus disease by evaluat-
ing vaccine candidate performance in multiple in vivo models targeted to mimic aspects of
human disease, and by co-development of functional in vitro immunoassays that measure
the neutralization of relevant S. aureus virulence factors.

Keywords: vaccine, Staphylococcus aureus, clumping factor A, preclinical models, immunoassays, capsular
polysaccharide conjugates, manganese transport protein C

INTRODUCTION
One of the major challenges in developing a vaccine for Staphy-
lococcus aureus is the organism’s ability to rapidly adapt to the
host microenvironment. The Gram positive organism S. aureus
is notorious for its diverse array of virulence factors, adap-
tation, and potential to change its surface antigen repertoire
quickly (1).

The medical need for an S. aureus vaccine is clear. S. aureus
is carried asymptomatically in the nares of 20–50% of the gen-
eral population (2). S. aureus causes a wide spectrum of disease,
ranging from relatively mild skin infections, such as carbuncles, to
life-threatening wound and bloodstream infections (3). S. aureus
is recognized as a leading cause of morbidity and mortality in both
healthcare-associated and community settings. In surgical patients
in particular, these infections carry high mortality rates; survivors
of S. aureus surgical infections require an additional 13–17 days in
the hospital, significantly increasing healthcare costs (4). The bur-
den of S. aureus disease is exacerbated by antibiotic-resistant S.
aureus isolates, highlighting the need for an effective prophylactic
vaccine.

Specialized host microenvironments present obstacles for S.
aureus to establish a productive infection. For example, in the
blood, the organism must avoid ingestion and killing by phago-
cytes, especially neutrophils. In contrast, in a surgically induced
wound, there are fewer neutrophils, at least initially, but nutrients
are extremely limited and S. aureus must adhere to host surfaces.
S. aureus possesses a variety of means to both colonize the host
and evade the immune system by inhibiting phagocytic uptake
and killing. The bacterium has developed multiple additional vir-
ulence factors to enable it to adapt and survive in a variety of
host niches and as a result, to cause a multitude of diverse infec-
tion pathologies. To establish and sustain infection in the host, S.
aureus needs to:

• Find a means of entry into the host by breaching the protective
physical barriers to infection (skin, mucosa), or by entering a
lesion, such as those created during surgery or traumatic injury.

• Obtain the essential nutrients for growth that are restricted in
the host, such as iron and manganese, by expressing iron acquisi-
tion receptors, such as IsdB (5), and manganese uptake receptors,
such as the ABC transporter MntABC (6).

• Adhere to extracellular matrix components and host cells.
S. aureus can express multiple adhesion factors, including
fibronectin-binding proteins (FnBPA,FnBPB) (7, 8),fibrinogen-
binding proteins, also known as “clumping factors” (ClfA, ClfB)
(9, 10), and collagen-binding protein (Cna) (11).

• Evade immune killing by producing an anti-phagocytic poly-
saccharide capsule (CP5 or CP8) (12) and elaborating a num-
ber of proteins that can interfere with antibody and comple-
ment binding (SpA, Sbi, SCIN) (13–15), phagocytic uptake,
and killing in the phagolysosome. In addition, S. aureus can
evade immune killing by producing multiple toxins that are
either lethal to immune cells, such as alpha toxin and Panton–
Valentine leukocidin (PVL), or act as superantigens, such as toxic
shock syndrome toxin (TSST) and staphylococcal enterotoxin B
(SEB) (16–18).

These different mechanisms of pathogenesis render S. aureus a
challenging vaccine target. Thus, an effective vaccine to prevent S.
aureus disease must contain antigens carefully selected to interrupt
S. aureus pathogenesis using a multipronged approach. Currently
there is no licensed vaccine against S. aureus infection and no
clinically demonstrated correlate of protection against S. aureus.

IMMUNE DEFENSES AGAINST S. AUREUS INFECTION
The human host has several mechanisms to prevent S. aureus
infection. These include mucosal and epithelial layers that act as
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a barrier to infection, the sequestration of essential nutrients to
prevent bacterial survival and replication, the elaboration of dan-
ger signals in response to microbial products to activate the innate
immune response and engulfment and killing of bacteria by pro-
fessional phagocytes, such as neutrophils. In addition, adaptive
immune components such as antibodies and T cells can act to
prevent infection.

Humans can be persistently colonized with S. aureus and as
such, there can be a constant interaction between the bacteria and
the host immune system. This is supported by the observation
that all adults have pre-existing binding antibodies to S. aureus
antigens, including capsule and ClfA (19). However, functional
antibodies that facilitate the opsonophagocytic killing of staphy-
lococci by professional phagocytes [particularly neutrophils (20,
21)] and functional antibodies that neutralize virulence factors are
absent in the vast majority of the human population. The impor-
tance of bacterial killing to prevent and/or resolve infections is
underscored by the increased rates of infection that are observed
for subjects with immunological disorders. The close link between
defects in clearance and the risk of disease supports the hypothesis
that if a vaccine generates adequate levels of functional antibod-
ies in subjects with competent effector cells, these individuals are
more likely to be protected at times of risk for an infection.

Polymorphonuclear neutrophils (PMNs) are the primary cel-
lular defense against staphylococcal infections. These effector cells
are highly efficient at killing phagocytosed pathogens. Phagocyto-
sis is the binding and ingestion of bacteria, which can be facilitated
by opsonization of the microbial surfaces with antibody and/or
complement (22). Neutrophils recognize many molecules pro-
duced by S. aureus, such as lipoteichoic acid (LTA) and CpG DNA,
which interact with TLRs on the neutrophils to promote phago-
cytosis (23, 24). Neutrophils express on their cell surfaces both
complement receptors that bind complement-opsonized bacteria,
and Fc receptors that bind the Fc region of antibody-coated bac-
teria. Once bound to the neutrophils, the bacteria are engulfed
into an intracellular phagosome. This is followed by neutrophil-
initiated mechanisms to kill the bacteria within the phagosome.
Phagocytosis activates membrane bound NADPH-dependent oxi-
dase to initiate a “respiratory burst,” which generates high levels of
reactive oxygen species (ROS, e.g., superoxide radicals, hydrogen
peroxide, and hydroxyl radicals) to kill the engulfed microor-
ganisms. In addition, the fusion of cytoplasmic granules with
the bacteria-containing phagosome results in the release of pre-
formed anti-microbial peptides, proteases, and α-defensins with
potent microbicidal activity (25).

Individuals with PMN defects have a higher incidence of S.
aureus disease. Examples of neutrophil dysfunction include frank
neutropenia (26), chronic granulomatous disease, in which neu-
trophils are unable to generate a functional respiratory burst
(27–29), and Chediak–Higashi Syndrome, in which individuals
have neutrophils with reduced chemotaxis and phagolysosome
function (30). Subjects with defects in non-antibody-mediated
clearance mechanisms, such as those with mutations in the pat-
tern recognition receptor TLR2 (31) or defects in the complement
pathway (32) cannot effectively clear staphylococci and thus are
more susceptible to S. aureus infections. Individuals with defec-
tive STAT3 signaling proteins have also been shown to be more

prone to S. aureus infections due to the inability to generate IL-
17-producing Th17 cells, which results in diminished neutrophil
recruitment and function (33–35).

Antibody-mediated clearance mechanisms driven by the adap-
tive immune system, in which antibody-secreting B cells and
cytokine-secreting and cytolytic T cells play a key role, are also
important in the prevention of staphylococcal disease. For exam-
ple, individuals with immune defects impairing the ability to pro-
duce functional antibodies, such as acquired immune deficiency
syndrome (36), immature immune systems due to premature birth
(37), or defects in immunoglobulin production, all have increased
susceptibility to staphylococcal infections (38, 39). In males with
X-linked agammaglobulinemia, recurrent pyogenic infections that
are often caused by S. aureus begin to occur within the first year
of life after maternal IgG has been exhausted (40). Therefore, an
effective S. aureus vaccine will likely require that a functional anti-
body response is elicited to enhance phagocyte-mediated killing
of the organism. Functional antibody responses require the con-
comitant development of T cell help provided by CD4+ T cells.
In addition, cytokines secreted by T helper cells (both Th1 and
Th17) have been shown to enhance neutrophil effector function,
so vaccine-induced Th1 and/or Th17 responses may also be bene-
ficial in preventing S. aureus-mediated disease (41). Overall, these
findings support the requirement for functional antibodies and
neutrophil effector cell function to prevent S. aureus infections
and disease.

However, S. aureus has virulence mechanisms that counteract
host defenses to enable establishment of invasive S. aureus (ISA)
disease. These mechanisms include scavenging essential nutrients,
adhering to host tissues, and immune evasion (42). Therefore,
for a vaccine to prevent ISA, these mechanisms also need to be
taken into consideration to prevent the organism from having the
opportunity to establish a productive infection.

PREVIOUS VACCINE APPROACHES AND WHY THEY MAY
NOT HAVE BEEN SUCCESSFUL
Previous prophylactic S. aureus vaccines have failed in the clinic;
these vaccines were composed of single antigens, either a bivalent
capsular polysaccharide formulation or IsdB, and thus could only
target a single virulence mechanism. Capsular polysaccharides
help bacteria evade immune-mediated killing through inhibiting
phagocytosis (12, 43). Vaccine-induced antibodies against capsu-
lar polysaccharides can overcome this virulence mechanism, but
do not address other virulence mechanisms, potentially limiting
the effectiveness of capsule-alone vaccine approaches. Capsular
polysaccharide conjugate vaccines, such as Prevnar-13, are capable
of inducing functional opsonophagocytic killing responses. The
capsular polysaccharide conjugate vaccine StaphVAX did show a
57% decrease (compared to control) in incidence of bacteremia
in its initial phase 3 efficacy study in hemodialysis patients. This
protective effect lasted up to 40 weeks post-vaccination (44). Sub-
sequently, in a larger phase 3 study of StaphVAX, no significant
protection was observed (45). The results with StaphVAX sharply
contrast the striking success of capsular polysaccharide-based vac-
cines in protecting against disease caused by Haemophilus influen-
zae type B (HiB) (46, 47), Neisseria meningitidis serogroup A, C, Y,
and W-135 (48–50) and Streptococcus pneumoniae (51, 52). There
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were many potential reasons why the StaphVAX pivotal trial failed,
including the selection of the phase 3 clinical population (end stage
renal disease subjects), which has a high incidence of disease but is
also considered to be somewhat immunosuppressed. In addition,
there may have been issues with consistency of manufacture of
the phase 3 clinical trial material and the evidence that functional
bacterial killing responses were elicited was weak (45). However,
even if potent bacterial killing responses would have been induced,
a capsular polysaccharide conjugate-alone approach may still not
have been sufficient to confer protection against S. aureus disease
due to the multiple virulence mechanisms possessed by S. aureus.

Likewise, a vaccine targeting IsdB may inhibit S. aureus acqui-
sition of the essential nutrient iron, but it does not impact anti-
phagocytic virulence mechanisms. This may help explain why
V710, a prophylactic monovalent vaccine composed of IsdB (53)
and developed to prevent S. aureus infections in patients under-
going cardiothoracic surgery, failed to show significant efficacy in
preventing S. aureus infections. A recent publication has shown
that adults do generate titers to IsdB through natural exposure,
and titers approximately double in hospitalized patients with S.
aureus infections, but not other patients, indicating that IsdB is
expressed during infection (54). However, the V710 IsdB vaccine
does not appear to induce antibodies that efficiently induce killing
of live S. aureus bacteria. Instead, antibodies induced against IsdB
have only been shown to facilitate the uptake of S. aureus cells
into neutrophils. None of the available clinical data of the V710
IsdB vaccine describe or document whether robust functional S.
aureus killing responses were induced in the vaccine trials (55) or
pre-clinically (56), with the exception of some data that individ-
ual mAbs recognizing IsdB (the vaccine’s single antigen target) did
show functional killing activity (57, 58). IsdB is generally expressed
relatively late in infection in preclinical models (59), but did show
some protection in lethal challenge models (60,61). Stranger-Jones
et al. demonstrated that the addition of IsdA, SdrD, and SdrE con-
verted partial protection for each individual antigen to complete
protection in a lethal challenge model, highlighting the potential
benefits of a multiantigen approach (62). Thus, vaccines targeting
a single antigen or phase of pathogenesis or infection type are not
likely to be broadly protective and a multiantigen approach tar-
geting multiple virulence mechanisms is likely required to protect
against S. aureus infection and disease.

MULTIANTIGEN VACCINE APPROACHES
Given the low likelihood of success with a single antigen approach,
Pfizer and others are currently developing multiantigen investi-
gational S. aureus vaccines. Pfizer’s four antigen investigational S.
aureus vaccine (SA4Ag) is comprised of the microbial surface com-
ponents recognizing adhesive matrix molecules (MSCRAMM)
ClfA, the manganese transporter component MntC (aka rP305A
or SA0688), and capsular polysaccharides type 5 and 8. Each anti-
gen was carefully selected to block S. aureus virulence mechanisms
involved in the establishment and/or maintenance of infection.

To establish ISA disease, the pathogen must first adhere to host
cells, extracellular matrix, or an implanted medical device. Staphy-
lococcal clumping factor A (ClfA), originally identified by Foster
and colleagues (63), is a member of the MSCRAMM family of bac-
terial adhesion molecules. ClfA derives its name from its ability to

induce platelet aggregation, or clumping. ClfA specifically binds
to the C-terminal end of the fibrinogen γ-chain. ClfA is the major
fibrinogen-binding protein in S. aureus (9, 64), and as such plays
an important role in establishing wound and foreign body infec-
tions. Foster and colleagues elucidated that ClfA is essential during
the early stages of infection and its importance as a S. aureus viru-
lence factor has been demonstrated in several small animal models
of infection, including endocarditis, arthritis, and sepsis (65–67).
Interrupting ClfA binding to fibrinogen through the generation
of inhibitory antibodies induced by vaccination may be beneficial
in preventing the establishment of infection.

Once an infection is established,S. aureus must acquire essential
nutrients for survival in the host microenvironment. One essen-
tial nutrient is manganese, which S. aureus requires for normal cell
metabolism. Manganese is also a cofactor for the enzyme super-
oxide dismutase (SOD), which is critical for detoxifying oxygen
radicals, such as those released during the bactericidal neutrophil
respiratory burst. S. aureus acquires manganese via the ABC trans-
porter complex MntABC. MntC is the metal-binding component
of the complex, and is a surface-exposed lipoprotein. Indeed,
recent studies have shown that MntC-deficient S. aureus is more
sensitive to reactive oxygen species (68). Although MntC is poorly
expressed in vitro, it is rapidly expressed in the host microenviron-
ment (59) and in biofilms (69). In a study of S. aureus bacteremic
patients, the median-fold increase in antibody titer against MntC
from initial infection to peak titer was 5.17, the highest of the
56 gene products surveyed. In addition, the same study showed
that all 21 isolates evaluated possessed the mntC gene (70). These
characteristics make MntC an attractive vaccine target.

Finally, once S. aureus has invaded the host, it must avoid
elimination by the host immune system. S. aureus has many
mechanisms for immune evasion, including complement-binding
proteins, immunoglobulin-binding proteins, such as protein A,
and leukocidins such as alpha toxin, which kill white blood cells.
In addition, S. aureus elaborates capsular polysaccharide, which
has anti-phagocytic properties. All invasive human S. aureus have
the genes required to express either type 5 or 8 capsule (denoted
CP5 and CP8, respectively), and most adults have capsular-binding
antibodies, demonstrating that the capsules are expressed in vivo.
Due to its highly repetitive nature, capsular antigens have high
epitope density and thus are attractive candidates for prophylactic
vaccines.

In addition to Pfizer’s SA4Ag approach, others are also devel-
oping multiantigen vaccines targeting S. aureus, composed of
capsular polysaccharide conjugates and/or protein antigens. Some
vaccine approaches include the addition of toxins, many of which
have shown preclinical efficacy in specific animal models, such as
alpha toxin, PVL, SEB, and TSST (71–73). However, many toxins,
including PVL, TSST, and SEB, are only expressed by a propor-
tion of strains (74, 75), limiting the potential coverage afforded by
these vaccine candidates. In contrast, some toxins, such as alpha
toxin, also known as α-hemolysin, are genetically conserved and
thus have the potential to protect against a wide variety of S. aureus
strains. Alpha toxin is a pore-forming β-barrel toxin, which binds
to host cell receptors such as ADAM10 to initiate toxin oligomer-
ization and pore formation. High levels of alpha toxin expression
have been correlated with poor outcomes in pneumonia models.
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Alpha toxin has also been implicated in S. aureus pathogenesis
in dermonecrosis and bacteremia models. Antibody therapeutics
directed against alpha toxin have been shown to be effective in
preclinical models (76, 77), so alpha toxin may be a beneficial
addition to multiantigen S. aureus vaccines. Antitoxin approaches
in general, though, are challenged by a number of factors: (1) the
sheer number and redundancy of toxins produced by S. aureus
(over 50) make selection of toxins for vaccine inclusion difficult,
(2) toxins are generally produced relatively late in the infectious
process, so antitoxin responses will have an effect later in the infec-
tious cycle, after disease has been established, and (3) toxins are
generally secreted factors, and thus antitoxin responses will not
directly lead to killing and clearance of S. aureus.

The addition of an adjuvant may be beneficial, depending
on the antigens selected, the desired immune response, and
the target population(s) intended for vaccination. For exam-
ple, if the intended population is naïve to S. aureus exposure
or immunocompromised, addition of an adjuvant may boost
immune responses. Some antigens, such as polysaccharide con-
jugates, generally do not require the addition of an adjuvant, while
others, such as poorly immunogenic proteins, may greatly benefit
from adjuvantation, even in immunocompetent subjects. Adju-
vants can drive a more cell-mediated biased immune response, a
more humoral biased immune response, or a balanced response,
given the intrinsic properties of the adjuvant. However, the opti-
mal adjuvant to use with a particular antigen or set of antigens or
for a particular target population ultimately must be empirically
determined.

DEVELOPMENT OF PRECLINICAL ANIMAL MODELS AND
IN VITRO ASSAYS TO ASSESS VACCINE FUNCTION
Both careful selection of preclinical animal models and devel-
opment of in vitro assays that measure functional serological
responses are important for effective vaccine design.

S. aureus causes a wide range of disease in a variety of host
microenvironments, so the preclinical development of an effec-
tive vaccine targeting S. aureus must involve the use of multiple
preclinical in vivo models, which represent different diseases. Each
model selected provides information on how the vaccine might
behave clinically. In the case of S. aureus, end organ dissemina-
tion can be mimicked by pyelonephritis models, the response
to deep tissue infections can be approximated by wound mod-
els, and bloodstream infections can be modeled by bacteremia
and/or sepsis models. When selecting preclinical animal models,
it is important that the model replicates salient features of the
vaccine target population. For example, if the vaccine is aimed
at preventing S. aureus pneumonia, then a pneumonia model
should be evaluated pre-clinically. Ideally, non-human primate
models are used, but non-human primate models are expensive
and numerically limited. Small animal models have been criticized,
especially in the S. aureus vaccine field, for not accurately predict-
ing responses in the clinic. While it is true that all models have
limitations, when used with discretion they can provide important
insights into pathogenic mechanisms, host–pathogen interactions,
and kinetics of antigen expression in vivo. These insights can guide
vaccine antigen selection to ensure that a vaccine is broadly pro-
tective against a range of S. aureus disease manifestations. In the

case of StaphVAX, if the new phase 3 lots for the second phase 3
trial had been tested in either preclinical models or in potency-
indicating studies, an expensive and unsuccessful efficacy study
might have been avoided.

Equally as important as the demonstration that an investiga-
tional S. aureus vaccine elicits a protective response in multiple
animal models that mimic different types of S. aureus infection, is
the use of diverse S. aureus isolates in preclinical models. Disease-
causing S. aureus are genetically diverse, and thus vaccine-induced
immune responses might have varying effectiveness against genet-
ically distinct clinical isolates. For example, disease-causing S.
aureus possesses the genetic machinery to produce one of two
capsular polysaccharide types, type 5 or 8. Immune responses
against CP5 may or may not cross-protect against CP8 isolates,
and vice versa, so clinical strains expressing each capsule type need
to be tested in animal models.

In addition to developing a battery of preclinical animal mod-
els that can be used to evaluate vaccine efficacy against a variety
of S. aureus disease manifestations, it is also important to con-
comitantly develop in vitro assays that measure development of
functional immune responses from both preclinical and clini-
cal specimens. Assays that measure functional immune responses
are preferable to assays that merely measure antigen-binding
antibody, such as ELISAs. For example, functional killing anti-
body responses against S. aureus capsular polysaccharide can be
detected using opsonophagocytic activity assays (OPAs). We have
previously shown that S. aureus CP–CRM197 conjugates induce
robust killing OPA responses (12), and we and others have shown
that capsular polysaccharide is an important immune evasion
mechanism. Thus, OPA titers can be used as another measure
potential protection against S. aureus disease.

In the case of protein antigens, an assay which measures inter-
ruption of protein function can be desirable. Functional immune
responses against the S. aureus adhesion molecule ClfA can be
measured by means of an adhesion assay using live bacteria, the
fibrinogen-binding inhibition (FBI) assay. The FBI quantitates the
ability of immune serum to inhibit binding of whole live S. aureus
to fibrinogen, which occurs through the inhibition of ClfA binding
to its cognate ligand. The FBI assay has been used to demonstrate
that while unimmunized subjects have pre-existing high-binding
antibody titers to ClfA, only very few individuals have functional
antibodies that can abrogate the binding of ClfA to fibrinogen
(19). For protein antigens, there is potential genetic diversity, so
isolates containing disparate alleles should be tested. In addition
to testing isolates that are diverse at the vaccine antigen level, it is
also prudent to test isolates from diverse disease-associated clonal
complexes. By including multiple clinical isolates that are geneti-
cally distinct at the antigen level as well as surveying the universe
of disease-causing clonal complexes, a better sense of the possible
breadth of coverage for an investigational S. aureus vaccine can be
obtained.

The development of functional assays to assess immune
responses to vaccine antigens yields greater insight into the quality
of immune responses elicited by an investigational vaccine. Such
functional assays can generally be used to measure both preclinical
and clinical immune responses. Thus target values for vaccine-
induced responses can be set, based on protective thresholds
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identified in preclinical animal models. If subsequently verified in
the clinic, functional immunological assays can become the basis
of an immune correlate of protection.

As described above, employing a wholistic, multiparameter
approach to preclinical evaluation of S. aureus vaccine candi-
date antigens may be critical for development of an effective S.
aureus vaccine. Due to the versatility of S. aureus as it adapts
to host microenvironments, multiple preclinical models must be
used which mimic aspects of human S. aureus disease. Like-
wise, protection needs to be demonstrated against a number of
diverse S. aureus isolates. A successful vaccine against S. aureus
will likely need to counter multiple virulence mechanisms, such
as initial adhesion events, nutrient acquisition, and immune
evasion. Monitoring efficacy of candidate antigens in multiple
preclinical models provides an opportunity to understand the
strengths and weaknesses of candidate antigens, and to select a
set of vaccine candidates, which complement each other. The
concomitant development of in vitro assays, such as the OPA,
to monitor functional immune responses enables benchmarking
of observations made in preclinical in vivo models with those
made in the clinic. The linking of a diversity of preclinical ani-
mal models with functional in vitro assays will likely improve
the probability of developing a broadly efficacious S. aureus
vaccine.
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