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Introduction

Magnetic resonance imaging (MRI) is a valuable tool that 
provides the ability to detect signs of osteoarthritis (OA) 
in the whole joint and in all joint structures, as well as to 
quantify changes in cartilage volume and thickness during 
the course of the disease.1,2 Recently, a number of MR 
methods have been developed that are relatively specific 
for the proteoglycan and collagen content in OA-affected 
articular cartilage. These compositional markers can non-
invasively determine collagen content and organization,3 
proteoglycan content,4 biomechanical properties,5 and 
also detect early-stage focal cartilage lesions.6 Transverse 
relaxation time (T2) mapping is a well-established quanti-
tative MRI method, which reflects the interplay of water 
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Abstract
Objective. the goal of this study was to assess the reproducibility of an automated knee cartilage segmentation of 21 
cartilage regions with a model-based algorithm and to compare the results with manual segmentation. Design. thirteen 
patients with low-grade femoral cartilage defects were included in the study and were scanned twice on a 7-t magnetic 
resonance imaging (Mri) scanner 8 days apart. a 3-dimensional double-echo steady-state (3D-DeSS) sequence was used to 
acquire Mr images for automated cartilage segmentation, and t2-mapping was performed using a 3D triple-echo steady-
state (3D-teSS) sequence. Cartilage volume, thickness, and t2 and texture features were automatically extracted from 
each knee for each of the 21 subregions. DeSS was used for manual cartilage segmentation and compared with automated 
segmentation using the Dice coefficient. the reproducibility of each variable was expressed using standard error of 
measurement (SeM) and smallest detectable change (SDC). Results. the Dice coefficient for the similarity between manual 
and automated segmentation ranged from 0.83 to 0.88 in different cartilage regions. test-retest analysis of automated 
cartilage segmentation and automated quantitative parameter extraction revealed excellent reproducibility for volume 
measurement (mean SDC for all subregions of 85.6 mm3), for thickness detection (SDC = 0.16 mm) and also for t2 
values (SDC = 2.38 ms) and most gray-level co-occurrence matrix features (SDC = 0.1 a.u.). Conclusions. the proposed 
technique of automated knee cartilage evaluation based on the segmentation of 3D Mr images and correlation with t2 
mapping provides highly reproducible results and significantly reduces the segmentation effort required for the analysis of 
knee articular cartilage in longitudinal studies.
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content and collagen matrix organization.7,8 The anisot-
ropy of cartilage tissue results in T2 variation from deep to 
superficial cartilage layers, depending on the collagen 
fiber orientation.9 T2-mapping is often used in longitudi-
nal studies where it can provide valuable information on 
collagen matrix status as the disease progresses.10,11 On 
ultra-high-field MR scanners, more progressive sequences 
for T2-mapping can be used rather than a conventional 
multi-echo spin-echo sequence, such as triple-echo steady 
state (TESS) sequence, which provide 3-dimensional (3D) 
knee coverage, lower specific absorption rate demands, 
and shorter measurement times.12-14 Additionally, texture 
analysis of quantitative MR maps using gray-level co-
occurrence matrix (GLCM) features provides additional 
information on collagen organization and can be used to 
determine cartilage status.15

Cartilage and bone deformations and cartilage thinning 
can be manually quantified using high-resolution morpho-
logical MRI. However, if this approach is carried out manu-
ally, it requires an enormous amount of time and manpower 
and may be subject to relatively high inter-/intrareader 
variability. Recently, many techniques for automated carti-
lage segmentation have been introduced, including inten-
sity- and edge-detection-based16,17 approaches, clustering,18 
deformable models,19 and atlas-/graph-based methods.20 
Fripp et al.21 designed a segmentation scheme that involves 
the automated segmentation of bones using a 3D active 
shape model, the extraction of the expected bone-cartilage 
interface (BCI), and cartilage segmentation from the BCI 
using a deformable model that utilizes localization, patient-
specific tissue estimation, and a model of the thickness 
variation.

The logical next step for automated cartilage segmenta-
tion is the application to quantitative MR cartilage evalua-
tion. This can be a tedious task when performed manually. 
Hesper et al.22 presented a reader-independent automated 
hip cartilage segmentation for delayed gadolinium-enhanced 
MRI of cartilage (dGEMRIC) for the assessment of bio-
chemical cartilage status. Norman et al.23 developed a con-
volutional neural network (CNN)–based method for 
automated T1ρ evaluation, demonstrating the ability to 
quantify relaxometry and morphology in a single session. 
All the aforementioned methods, however, used a bulk car-
tilage segmentation and a quantitative assessment. For anal-
ysis of cartilage affected by OA, it is important to quantify 
any alterations in cartilage subregions, as they can be 
affected differently.24 In particular, weightbearing and non-
weightbearing regions have different cartilage composition 
and function, and also cartilage layers change differently 
during the course of OA progression.25,26

Therefore, the goals of this study were (1) to assess the 
reproducibility of an automated knee cartilage segmentation 
with a model-based algorithm in 21 cartilage regions each 
with 3 layers, (2) to develop and validate a coregistration 

approach of DESS images and TESS T2 maps, and (3) to 
compare the results with manual segmentation.

Materials and Methods

Patient Cohort

This was a single-center prospective study and was approved 
by the institutional review board (The Ethics Committee of 
the Medical University of Vienna No. 1978/2014), and all 
participants provided written informed consent. Thirteen 
patients with a femoral cartilage defect of ICRS (International 
Cartilage Repair Society) grade I in the lateral or medial 
femoral condyle with (6 females, mean age ± standard devi-
ation: 50.8 ± 4.4 years, and 7 males: 50.2 ± 6.1 years) were 
involved in the study. Cartilage lesion ICRS grade I was 
defined as cartilage with a normal thickness and a normal 
smooth surface, but with intrachondral signal alterations. 
Inclusion criteria comprised ICRS grade I cartilage lesions 
in the femoral condyle and risk factors for cartilage disease 
progression, such as the presence of an anterior cruciate liga-
ment or meniscal tear. Subjects with contraindications to 
MRI, such as pacemakers, implants, or pregnant subjects, 
were excluded from the study.

MRI Protocol

All subjects underwent an MR examination on a whole-
body investigational 7-T MR scanner (Siemens Healthineers, 
Erlangen, Germany) with a dedicated 28-channel knee coil 
(Quality Electrodynamics, Mayfield Village, OH, USA). A 
3D double-echo steady-state sequence (3D-DESS) was 
used to acquire high-resolution MR images for automated 
cartilage segmentation. T2-mapping was performed using 
3D triple-echo steady-state (3D-TESS).15 The T2 maps 
were reconstructed online on the scanner using an IceLuva 
script.30 All sequence parameters are listed in Table 1. To 
analyze test-retest variability, the measurements were 
repeated twice: at baseline and after 8 days. In addition to 
the mean T2 values, each region of interest (ROI) was eval-
uated using texture analysis with a GLCM.27,28 Based on the 
literature research and in-house optimization, the following 
parameters were used: direction 90° (parallel to cartilage 
surface); 16 levels of gray; and an offset of 1. All slices of 
each cartilage region were analyzed and averaged. Each 
ROI was preprocessed by rotation, flattening, and resam-
pling. Using the MatLab library,29 from a total of 23 fea-
tures, the 7 most suitable for cartilage assessment were 
selected: autocorrelation, contrast, correlation, dissimilar-
ity, energy, entropy, and homogeneity.

Manual Cartilage Segmentation

All 3D-DESS images were segmented manually by a medi-
cal student (K.R.) and supervised by an orthopedic surgeon 
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with extensive experience in musculoskeletal imaging 
(M.S.), who also edited the automated segmentation, if nec-
essary. Manual segmentation was done only for bulk femo-
ral cartilage, bulk patellar cartilage, and lateral and medial 
tibial cartilage, rather than for all 21 subregions separately, 
since matching the exact perimeters of these subregions 
manually is difficult and even a slight mismatch might 
introduce significant bias. The corresponding regions from 
the automated segmentation were concatenated. The ability 
of the algorithm to reproducibly segment the subdivision 
into 21 subregions was demonstrated with the test-retest 
assessment.

automated Cartilage Segmentation

Knee articular cartilage was segmented using the proto-
type MRChondralHealth software (version 2.1, Siemens 
Healthcare, Erlangen, Germany), which is a model-based 
segmentation algorithm. The basic scheme consists of 4 
stages: preprocessing, atlas alignment, bone segmentation, 
and cartilage segmentation.21,30 According to anatomical 
landmarks introduced by Surowiec et al.,31 knee cartilage 
was divided into 6 patellar, 6 tibial, and 9 femoral sub-
fields. Each segment was further divided into 3 layers 
defined as three thirds along the surface-BCI axis.

After the cartilage was segmented, the resulting files (21 
cartilage subfields, thickness map, layer definitions, and 
bone segmentation) were converted from the image format 
mlimage to the nifti format. All files were further processed 
using MATLAB scripts.

Morphological and Quantitative Image 
Registrations

To coregister T2 maps with morphological 3D-DESS 
images, an algorithm developed in MATLAB (version 
2019b, The MathWorks, Inc, Natick, MA, USA) was used. 

First, the matching slices of 3D-DESS and 3D-TESS (sec-
ond echo) were identified using the DICOM (digital imag-
ing and communications in medicine) header information 
(slice location and patient orientation). Then, a multimodal 
coregistration method was applied using spatial mapping of 
fixed images (DESS) and moving images (TESS). Affine 
transformation with 12 degrees of freedom was used. 
Optimizer function parameters were determined by a previ-
ous iterative process, while a similarity index map was used 
as a quantitative coregistration quality marker.32 The resul-
tant optimizer parameters were as follows: initial radius = 
0.001; epsilon = 1.5e-4; growth factor = 1.01; and maxi-
mum iterations = 300. Finally, the resulting transformation 
was applied to the actual T2 map. The T2 map was further 
preprocessed by thresholding values lower than 5 ms and 
higher than 150 ms.

Data evaluation

Results from the automated segmentation (A) were com-
pared with manual segmentation (M) sets from five regions 
(patella, lateral tibia, medial tibia, femur, and all regions 
combined). Three measures were used: the Jaccard coeffi-
cient ((the number of voxels in A+M) / (the number of vox-
els in either A or M)) and the Dice coefficient (2 * |A| ∩ |M| / 
(|A| + |M|). A Jaccard coefficient higher than 0.7 and a Dice 
coefficient higher that 0.80 were considered acceptable.

To perform a test-retest of automated cartilage segmen-
tation and automated quantitative parameter extractions, the 
data from all patients were assessed independently from 
baseline scans and the follow-up scan after 8 days. Extracted 
features (cartilage volume, thickness, T2 values, and GLCM 
features) from both time points were compared using the 
standard error of measurement (SEM) and smallest detect-
able change (SDC).

To validate automatically extracted T2 values from 
the knee segments, T2 maps of 5 knees were segmented 

Table 1. image acquisition Parameters for Morphological (3D-DeSS) and Quantitative (3D-teSS t2-Mapping) analysis.

Sequence Parameters 3D-DeSS 3D-teSS for t2-Mapping

image plane Sagittal Sagittal
Slice thickness 0.5 mm 3 mm
Slice spacing 0.5 mm 3 mm
repetition time 8.86 ms 9.76 ms
echo time 2.55 ms 5.1 ms
averages 1 1
acquisition matrix 320 × 320 384 × 346
Field-of-view 160 × 160 mm2 143 × 143 mm2

Flip angle 18° 15°
total acquisition time 3:57 min 3:48 min
Pixel bandwidth 347 Hz/px 501 Hz/px

3D-DeSS = 3-dimensional double-echo steady-state; 3D-teSS = 3-dimensional triple-echo steady-state
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manually, selecting 21 regions corresponding to automated 
segmentation. The absolute difference of T2 values in mil-
liseconds, and the relative difference in percentage and 
volume difference was calculated in bulk for each of the 
segments, as well as in 3 cartilage layers (cartilage divided 
into equal three thirds along the superficial-deep axis).

To validate the ability of automatically extracted param-
eters to detect low-grade cartilage lesions, the location of 
each lesion was determined by a radiologist with 25 years 
of experience (S.T.). The Student paired t test was used to 
find the difference in the means of all variables in cartilage 
segments containing a lesion and in cartilage lesion-free 
segments. A P value lower than 0.05 was considered statis-
tically significant.

Results

The mean segmentation time for automated segmentation 
was 8.2 ± 2.0 minutes per case, and for manual segmenta-
tion, ~7 hours per case. The postediting of automated 

segmentation took ~20 minutes per case. Typically, small 
corrections were needed in all cases, most often in the lat-
eral posterior femur, and the anterior and posterior lateral 
tibia. The exemplary manual and automated segmentations 
in various views are depicted in Fig. 1 and 2. The similarity 
coefficients between manual and automated segmentation 
ranged from 0.7 to 0.722 and from 0.825 to 0.882 for the 
Jaccard coefficient and the Dice coefficient, respectively. 
In case of postedited automated segmentation, the similar-
ity to manual segmentation ranged from 0.788 to 0.845, 
from 0.828 to 0.895 for the Jaccard coefficient and the 
Dice coefficient, respectively. All coefficients are listed in 
Table 2.

Test-retest analysis of automated cartilage segmentation 
and automated quantitative parameter extractions revealed 
excellent reproducibility, especially in femoral cartilage for 
T2, volume, and thickness detection, mean SDC was 1.97 
ms, 120.3 mm3, and 0.15 mm, respectively. Relatively small 
SDC was found also for GLCM features. All SEM and SDC 
parameters are listed in Fig. 3.

Figure 1. an example of manual and automated cartilage segmentation: (A) manual segmentation caudal view; (B) automated 
segmentation caudal view; (C) manual segmentation cranial view; and (D) automated segmentation cranial view.
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The comparison of automated and manual T2 evaluation 
showed relatively high agreement. In case of bulk T2 val-
ues, the mean difference of T2s in all subregions was 
4.26 ± 1.22 ms (3.55%), while the highest agreement was 
found in the tibia (3.11 ± 0.81 ms, 2.74%), and the lowest in 

Figure 2. (A) Sagittal view of a knee overlaid with the automated cartilage segmentation; (B) coregistered t2 map overlaid with the 
automated cartilage segmentation; (C) coregistered t2 map overlaid with the automated cartilage segmentation of layers; and (D) 
manual segmentation of the coregistered t2 map.

Table 2. the Comparison of automated and Manual Cartilage Segmentation expressed by the Jaccard Coefficient and the Dice 
Coefficient (Both Fully automated and automated with Postediting Options are listed).

Cartilage region

Fully automated Fully automated with Postediting

Jaccard Dice Jaccard Dice

Patella 0.706 0.855 0.823 0.879
lateral tibia 0.700 0.850 0.788 0.861
Medial tibia 0.702 0.825 0.832 0.828
Femur 0.722 0.882 0.845 0.895
all regions combined 0.710 0.834 0.822 0.866

the femur (5.89 ± 3.44 ms, 6.21%). The overall difference 
between manual and automated segmentation measures of 
T2 in the different zones was as follows: in the superficial 
zone, 1.57 ± 0.91 (6.26%); in the transitional zone, 1.82 ± 
1.11 ms (6.25%); and in the deep zone, 1.49 ± 1.13 ms 
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(4.85%). All T2 differences between manual and automated 
evaluation are listed in Table 3.

The automated approach provided mean T2 value for 
subregions that contained a lesion of 29.1 ± 4.0 ms, and, 
for subregions without a lesion, a mean T2 of 27.7 ± 
2.7 ms (P = 0.133). Volume and thickness were lower in 
subregions with lesions, 6253 ± 1647 voxels versus 7028 
± 1662 voxels (P = 0.142), and 1.92 ± 0.26 mm versus 
2.01 ± 0.36 mm (P = 0.403). Interestingly, some GLCM 
features were capable of detecting the subregions that con-
tained a lesion, specifically homogeneity and dissimilarity 
(P = 0.029 and P = 0.043, respectively). All values are 
listed in Table 4.

Discussion

In this study, the reproducibility of automated cartilage 
segmentation for morphologic and quantitative cartilage 
evaluation was demonstrated. In addition, the results were 
compared to manually segmented cartilage, as well as 
manually evaluated T2 maps, and the ability to detect low-
grade cartilage lesions was assessed. The Dice coefficients 

showed very high agreement between manual and auto-
mated segmentation (from 0.825 to 0.882), which was even 
further improved subsequently, when the automated seg-
mentation was postedited (from 0.828 to 0.895). Test-retest 
of automated cartilage evaluation showed relatively low 
SDC, in particular for volume, thickness, and T2 values. 
Even though the reproducibility of texture features was 
moderate, 2 of these features (dissimilarity and homogene-
ity) demonstrated the ability to distinguish between healthy 
cartilage and damaged cartilage.

Articular cartilage can be visualized and interpreted by 
using magnetic resonance imaging, especially for the assess-
ment of knee OA, but also for focal cartilage lesions. 
Manual segmentation of articular cartilage from MR images 
is a challenging and time-consuming task, yet extremely 
important for longitudinal OA studies. To date, a plethora of 
studies have been dedicated to the design of automatic 
algorithms that would accelerate this process. Different 
strategies were applied to automatically segment the carti-
lage, including intensity-based,16 edge-based,17 region-
based,33 using deformable models,21 clustering-based,18 
graph-based, region based,20 and, recently, very popular 

Figure 3. test-retest of automated cartilage segmentation and automated quantitative parameter extractions from baseline scan and 
repeated scan after 8 days.
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Table 3. the Differences in t2 Values Calculated from automated and Manual evaluations in 3 layers.

region layer Δt2 (%) Δt2 (ms) Δvoxels

Patellar 
cartilage

lateral 
superior

Deep 7.81 1.77 169
transitional 11.85 2.91 −267
Superficial −3.10 −0.65 465

lateral 
central

Deep 7.22 1.66 24
transitional −7.67 −2.39 −40
Superficial 9.56 3.49 93

lateral 
inferior

Deep −11.06 −2.62 −50
transitional 4.87 1.36 74
Superficial 3.74 1.16 −56

Medial 
superior

Deep 1.98 0.60 −262
transitional −3.00 −1.00 440
Superficial 0.63 0.23 874

Medial 
central

Deep 12.92 3.73 317
transitional 2.68 1.08 −332
Superficial 2.77 1.17 2884

Medial 
inferior

Deep −2.48 −0.65 −678
transitional 7.39 2.15 1052
Superficial 2.59 0.81 1291

tibial 
cartilage

Medial 
anterior

Deep −8.18 −1.50 247
transitional 12.23 2.90 267
Superficial 13.44 3.28 96

Medial 
central

Deep −3.63 −0.84 −957
transitional 11.89 3.10 477
Superficial 6.47 1.70 74

Medial 
posterior

Deep −5.18 −1.90 −1153
transitional −1.31 −0.40 2124
Superficial 0.39 0.10 2370

lateral 
anterior

Deep 1.64 0.35 −211
transitional 11.73 3.13 −574
Superficial −6.80 −1.98 310

lateral 
central

Deep 13.62 2.97 918
transitional 0.57 0.17 231
Superficial −6.36 −1.90 −10

lateral 
posterior

Deep −6.34 −1.64 127
transitional 9.54 3.32 52
Superficial 5.66 1.72 −366

Femoral 
cartilage

Medial 
anterior

Deep 3.00 0.68 531
transitional 4.70 1.39 −433
Superficial −4.49 −1.44 204

Medial 
central

Deep 1.22 0.41 67
transitional 4.32 1.70 164
Superficial 2.03 0.79 −568

Medial 
posterior

Deep −1.38 −0.53 745
transitional 9.08 3.48 1394
Superficial −1.46 −0.51 −1930

trochlear 
lateral

Deep 9.26 2.26 560
transitional 0.55 0.16 −1679
Superficial 3.02 0.92 2126

trochlear 
medial

Deep −7.72 −1.69 1174
transitional −6.33 −1.58 −1891
Superficial 5.85 1.54 2066

(continued)
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CNN-based methods.34,35 The most important feature of 
automated cartilage segmentation approaches is their capa-
bility to maintain accuracy and reproducibility when applied 
to images acquired with different sequences or protocols. 
The algorithm incorporated in this study is based on the seg-
mentation design proposed by Fripp et al.,36 which obtains 
automated segmentations of the cartilage by automatically 
segmenting the bones and extracting the BCIs in the knee 
using 1.5- and 3-T images for training purposes. The mean 
Dice coefficient was 0.853 ± 0.023, and, after post-editing 
of automated segmentation (mostly involving the correction 
of mis-segmented posterior parts of femoral cartilage), it 
increased to 0.866 ± 0.029. These numbers are comparable 
to other previously published methods, for example, Dodin 
et al37. (DSC = 0.85), Yin et al38. (DSC = 0.84), and Xi 
et al.39 (DSC = 0.81). CNN-based methods usually score 
higher similarity coefficients on chosen datasets. They are, 
however, trained on a particular dataset with strictly defined 
image properties (resolution, contrast, signal-to-noise ratio). 
Moreover, the number of cartilage subregions in CNN-based 
models is limited to 3 to 5, since a higher number would 
increase the model complexity enormously. In this study, 
the reproducibility of cartilage sub-regions was very high 
for both volume and thickness measurements (P = 0.93 and 
P = 0.83, respectively). Cartilage volume and thickness 
have been used previously as useful biomarkers for the 
assessment of physiological and pathological effects.40-42 
The total cartilage volume and thickness alterations reported 
in these articles was ~10%; thus, the desired reproducibility 
of any automated approach should be substantially lower to 
reasonably detect such changes. The mean change in vol-
ume and thickness was 1.25% and 1.77% in the test-retest 
evaluation, respectively, which suggests its usefulness for 
detecting subtle changes in the course of OA or for treat-
ment monitoring.

Quantitative MR parameters, such as T1, T2, T1ρ, mag-
netization transfer, and sodium concentration, are valuable 
markers for determining the cartilage ultrastructure, and 

thus, they have attracted the attention of the research 
community.43 T2-mapping is widely used in cartilage 
research, as it can provide information about the collagen 
matrix organization and hydration.44 Similar to the mea-
surement of cartilage volume, T2 analyses of the whole 
knee cartilage are relatively rare, and are rather performed 
regionally, either for focal cartilage lesions or for cartilage 
repair.45 In this study, the automated T2 analysis was per-
formed by combining automated cartilage segmentation 
from morphological images with coregistration of T2 maps 
onto morphological images. In addition, the cartilage was 
divided into 3 layers: superficial, transitional, and deep in 
thirds. Although this does not correspond to the anatomical 
cartilage structure, where the superficial zone is in the 
range of a few tens of micrometers, it still makes sense to 
divide the cartilage into subsegments, since OA—and pos-
sibly disease-modifying drugs—may affect the respective 
cartilage layers differently.

In our study, T2 maps were also evaluated by texture 
analysis using GLCM. GLCM features have been shown to 
correlate with OA progression in postmenopausal women,46 
in patients with diabetes mellitus,47 and in patients after 
anterior cruciate ligament tear.48 Comprehensive analyses 
of texture features suitable for articular cartilage are dis-
cussed in an article by Peuna et al.28 The reproducibility of 
individual GLCM features, calculated from automatically 
segmented maps, was lower compared with volume, thick-
ness, and T2, but still acceptable. This can be attributed to 
the fact that a slightly mis-segmented ROI (typically cap-
turing synovial fluid) does not impact volume, thickness, or 
T2 substantially; however, texture features could be dramat-
ically altered. From all GLCM features, autocorrelation, 
dissimilarity, and homogeneity stand out in terms of 
reproducibility. Moreover, the sensitivity to cartilage 
degeneration was superior to all other parameters, espe-
cially dissimilarity and homogeneity, which were capable of 
significantly distinguishing healthy cartilage tissue from 
degenerated tissue. This was only partially in agreement 

region layer Δt2 (%) Δt2 (ms) Δvoxels

trochlear 
central

Deep 7.74 1.91 1244
transitional −3.99 −1.26 −1471
Superficial 10.53 3.28 1140

lateral 
anterior

Deep 6.21 1.03 921
transitional 9.93 2.35 −962
Superficial −1.12 −0.37 229

lateral 
central

Deep −11.19 −2.95 −96
transitional 0.37 0.14 89
Superficial 10.11 3.87 −175

lateral 
posterior

Deep −9.28 −2.63 184
transitional 1.51 0.52 −596
Superficial 3.14 0.86 1044

Table 3. (continued)
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with previously published results of texture analysis of 
OA-affected cartilage. Williams et al.48 found contrast, 
homogeneity, and energy to be the most suitable GLCM 
features to identify patients with OA. Chanchek et al.47 used 
data from the Osteoarthritis Initiative (OAI) to show that, in 
addition to T2 values, entropy, contrast, and variance were 
also able to distinguish between volunteers and patients 
with OA. Our study suggests that using smaller cartilage 
segments may be beneficial for GLCM analysis, as it intro-
duces smaller errors due to ROI preprocessing (cartilage 
flattening in particular) and takes into account the natural 
texture variability in cartilage subregions.

This study has some limitations. The number of scanned 
and post-processed patients was relatively small. However, 
considering the 21 cartilage subregions, we believe that suf-
ficient data were available for reliable statistics. Furthermore, 
only DESS and TESS pulse sequences were tested for auto-
mated evaluation, using DESS for morphological imaging 
and TESS for quantitative T2-mapping. However, in theory, 

any other isotropic morphological sequence could be used 
for automated segmentation and any quantitative MR method 
that provides sufficient contrast could be coregistered with 
DESS, using the proposed method. This would be highly 
beneficial in multicenter, large-cohort patient OA trials 
designed to demonstrate the treatment effect both on carti-
lage volume and quality. The manual segmentation was not 
performed in the same 21 cartilage subregions, as it was 
extremely difficult to reproduce the division provided by 
automated software. Nevertheless, the automated software 
could repeat the subregion selection with very high reproduc-
ibility. The repeatability of zonal T2 evaluation, as well as the 
comparison to manual evaluation, was acceptable. However, 
due to the very low pixel number in each sub-region/ 
layer, the variation was higher than that in bulk analysis. 
Furthermore, the interpretation of some GLCM features in 
cartilage texture is unclear. Only a few of these features were 
assessed in previous studies,27,28,46,48 so that a deeper under-
standing of the GLCM features has yet to be developed.

Table 4. Mean Values for t2, Volume, thickness, and gray-level Co-Occurrence Matrix (glCM) Features for Subregions that 
Contained lesions and Subregions Without a lesion.

n Mean SD

95% Confidence 
interval for Mean

Significance 
lower 
Bound

Upper 
Bound

Mean t2 (bulk) No lesion 60 27.7 2.7 27.0 28.4 0.133
 lesion 12 29.1 4.0 26.5 31.7
 Mean t2 

(superficial)
No lesion 60 33.9 3.8 32.8 35 0.244

 lesion 12 35.5 4.0 34.4 36.6
 Mean t2 

(transitional)
No lesion 60 26.8 2.2 26 27.6 0.180

 lesion 12 27.2 3.4 26.4 28
 Mean t2 (deep) No lesion 60 22.3 4.8 21.6 23 0.098
 lesion 12 24.7 6.7 24 25.4
Volumetric 

measures
Voxels No lesion 60 7028 1662 5972 8084 0.142

lesion 12 6253 1647 5828 6679
thickness No lesion 60 2.012 0.362 1.918 2.105 0.403

lesion 12 1.919 0.261 1.754 2.085
texture 

analysis 
using 
glCM

autocorrelation No lesion 60 18.29 2.58 17.63 18.96 0.102
lesion 12 19.89 4.87 16.80 22.99

Contrast No lesion 60 0.838 0.317 0.756 0.919 0.093
lesion 12 0.666 0.330 0.456 0.875

Correlation No lesion 60 0.768 0.062 0.751 0.784 0.118
lesion 12 0.798 0.057 0.762 0.834

Dissimilarity No lesion 60 0.567 0.126 0.534 0.599 0.043*
lesion 12 0.483 0.137 0.396 0.570

energy No lesion 60 0.130 0.030 0.122 0.137 0.080
lesion 12 0.150 0.060 0.112 0.188

entropy No lesion 60 2.500 0.162 2.458 2.541 0.230
lesion 12 2.432 0.241 2.279 2.585

Homogeneity No lesion 60 0.754 0.041 0.743 0.764 0.029*
lesion 12 0.783 0.046 0.754 0.812

*Statistically significant (P < 0.05).
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Conclusion

The proposed technique of automated knee cartilage evalu-
ation using morphological images provides highly repro-
ducible results and greatly reduces the segmentation effort 
required for the analysis of knee articular cartilage in longi-
tudinal, large-cohort trials. The 21 cartilage subregions 
examined offer the possibility of a unique analysis of the 
whole joint, which allows a more specific analysis of the 
cartilage with regard to the site of degeneration or the treat-
ment monitoring. In addition, the automated detection of 
these precisely defined cartilage subregions is a unique pro-
cedure that makes this approach particularly useful for stud-
ies in patients with knee osteoarthritis, where the cartilage 
may be degenerated in several areas. Last, the possibility of 
extracting information from T2 maps about early changes in 
cartilage texture in these same regions opens a new devel-
opment path toward qualitative biomarkers for better dif-
ferentiation of treatment options.
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