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Peptide-modified Substrate for 
Modulating Gland Tissue Growth 
and Morphology In Vitro
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In vitro fabricated biological tissue would be a valuable tool to screen newly synthesized drugs or 
understand the tissue development process. Several studies have attempted to fabricate biological 
tissue in vitro. However, controlling the growth and morphology of the fabricated tissue remains a 
challenge. Therefore, new techniques are required to modulate tissue growth. RGD (arginine-glycine-
aspartic acid), which is an integrin-binding domain of fibronectin, has been found to enhance cell 
adhesion and survival; it has been used to modify substrates for in vitro cell culture studies or used as 
tissue engineering scaffolds. In addition, this study shows novel functions of the RGD peptide, which 
enhances tissue growth and modulates tissue morphology in vitro. When an isolated submandibular 
gland (SMG) was cultured on an RGD-modified alginate hydrogel sheet, SMG growth including bud 
expansion and cleft formation was dramatically enhanced. Furthermore, we prepared small RGD-
modified alginate beads and placed them on the growing SMG tissue. These RGD-modified beads 
successfully induced cleft formation at the bead position, guiding the desired SMG morphology. Thus, 
this RGD-modified material might be a promising tool to modulate tissue growth and morphology in 
vitro for biological tissue fabrication.

Recent advancement of material sciences in combination with cell and molecular biology has increased 
the possibilities for in vitro biological tissue fabrication. Optic cup and adenohypophysis tissue, for 
example, have been fabricated by using embryonic stem cells encapsulated in a type I collagen gel1,2. 
Preliminary developmental stages of teeth and hair follicle formation have been engineered by using 
organotypic culture systems3–5. We have fabricated cartilage tissue mimicking endochondral ossifica-
tion by using 3D constructs of mesenchymal stem cells in vitro6. Although artificially fabricated tissue 
contains fully differentiated cells distributed throughout the tissue and has protein expression profiles 
similar to that of native tissues, currently most artificial tissues are limited in size and displays incomplete 
morphology. Thus, in vitro manipulation of tissue growth and morphology still remains a challenge.

The development of a mouse submandibular gland (SMG) begins with the protrusion of epithelial 
tissue into mesenchymal tissue on embryonic day 11. The SMG morphological change including the 
formation of a number of buds and ductal elongation is called branching morphogenesis7. This specific 
morphological change can also be seen in the development of other organs, such as lungs, kidneys, 
mammary glands, and spleen. A number of studies have investigated the mechanism of this morpho-
logical change and have demonstrated the importance of external stimuli. For example, growth factors 
such as various FGFs and EGF influence the up/down regulation of mitogen-activated protein kinase 
(MAPK), phospholipase Cγ 1 (PLCγ 1), and phosphatidyl-inositol-3-kinase (PI3K) in the regulation of 
SMG growth and morphology8–10. In addition, secreted matrix proteins play pivotal roles in SMG mor-
phogenesis. Recent studies indicate that fibronectin expression is crucial for cleft formation in branching 
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SMG tissue, which is associated with the conversion of cell-cell adhesions to cell-matrix adhesions in 
those regions11,12. Since the tripeptide sequence arginine-glycine-aspartic acid (RGD) was found in 1984 
as the integrin-binding domain of fibronectin, this functional motif has been synthesized artificially and 
utilized as a bioactive molecule in bioengineering studies13. For example, a peptide-immobilized alginate 
scaffold with osteoblast and chondrocyte composites was transplanted onto the back of a mouse, resulting 
in ectopic formation of the growth plate14. In this context, RGD-modified materials acted as a substrate 
that supported cell adhesion and survival under in vivo conditions15. To our knowledge, however, the 
use of the RGD peptide for modulating in vitro tissue growth and morphology has not been investigated 
yet. We hypothesized here that an RGD-modified material would be effective for artificial modulation 
of SMG growth and morphogenesis. To test this hypothesis, in this study, in vitro SMG explant culture 
was carried out by using RGD-modified alginate hydrogels with two different shapes, sheets and beads.

Results
SMG growth on RGD-modified gel sheets. Previously, we carried out an SMG organotypic culture 
on alginate hydrogel sheets with varying mechanical stiffness and obtained results indicating that bud 
expansion and cleft formation in the SMG were enhanced on the softer gel (4 kPa), but was attenuated on 
the stiffer gel (184 kPa)16. The stiffer gel was therefore used as a negative control for this study to evaluate 
the effect of RGD on the growth and morphogenesis of SMG tissue. We fabricated sheets of 184 kPa alg-
inate hydrogels with different amounts of RGD and placed SMG tissue extracted from E12.5 ICR mouse 
embryos on them (Figure S1). The results indicated that RGD-modified alginate hydrogels enhanced the 
bud expansion and cleft formation of SMGs even when they were cultured on the stiffer gel. The number 
of buds in SMG tissue increased with rise in RGD (Fig. 1). A similar phenomenon was observed when 
SMG was cultured on RGD modified 4 kPa (soft) hydrogel (Figure S2). We also cultured SMG tissue on a 
conventional tissue culture dish to confirm that the enhanced tissue growth was linked to the presence of 
RGD. Strikingly, SMG tissue branching was not observed. The tissue appeared dissociated, although high 
cell adhesion to the tissue culture dish was seen under this condition (Fig. 1). Since the strongest effect 
of RGD was observed with the use of 0.18 wt% modified hydrogel, introduction of RGD at a 0.18 wt% 
was used in further experiments for this study.

Possible mechanism for the observations. To understand the effect of RGD on epithelial tissue 
growth, epithelial tissue isolated from whole SMG tissue was cultured on RGD-modified alginate hydro-
gel sheets. The epithelial tissue cultured solely on RGD-modified alginate hydrogels did not grow but 
degenerated (Figure S3).

Immunofluorescent staining of FGF7 and FGF10, two important molecules involved in epithelial 
growth of SMG tissue, was carried out after 24 hours. The regions of expression of these proteins in 
SMG tissue did not change in relation to the presence of RGD, and both of these growth factors were 
expressed mainly in mesenchymal tissue (Fig.  2a). Quantitative results obtained by Western blotting 
analyses indicated significantly high expression of these growth factors in SMG cultured for 72 hours on 
RGD-modified gels (Fig. 2b). To further confirm the roles of these growth factors, antibodies to FGF7 
and FGF10 were applied to the SMG culture on the RGD-modified gel sheet. Strikingly, SMG growth 
was attenuated even when cultured on an RGD-modified hydrogel sheet (Fig. 2c).

Immunofluorescent staining of β III tubulin was used to detect neuronal innervation and peanut 
agglutinin (PNA) for epithelium in SMG tissue cultured on gel sheets with or without RGD modification 
for 72 hours. The results indicated a magnificent distribution of neural tissue in the SMG cultured on the 
RGD-modified gel sheet whereas non-growing, localized neuronal tissue was observed in SMG cultured 
on the unmodified gel sheet (Fig. 3a). To confirm the effect of RGD on neurite outgrowth, PC12 cells 
were cultured for 7 days on alginate hydrogel sheets with or without RGD modification. The neuronal 
growth of PC12 cells was dramatically enhanced when the cells were cultured on a substrate with RGD 
(Fig. 3b,c). Moreover, antibody to neurturin (NRTN), a neurotrophic factor, was used on the SMG cul-
tures growing on RGD-modified gel sheets. Strikingly, the SMG growth was attenuated even when it was 
cultured on an RGD-modified hydrogel sheet in the presence of this antibody (Fig. 3d).

Effect of local application of RGD-modified beads on SMG growth. Next, to investigate the 
effect of localized application of RGD-modified substrate, hydrogel beads (20–100 μ m) with or without 
RGD modification were prepared17 (Figure S4). Unmodified control gel beads of different sizes were 
placed on isolated SMG and cultured for 72 hours on a control stiffer gel sheet. The results indicated that 
cleft formation sometimes occurred at the bead position. The ratio of cleft formation at the bead site 
increased with increasing bead size, but it was still ≤19%. Next, RGD-modified gel beads of various sizes 
were applied. The application of these beads dramatically enhanced the ratio of cleft formation by about 
38.9% for 20 μ m beads, 61.1% for 50 μ m beads, and 80.6% for 100 μ m beads, which was four times higher 
than the that with the control gel beads (Fig. 4a–c, and Figure S5). For further confirmation of the pos-
sible use of RGD-modified hydrogel beads for modulating tissue morphogenesis, three RGD-modified 
beads were placed on the cultured SMG. The results indicated the possibility of controlling cleft forma-
tion and morphology of the SMG tissue as previously predicted (Fig. 4d). Ki67 staining of SMG tissue, 
cultured in this condition, was carried out to evaluate cellular proliferation. The results indicated that 
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both epithelial and mesenchymal cells proliferated specifically at the region surrounding the bead on the 
SMG tissue (Fig. 4e).

Discussion
Our previous work indicated that RGD modified substrates have the potential to enhance SMG tissue 
growth16. To confirm that this phenomenon is indeed dependent on the presence of RGD, we prepared 
RGD-modified alginate hydrogel sheets with different concentrations of RGD and cultured SMG tissue 
on it. Strikingly, the bud expansions and cleft formations of cultured SMG increased according to the 

Figure 1. a) Schematic illustration of submandibular gland tissue (SMG) culture on hydrogel. b,c) SMG 
cultured on hydrogel sheets modified by introducing various RGD concentrations (0–0.18 mol/l), and SMG 
cultured on a tissue culture dish without any hydrogel substrate as a negative control (Bar =  50 μ m). A stiffer 
gel sheet normally attenuates SMG growth, but the SMG growth was enhanced when RGD was introduced. 
The SMG growth changed in accordance with the introduced amount of RGD (*p <  0.05). Whereas, SMG 
was completely dissociated when cultured on the tissue culture dish.
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amount of RGD present. Also, non-modified RGD substrate did not lead to SMG growth, suggesting that 
RGD is the key factor in this phenomenon.

SMG tissue consists of epithelial and mesenchymal tissues, and the mesenchymal tissue in the SMG 
surrounds the epithelial tissue. Previous studies have indicated that exogenous FGFs play crucial roles 
in SMG morphogenesis16. FGF7 induces epithelial budding, FGF10 induces ductal elongation, and both 
are inhibited by fibroblast growth factor receptor (FGFR) or extracellular signal-regulated kinase 1/2 
(ERK1/2) signalling inhibitors18–20. In this study, it was found that both FGF7 and FGF10 were highly 
expressed in SMG tissue cultured on RGD-modified gels. The antibodies to these growth factors atten-
uated SMG growth when it was cultured on RGD-modified gels. These results are supported by previ-
ous studies reporting similar effects with these antibodies16. These results suggest that RGD affects the 
up-regulation of FGF7 and FGF10 expression in SMG cultures.

A previous report revealed that neural development, especially the neurite outgrowth from the para-
sympathetic ganglion (PSG) in the SMG tissue, is critical in SMG development21. In the present study, the 

Figure 2. a) Immunofluorescent staining of FGF7 and FGF10 expressed in SMG tissue cultured for 
24 hours on hydrogel sheets with and without RGD modification (Red: anti-FGF7/anti-FGF10, Green: PNA, 
Bar =  100 μ m). b) Western blotting results of FGF7/FGF10 expression in SMG tissue cultured for 72 hours. 
Higher expression of both proteins was detected in SMG cultured on RGD modified gel sheet. ß-actin 
used as control. c) Addition of anti-FGF7 or anti-FGF10 clearly attenuates SMG growth cultured on RGD 
modified gel sheet in accordance with the amount of antibodies. (*p <  0.05).
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Figure 3. a) Neural growth in SMG tissue cultured for 72 hours on hydrogel sheets with and without 
RGD modification. Neural expansion is enhanced on the RGD-modified sheet (Red: anti-β III tubulin, 
Green: PNA, Bar =  100 μ m). b) Neural cell culture for 7 days on hydrogel sheets with and without RGD 
modification. Cells on the RGD-modified sheet show better neurite growth than do cells on the sheet 
without RGD modification (Bar =  20 μ m). d) Addition of anti-neurturin clearly attenuates SMG growth 
according to the amount of antibody. (*p <  0.05).
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neuronal network in the SMG cultured on RGD-modified gels was well distributed. Also, a PC12 neuronal 
cell line showed a remarkable neurite growth on this RGD-modified gel. This finding is consistent with 
previous studies indicating a robust neurite outgrowth of PC12 cells on fibronectin-coated substrates22. 
Antibody to NRTN, a neurotrophic factor, inhibited SMG growth even on the RGD-modified gel. Also, 
RGD-modified gels did not enhance bud expansions of epithelial cells isolated from the SMG tissue. All 
together, these results suggest that the RGD-modified alginate hydrogel sheet promoted growth of SMG 

Figure 4. a) SMG tissue cultured with RGD modified hydrogel beads of different sizes. The ratio of cleft 
formation changed in accordance with the bead size (Bar =  100 μ m). b) For beads of any size, the rate of 
successful cleft formation was higher for RGD-modified beads. c) The beads placed on SMG tissue triggered 
cleft formation locally (Bar =  50 μ m). d) Ki67 staining indicated the proliferation of both epithelial and 
mesenchymal cells around the beads (Bar =  50 μ m). (*p <  0.05).
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by enhancing neuronal growth in the SMG mesenchyme, as well as promoting increased expression of 
growth factors.

In the work described in the first part of this paper, SMG tissue culture was carried out on gels 
having a sheet morphology. RGD was present on the entire surface of the alginate hydrogel sheets and 
affected the entire SMG tissue under these conditions. Therefore, to investigate the local effect of RGD, 
RGD-modified alginate hydrogel beads were used. The application of the RGD-modified beads dramat-
ically enhanced the ratio of cleft formation four times than that with the non-RGD-modified gel beads. 
Moreover, SMG morphology was manipulated by placing the beads in a specific position on the SMG. 
We surmised that this phenomenon is caused by an increased local cell number in the region surround-
ing the bead because RGD promotes cell proliferation23. This hypothesis was confirmed by Ki67 staining, 
indicating that specific Ki67 positive cells were present around the bead. This bead-guided cleft forma-
tion in the SMG tissue resembles normal SMG development24.

A biomimetic environment is an artificial environment that reproduces the biological stimuli occurring 
within one’s body. Owing to the advancement of biomaterials science and tissue engineering, researchers 
are able to use biocompatible materials to make biomimetic environments in vitro25,26. RGD-modified 
materials have been utilized to improve cellular compatibility and enhance cell survival for cell therapy 
and tissue engineering27–29. In this study, RGD-modified alginate hydrogels with two different shapes 
were used for in vitro SMG tissue culture. RGD-modified hydrogels with sheet morphology promoted 
whole SMG tissue growth by increasing bud expansion as well as cleft formation. Furthermore, RGD 
hydrogels with a small-bead morphology acted locally, initiated cleft formation in the tissue, and allowed 
the growth of SMGs with the desired morphology. Thus, in this study, we clearly showed the potential 
of RGD for in vitro modulation of tissue growth and morphology.

Conclusions
RGD can modulate in vitro tissue growth and morphology in both wide and localized areas. This 
RGD-based material should be a promising tool to manipulate in vitro tissue growth and morphology. 
Also, this in vitro SMG tissue growth modulation system can have a variety of uses including tissue arrays 
for drug screening and as a biologic tool to understand tissue development.

Methods
Preparation of alginate hydrogel sheets and beads. We previously found that a stiffer gel (with 
a Young’s modulus of 184 kPa) attenuates in vitro SMG growth16. Hence, in this study, we used this 
stiffer hydrogel as a control to evaluate the effect of the synthesized material on SMG tissue growth. A 
sodium alginate solution (0.3–4 wt%, Wako Pure Chemical, Japan) was poured into a mold made of a 
porous alumina plate. The mold was soaked in calcium chloride solution (5 wt%) for 1.5 hours to obtain 
the alginate gel sheet. The resultant alginate hydrogel sheet was washed with then stored in Dulbecco’s 
modified Eagle’s medium /Nutrient Mixture F-12 (DMEM-F12) medium (Wako Pure Chemical, Japan) 
supplemented with 1% penicillin/streptomycin (Nacalai Tesque, Japan) (DMEM-F12/PS) for at least 24 h 
and subsequently cut into small pieces for cell and organ culture (10 ×  10 x 1.5 mm). Carbodiimide chem-
istry was utilized to fabricate a Gly-Gly-Gly-Gly-Arg-Gly-Asp (G4RGDS) conjugated alginate solution 
used to prepare the RGD modified alginate gels. One-ethyl-(dimethylaminopropyl)-carbodiimide (EDC, 
1 mmol/l) and the co-reactant N-hydroxysulfosuccinimide (sulfo-NHS, 1 mmol/l) were made to react 
with 0.15 wt% of the alginate solution in a MES buffer (0.1 mol/l MES, 0.3 mol/l NaCl, pH 6.5) for 5 min 
to form a stable intermediate. The desired concentrations of peptide were then added to the solution and 
left to react overnight at room temperature. The peptide-modified alginate was purified by dialysis and 
lyophilized for storage14.

Microbeads were prepared as previously described using a 3D-printing device17. Four wt% RGD mod-
ified or non-modified alginate solutions were used. A syringe pump was used to supply the alginate 
solution at a flow rate of 500 μ l/min. Alginate gelation was performed with a CaCl2-oleic acid solution. 
The bead size was controlled by stirrer speed. To obtain 20 to100 μ m sized beads, the stirrer speed used 
was 1250 to 500 rpm, respectively (Figure S4). After the beads were prepared, they were left for 5 min to 
allow precipitation to occur. Then, the CaCl2 solution was aspirated off, and the beads were collected. 
Excess CaCl2 was removed by centrifuging the beads at 1000 rpm for 2 min. The beads were then washed 
3 times with phosphate buffered saline (PBS), centrifuging at 1000 rpm for 3 min in between washes.

SMG tissue and cell culture. All animal procedures undertaken in this study were strictly in accord-
ance with the “Guidelines for Animal Experiments at Okayama University” and all experimental pro-
tocols were approved by Okayama University (OKU-2013033). SMG tissue extracted from E12.5 ICR 
mouse embryos was placed directly on non-modified alginate hydrogel sheets or the RGD-immobilized 
alginate hydrogel sheets with a mechanical stiffness of 4 kPa or 184 kPa, or alternatively on tissue culture 
dishes. The SMG culture was carried out at 37 °C in a humidified 5% CO2 atmosphere. DMEM-F12/PS 
medium was used for this organ culture. The concentration of chemicals used in this study was deter-
mined from previous reports17,30. Antibodies that were used are anti-FGF7 (0.25–2.0 μ g/ml, AB Biotech, 
CA), anti-FGF10 (0.25–2.0 μ g/ml, Millipore, CA), and anti-neurturin (0.25–2.0 μ g/ml, R&D systems, 
MN). The soft hydrogel promotes SMG tissue growth, while the stiff hydrogel attenuates SMG tissue 
growth in in vitro culture system. Therefore, when we needed to evaluate the inhibitory effect of the 
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chemicals, we used the soft hydrogel as a positive control. On the other hand, when we needed to eval-
uate the accelerator effect of the RGD peptide, stiffer alginate hydrogels without RGD modification were 
used as a negative control. A microscope (TE-2000, Nikon, Japan) was used to observe the growth and 
morphological changes of the cultured SMG. The bud number of the growing SMG in the images was 
measured at the time points 0, 24, 48, and 72 hours. For further modulation of SMG morphogenesis, 
alginate hydrogel beads (20–100 μ m) with or without RGD modification were placed in close proximity 
to the SMG epithelial tissue cultured on stiffer hydrogel sheets. PC12 cells (ATCC, VA) were grown in 
DMEM supplemented with 10% horse serum, 5% fetal bovine serum, and 1% penicillin/streptomycin 
(DMEM/HS/FBS/PS) (Life Technologies, NY) in a 5% CO2 humidified atmosphere at 37 °C. A micro-
scope (TE-2000, Nikon) was used to observe the growth and morphological changes of the cultured 
SMG. The SMG bud number was counted at 0, 24, 48 and 72 hours. The counting was performed by three 
individuals in a controlled, blinded fashion. The initial number of buds at 0 hours was considered as 1. 
The bud number at each time point was divided by the bud number at 0 hours to get a ratio. For cleft 
initiation using beads, new cleft formation was defined as occurring when divided epithelium growth 
exceeded the bead position in both the X and Y axis. For the neurite growth study, five thousand cells 
were seeded on the hydrogel and cultured in DMEM/HS/FBS/PS medium containing 50 ng/ml of nerve 
growth factor (NGF, Millipore). Total neurite length in individual cells was measured using Image J 
software (NIH, MD)31.

Immunofluorescence staining and Western blotting. The cultured SMGs were fixed with 
4% paraformaldehyde (PFA) and incubated with fluorescein isothiocyanate (FITC)-conjugated PNA 
(1:200, Sigma-Aldrich, MO), anti-β III-tubulin (1:1000, R&D Systems), anti-FGF7 (1:1000, AB Biotech), 
anti-FGF10 (1:2000, Millipore), or anti-ki-67 (1:1500, Abcam, UK). The antibodies were detected using 
Alexa Fluor 488 or 568 conjugated secondary antibodies (Life Technologies). Images were obtained using 
confocal microscopy (C1, Nikon). The total amount of protein obtained from the cultured tissue was 
calculated using a BCA protein assay kit (Pierce Biotechnology, IL) and then the following antibod-
ies were used in Western blot analysis: anti-FGF7 (1:1000) and anti-FGF10 (1:2000). Goat anti-rabbit 
horseradish peroxidase conjugated secondary antibody (1:8000, Santa Cruz Biotec, CA) was used as a 
secondary antibody. ß-Actin antibody (1:5000, Abcam) was used as a loading control. Western blot data 
were quantified by comparing the relative density of target bands to the loading control by using Image 
J software. Additional information is supplied in the Supplementary data.

Statistical analysis. Quantitative tests were conducted in quadruplicate, and mean values with stand-
ard deviations were then calculated. Statistical significance at the 5% level was evaluated using one-way 
analysis of variance (ANOVA) with Scheffe’s F test.
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