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Approximate Bayesian Computation of radiocarbon
and paleoenvironmental record shows population
resilience on Rapa Nui (Easter Island)
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Examining how past human populations responded to environmental and climatic changes is

a central focus of the historical sciences. The use of summed probability distributions (SPD)

of radiocarbon dates as a proxy for estimating relative population sizes provides a widely

applicable method in this research area. Paleodemographic reconstructions and modeling

with SPDs, however, are stymied by a lack of accepted methods for model fitting, tools for

assessing the demographic impact of environmental or climatic variables, and a means for

formal multi-model comparison. These deficiencies severely limit our ability to reliably

resolve crucial questions of past human-environment interactions. We propose a solution

using Approximate Bayesian Computation (ABC) to fit complex demographic models to

observed SPDs. Using a case study from Rapa Nui (Easter Island), a location that has long

been the focus of debate regarding the impact of environmental and climatic changes on its

human population, we find that past populations were resilient to environmental and climatic

challenges. Our findings support a growing body of evidence showing stable and sustainable

communities on the island. The ABC framework offers a novel approach for exploring regions

and time periods where questions of climate-induced demographic and cultural change

remain unresolved.
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Understanding how past human populations responded to
ecological and climatic change continues to be a primary
focus in the historical sciences, e.g.,1–5. While there is a

growing pool of high-resolution paleoecological and paleoclimatic
data, reconstructing paleodemographic patterns remains a central
challenge6–9. Researchers have examined multiple proxies for
reconstructing ancient demographic patterns10–14, but the use of
radiocarbon frequency data is currently the most widely used
approach in archeology15–20. Despite interpretative and metho-
dological challenges21–25, the unmatched chronological resolution
and the increasing availability of large collections of 14C dates
offer unique opportunities for comparative demographic research.
While there have been several methodological advances over-
coming many of the early limitations of this approach, two current
weaknesses remain: (1) appropriate means of formal multi-model
comparison and (2) methods for directly modeling demographic
effects of environmental variables. While many studies have
moved away from simple visual inspections of summed prob-
ability distributions of calibrated dates (SPD) and have focused on
null-hypothesis significance testing16,17, there is a growing interest
in evaluating more complex demographic hypotheses that incor-
porate environmental and climatic variables. Here, we briefly
review recent advances in this area of research and propose a
solution based on Approximate Bayesian Computation (ABC),
illustrated with a Rapa Nui (Easter Island) case study.

Several recent studies employ information criteria (IC) to
formally compare contrasting demographic hypotheses against
observed SPDs26–32. In most cases, the procedure consists of
retrieving the Akaike Information Criterion (AIC) from fitted
regression models where the response variable is a vector of
summed probabilities and the independent variable is some
transformation of the matching calendar year that emulates
specific growth trajectories or in some cases incorporates addi-
tional external covariates. This approach, however, would (1)
incorrectly treat the number of calendar years in the window of
analyses as the sample size; (2) disregard the smearing effect of
calibrated uncertainties; and (3) ignore the systematic artifacts in
the SPD originating from the calibration process. As a con-
sequence, the fitted parameters of the regression and the max-
imum likelihood (from which the AIC values are derived) are
statistically biased and misleading (see22,33,34 for similar criti-
cisms and some alternative solutions). Indeed, it is exactly for
these reasons that Monte Carlo-based simulation testing was
introduced nearly a decade ago in the first place15,16—for a given
candidate hypothesis (i.e., growth model) one must compare the
empirical SPD against a series of simulated theoretical curves that
are drawn from the same sampling distributions and share the
same measurement errors (both random and calibration-related)
as the observed data. It then follows that we need similar methods
that adequately account for this analytical uncertainty if robust
model comparison is sought.

The challenge is further exacerbated by the growing interest in
linking changes observed in SPD curves to paleoenvironmental
proxies with various correlation techniques and direct compar-
isons, e.g.,27,32,35–44. While these studies offer important indica-
tions of potential associations between population and climate,
there have been only limited attempts to formally model the effect
of climatic or environmental changes on SPD-based population
proxies, e.g.,15,21,41,45. Correlation tests on SPDs can suffer from
similar problems as IC-based model comparison—due to the
artificially large sample size inherent in evaluating annual change
over durations of centuries or millennia, p values can be inflated
leading to the appearance of overconfidence in the significance of
the associations.

Furthermore, while spikes and troughs in SPD curves, or
deviations from null models, may appear to be correlated with

paleoenvironmental events, several non-trivial technical issues
prevent simple conclusions to be drawn from ‘eye-balling’ SPDs.
First, 14C normalization46,47 and back-calibration methods, used
to generate simulation envelopes for model fitting23, can cause
spurious spikes in the SPD at steep portions of the 14C calibration
curve. In the case of 14C normalization, individually calibrated
distributions are standardized so the posterior probability density
sums to 1. In constructing SPDs, normalization inflates spikes
caused by steep portions of the calibration curve, whereas non-
normalized dates lack these artifacts23,46,47. In addition, com-
paring empirical SPDs to candidate models requires one to
simulate distributions of radiocarbon dates consistent with the
model expectations. Empirical and simulation studies have
shown, however, that the choice of algorithms can produce
substantially different outcomes23,36,42. Although recent studies
have started to tackle these methodological challenges33,34,45,
there remains a need for an inferential framework that can for-
malize and accommodate more complex demographic hypotheses
of human–environment interaction. At the same time, we need
robust techniques for model fitting and comparison that can
appropriately characterize analytical uncertainty and the idio-
syncratic properties of the archeological record.

Here, we present a solution to these challenges using ABC, a
flexible and powerful modeling approach originally developed in
population genetics48,49 but recently applied in archeology50–54,
including paleodemographic research55,56. We demonstrate how
ABC can be used to directly integrate independent paleoenvir-
onmental variables into demographic models and perform multi-
model comparisons. To illustrate how this framework can advance
paleodemographic studies, we present an analysis of Rapa Nui
(Easter Island, Fig. 1), which has long been a topic of debate
regarding the impact of environmental changes on the island’s
pre-contact population. Our ABC approach to radiocarbon-based
paleodemography can be usefully extended to other regions in the
world where similar debates regarding environmentally influenced
population change remain unresolved.

Rapa Nui is a small (164 km2) volcanic island in southeastern
Polynesia (Fig. 1). Initially settled by Polynesian voyagers between
the twelfth and thirteenth century AD, the island is famous for
the environmental changes that followed human arrival, the
remarkable achievements of Rapanui in megalithic construction,
and long-standing debates surrounding demographic patterns
preceding European contact57,58. Central to these debates is the
assumption that unrestricted population growth and environ-
mental degradation stemming from deforestation and cultivation
ultimately led to a demographic and cultural collapse prior to
European arrival in AD 172259,60. Much of the basis for this
narrative stems from the assumed incongruity of the island’s
marginal environment, prolific monumental architecture, and
small contact-era population size, which at the time of Dutch and
Spanish visits in AD 1722 and 1770 was estimated to be no more
than a few thousand61–65. Rapa Nui, however, was once covered
in an extensive palm forest that by the time of European contact
had largely disappeared due to the impacts of land-clearing for
agriculture and the invasive Pacific rat66,67. The duration and
consequences of deforestation have been debated, with many
arguing for an ecological catastrophe whereby rapid forest
removal caused widespread erosion, depletion of soil productivity,
reduction in surface freshwater, and reduced carrying
capacity29,60,68–70. As part of these claims, paleoenvironmental
evidence has been used to argue for a large-scale demographic
change on pre-contact Rapa Nui, e.g.,70,71.

Recent paleoenvironmental studies also suggest that large-scale
climate changes took place in pre-contact times. Sediment cores
from Rano Raraku lake, for example, show a series of sedimentary
hiatuses from the fifteenth to eighteenth centuries, leading some
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to argue that the island’s lakes became dry from severe droughts
events72,73. These drought events are potentially associated with
the onset of the Little Ice Age or changes in the El Niño Southern
Oscillation, with a shift toward more positive Southern Oscilla-
tion Index (SOI) values beginning in the fifteenth century74.

Several studies have attempted large-scale analyses of chrono-
metric dates to infer processes of cultural and demographic change
on Rapa Nui. Using a set of ad hoc expectations for collapse,
Mulrooney75 simulates SPD curves for population continuity and
pre-contact collapse at ca. AD 1680 (the conventional collapse
date). She compares these simulated results to an empirical SPD
for settlement sites and concluded that the patterns did not meet
expectations of a pre-contact collapse. Stevenson et al.’s76 SPD
analyses of 428 obsidian hydration dates from six inland and
coastal contexts similarly do not suggest a major population
decline, from which they76 conclude that “this temporal recon-
struction of land-use history associated with food production
argues against the notion of an island-wide pre-contact collapse as
a useful explanatory concept for Rapa Nui.” In an examination of
the chronology for megalithic construction, DiNapoli et al.57

construct Bayesian tempo plots of available radiocarbon dates from
statue platform (ahu) contexts. The results of these analyses
demonstrate continuity in monument construction in pre-contact
times, contrary to the common claims of collapse narratives77.

In a challenge to these analyses, Lima et al.29 present a series of
SPD models they argue demonstrate demographic collapses prior
to European arrival. Using normalized 14C dates and the cal-
sample back-calibration method23, Lima et al.29 fit a linear growth
model to the observed SPD and claim that deviations from the
linear model show statistically significant “population collapses…
at 1430–1550 CE…and 1640–1700 CE.” They also suggest that
positive SOI values correspond to reduced local precipitation that
stressed Rapa Nui’s rainfed cultivation systems and available
surface freshwater. They then fit four logistic growth models
directly to the normalized SPD, comparing simple logistic growth
with three different models including effects from changes in
palm cover estimated through palm pollen prevalence in lake
cores, effects from changes in SOI that reflect overall dry/wet
conditions, and a combination of palm cover and SOI. Lima et al.

then compare these direct fits to the normalized SPD using IC
(AIC and AICc), from which they assert that the logistic model
that includes strong effects from the reduction in palm cover and
increasing SOI fits best. They argue that their finding demon-
strates that climate variability and deforestation “describe the
dynamics of the human population in Rapa Nui quite well and is
able to explain the increasing trend as well as population decline
episodes that impacted during several generations, which we
think can be defined as demographic collapses.”

Several of Lima et al.’s29 modeling choices, however, raise
questions about the validity of their conclusions. Their analysis
hinges on the assumption that the rise and fall in normalized SPD
at ca. AD 1500 represents an accurate demographic signal. The
veracity of this assumption is unclear, however, as they did not
examine the sensitivity of their results to 14C normalization or
back-calibration simulation procedure. The shape of the Southern
Hemisphere calibration curve from ca. 1375–1500 AD is steep,
followed by a plateau and several ‘wiggles’78,79. Rather than
reflecting demographic events, it is likely that this spike is a
predictable consequence of normalization23,46,47. Critically, Lima
et al.29 do not account for the calibration curve and sample size
effects by fitting their models directly to the normalized SPD. As a
result, their maximum likelihood calculations, the derived IC
model selection, and conclusions are questionable. Instead, con-
cluding that a collapse occurred may simply be explained as an
artifact of their analytical procedure. Given these concerns, we are
left with the question of how to account for paleodemographic
patterns on Rapa Nui and how they may be related to past cli-
matic and environmental changes. Here, we offer an ABC
approach that reexamines these questions and is able to better
account for the uncertainties that are inherent in SPD analyses.

Results
We reevaluate the hypothesis that Rapa Nui populations experi-
enced an ecologically induced demographic collapse29. Figure 2
shows the non-normalized SPD curve generated from 201
radiocarbon samples from 47 archeological deposits on Rapa Nui
(see “Methods”). Line color reflects changes in palm forest cover

Fig. 1 Rapa Nui (Easter Island) with the locations of places mentioned in the text. Inset shows the location of Rapa Nui in East Polynesia.
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(Fig. 2a) and SOI (Fig. 2b). Based on the overall shape of the non-
normalized SPD curve, one might conclude that populations
experienced a logistic growth trend and that over time there was a
corresponding decline in palm forest cover along with a shift
from negative to positive SOI phases as the climate became drier.
However, direct comparisons of the relationship between climatic
variables and the SPD can yield opposite patterns by simply using
normalized or non-normalized 14C dates (see Supplementary
Note 2 and Fig. S1). This further affirms the danger of these direct
comparisons and we must ask whether there is sufficient statis-
tical basis to make such claims.

To assess these human–environment interactions we used ABC
to fit and compare four demographic models to the Rapa Nui
SPD. These models include (1) simple logistic growth, (2) logistic
growth with a palm forest cover effect, (3) logistic growth with a
climate (SOI) effect, and (4) logistic growth with palm forest
cover and SOI effects (see “Methods” and Supplementary Notes
1–11). Table 1 shows the median and 90% highest posterior
density (HPD) estimates calculated for each model’s parameters
based on the 1000 best-fitting runs. Checks of the joint posterior
distributions show no correlations between model parameters
(see Supplementary Note 8 and Figs. S10–S25). Figure 3 compares
these fitted parameter values to demographic patterns. The four
models show steady population growth from initial island set-
tlement until European contact in AD 1722. Models 1 and
2 suggest that there was a potential population plateau following
European arrival, whereas models 3 and 4 show possible decline
after AD 1722. Posterior predictive checks of the fitted models
against the observed Rapa Nui SPD are shown in Fig. 4 and
indicate that the observed SPD lies within the simulation envel-
ope for all four models.

In contrast to Lima et al.’s29 AIC model comparisons showing
strong support for model 4, our results show the four models are
effectively identical and provide similar goodness-of-fit to the
data, with Bayes factors not providing strong support for any
particular model (Table S2). Posterior distributions of environ-
mental parameters (βpalm and βSOI) for models 2–4 are also
centered around zero with fairly broad 90% HPDs that range
between positive and negative values. The substantial uncertainty
in the posterior distribution and small Bayes factors are likely the
consequence of the relatively small 14C sample for Rapa Nui that
is not sufficient to discern between the competing hypotheses.
These results provide strongly contrasting conclusions compared
to those from direct comparison of the environmental proxies
and the observed normalized or non-normalized SPDs. Failure to
consider the factors included above gives conflicting and mis-
leading results (see Supplementary Note 2).

Discussion
When we assess the uncertainties of the Rapa Nui data and those
involved in the analytic steps, the current evidence indicates that
the island experienced relatively steady population growth from
initial human settlement ca. 800 cal BP until the period following
European arrival. The “wiggles” in the observed SPD curve all fall
within the simulation envelope and result from details of the
calibration curve combined with sampling error, and importantly,
not genuine paleodemographic signals. Given these facts, we are
unable to confidently distinguish between the four hypotheses. All
of the fitted models, however, are consistent with a logistic growth
pattern only marginally influenced by changes in climate and
forest cover. The wide HPDs of the environmental parameters
suggest a range of possible positive or negative effects, yet no
values appear strong enough to cause major population declines
(Fig. 3). Given the comparatively small number of radiocarbon
dates, we cannot determine whether our inability to discern
between the competing models is the consequence of small
sample size, the small ‘effect size’ in models 2–4 (i.e., the absolute
deviation of βpalm and βSOI from 0), or a combination of both
factors. Nonetheless, none of the fitted models support the notion
of pre-contact population collapse (Fig. 3). Therefore, our results
suggest that if deforestation or increasing SOI had effects on the
island, Rapa Nui populations were resilient to them. These
findings are independently supported by recent research showing
that monument construction steadily continued even after Eur-
opean arrival57,77. In addition, research now demonstrates that
deforestation was a prolonged process, did not result in cata-
strophic erosion, and that land cover was quickly replaced by
lithic mulch gardens that increased agricultural
productivity66,67,80–85. Moreover, while some claim that defor-
estation resulted in the loss of food29,68, there is no evidence that
palms were a significant dietary resource for islanders66,86. Thus,
it is more likely that the loss of the palm forest represented an
expansion of cultivation opportunities and positively contributed
to the initial growth and overall resilience of the population. In
summary, there is no empirical support for the notion that
deforestation resulted in strong negative impacts on the human
population of Rapa Nui.

Our results also have implications for the effects of climate
change on the island. Rull71,73 has recently claimed that climate-
induced droughts caused a large-scale societal disruption result-
ing in the cessation of monument construction and intra-island
migration from coastal settlements to the crater lake at Rano Kau.
Similar to previous analyses of the tempo of monument con-
struction around the island57, the vast majority of our 14C data
derive from coastal settlements and do not show declines in

Fig. 2 The observed non-normalized SPD calculated on the basis of 201 class 1 and 2 dates. The color of a shows changes in palm forest cover as
measured by palm pollen abundance while the color of b shows changes in SOI. Positive SOI values are associated with drier conditions. The vertical
dashed line marks the timing of European contact in AD 1722.
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activity or support claims of major climate-induced disruptions
from drought. While climate perturbations seem to have led to
desiccation of the crater lake at Rano Raraku72, recent research
suggests Rapa Nui populations adapted to these changes by
relying primarily on coastal groundwater sources87–89.

Our analyses also provide important insights into previous
demographic proposals by Puleston et al.64. In a series of hypo-
thetical food-limited demography simulations, Puleston et al.64

derived several absolute estimates for maximum population sizes
on pre-contact Rapa Nui, which converged on two possible
outcomes largely dependent on assumptions of bioavailable
nitrogen for cultivation: a ‘low-N scenario’ with maximum
populations of ca. 3500 and a ‘high N scenario’ with maximum

populations of ca. 17,500. Because at the time of initial contact,
Europeans estimated the population to be in the low thousands63,
Puleston et al.’s64 conclusion of 17,500, if correct, logically
requires a large pre-contact demographic decline65. Our study
provides a resolution to this debate as none of the models show
evidence of a major reduction in activity prior to European
arrival, indicating that Puleston et al.’s64 low-N estimate of ca.
3500 individuals is most consistent with the archeological and
historical evidence. At a broader scale, our results demonstrate
that the logistic demographic patterns on Rapa Nui were similar
to those proposed for other islands in Polynesia, e.g.,59,90–92.

Combined with a growing body of recent research, our
demographic analyses support an emerging view of Rapa Nui as a
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Fig. 3 Median and 95% HPD values for four demographic models. Model 1 is a simple logistic growth curve, Model 2 is a logistic growth curve with a
forest cover effect, Model 3 is a logistic growth curve with a climate effect from the SOI, and Model 4 is a logistic growth curve with palm forest cover and
SOI. The colored areas indicate the 95% HPD envelope. The vertical dashed lines mark the timing of European arrival in AD 1722. Note that the HPD for all
models includes the possibility of a demographic plateau after AD 1722, Models 3 and 4 include the possibility of a decline after European contact.

Table 1 Median and 90% highest posterior density (HPD) estimates for models with non-normalized SPD using the uncalsample
back-calibration method (see “Methods”). Using a normalized SPD and the calsample method produces comparable results
(see SI).

Nt=0 R βpain βSOI
Model 1 median (90% HPD) 0.06 (0.008–0.1) 0.008 (0.003–0.01) – –
Model 2 median (90% HPD) 0.05 (0.006–0.1) 0.008 (0.003–0.01) −0.001 (−0.017 to 0.015) –
Model 3 median (90% HPD) 0.06 (0.005–0.1) 0.009 (0.003–0.02) – 0.074 (−0.28 to 0.4)
Model 4 median (90% HPD) 0.06 (0.005–0.1) 0.009 (0.002–0.02) −0.002 (−0.019 to 0.014) 0.082 (−0.28 to 0.4)
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case of population resilience in the face of marked environmental
changes, e.g.,58,61–63,75–77,93–95. These results present a history
that stands in contrast to the popular narrative of sequential
catastrophic events, which has inflated environmental changes as
negative drivers of cultural and demographic patterns. Rather,
despite extreme isolation, marginal ecological conditions, and a
series of environmental changes, Rapa Nui people found solutions
that enabled them to successfully thrive on the island for at least
500 years prior to the arrival of Europeans.

In summary, our conclusions sharply contrast with Lima
et al.’s29 study and falsify claims of a population decline prior to
European contact. Several factors explain the divergence between
the conclusions of Lima et al.’s29 study and those presented here,
along with those of previous studies57,75. First, Lima et al.’s study
did not correctly ‘bin’ dates by site location. While samples in
Mulrooney’s75 dataset are coded by ‘site,’ archeological site-
naming conventions yield instances where dates from the same
site have slightly different site names. For example, the large
sample of dates from the Anakena settlement is represented by
~15 ‘sites’ in Lima et al.’s study, when in fact all dates come from
excavations within or closely adjacent to the site of Ahu Nau Nau.
Second, while Lima et al.29 correctly note that samples from
ceremonial contexts, e.g.,57 reflect “the ‘ahu moai’ tradition” and
“not a demographic process”, their study nevertheless included
ca. 70 14C dates from these contexts that by their own admission
are likely unrelated to population changes. These two issues result

in an ambiguous relation between dates and target events while
also inflating the sample size.

Importantly, Lima et al.’s study incorrectly describes the results
of the linear model that provides a foundation for their study’s
collapse hypothesis29. Through their choice of a linear model,
steps by which they normalized the 14C data, and confusion over
the effects of the calibration curve, Lima et al.’s29 study mis-
interprets variability in the SPD. The rise and fall (i.e., “collapse”)
observed in their study between 1430 and 1550 AD falls entirely
within a significant positive deviation from their null model.
Given the known impact of 14C normalization at this steep
portion of the Southern Hemisphere calibration
curve23,46,47,75,78,79, the population only appears to rise and
decline. Moreover, Lima et al.’s study does not provide a clear
rationale why continuous linear population growth would be
expected for the small island of Rapa Nui. Perhaps most critically,
by not adequately accounting for calibration or sample size effects
in their attempt to directly fit their regression models to the
normalized SPD, Lima et al.’s study29 treated these artifacts of the
calibration curve as genuine demographic signals. An important
lesson of Lima et al.’s29 study for future work is that by not
acknowledging different forms of uncertainties, avoiding direct
assessment of SPDs is not just a matter of statistical rigor, but an
issue that can lead to dramatically different claims about the past.

From a methodological standpoint, the generative inference
approach provided by ABC offers a solution that addresses the
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Fig. 4 Posterior predictive checks (PPC) of the four fitted models against the observed Rapa Nui SPD. The dashed black line is the observed SPD. The
solid color lines and shading show the median and 95% PPC interval for the fitted models. Note that the observed SPD lies within the simulation envelope
of each model and the results of the four models are nearly identical. The vertical dashed lines mark the timing of European arrival in AD 1722.
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need to evaluate complex demographic models with sufficient
statistical rigor while also taking into account the specific chal-
lenges of radiocarbon datasets. The main advantage of the ABC
approach for model fitting and comparison over recently sug-
gested approaches33,34,45 is the flexibility offered by formulating
the proposed model as a simulation, an advance that could
potentially integrate more complex phenomena involved in
shaping SPDs such as settlement dynamics96 and geoarchaeolo-
gical concerns such as taphonomy97 and variable sedimentation
rates25. While the price for this flexibility is the relatively high
computational requirements, this factor is outweighed by the
benefits gained from more fully characterizing analytical uncer-
tainty, opening up opportunities for empirically testing an
increasing number of computational models, and ultimately
improving the accuracy of the inferential process in archeology.

Methods
Radiocarbon and paleoenvironmental data. We use the 14C dataset compiled in
Mulrooney75 along with recently published dates93,98,99, including all radiocarbon
determinations meeting the criteria for class 1 or 2 dates by Mulrooney75. Fol-
lowing Brown and Crema90, we restrict our analysis to dates with a clear contextual
association with residential sites or subsistence activity to ensure linkage between
the dated events and our target phenomena of past demography. Samples come
from across the island and derive from similar sedimentary contexts resulting from
anthropogenic depositional events75, cf. 25. These steps resulted in 201 dates from
47 locations. We calibrated all terrestrial dates with the SHCal20 calibration
curve79. All bone dates were calibrated with a mixed terrestrial/marine curve with
50% SHcal20 and Marine20100 following Jarman et al.93 and a revised local marine
reservoir correction. There are currently ten local marine reservoir corrections (ΔR)
for the island, all of which derive from coral samples from Ovahe, a small bay just
east of Anakena101,102. These ΔR values range from −132 ± 37 to −252 ± 46. We
revised the ΔR values to reflect updates to the Marine20 calibration curve100.
Following methods in DiNapoli et al.103, we calculated the error-weighted pooled
mean with external variance added for these ΔR values to be −214 ± 16 (χ29:0.05=
11.0 < 16.9; χ2

n�1= 1.2).
To examine the effects of 14C normalization on demographic interpretations,

we generated two SPD curves for the time period 800–150 BP with both
normalized and non-normalized dates. To account for ascertainment and wealth
bias34, dates from the same site and within a temporal distance of 50 years were
combined into bins. To examine possible taphonomic biases we applied the
correction suggested by Surovell et al.104 to the normalized and non-normalized
SPD, which does not result in an observable difference in the SPDs (Fig. S2). We
interpolated time-series data on changes in forest cover using palm pollen counts
from paleoenvironmental cores of Rano Raraku lake sediments72, and SOI
reconstructions from Yan et al.74, the same datasets underlying Lima et al.’s29

analyses.

Demographic models. Given Rapa Nui’s small size, we assume that population
growth on the island followed some form of logistic pattern. Following Lima
et al.29, we constructed four demographic models with the following general
structure:

Nt ¼ Nt�1*e
r*½1�ðNt�1=Kt�1Þ� ð1Þ

where N is the population size, t is time, and r is intrinsic growth rate, and K is
carrying capacity. The four models are distinguished by the parameters and cov-
ariates of the linear model defining Kt�1 :

Kt�1 ¼ expðβpalmFt�1 þ βSOICt�1Þ ð2Þ
where F is forest cover, C is SOI climate reconstruction, and βpalm and βSOI are
model parameters. Model 1 has all parameters equal to zero, and corresponds to a
simple logistic growth model with a carrying capacity equal to 1. The second and
third logistic models incorporate either palm cover (by setting βSOI= 0) or the SOI
index (by setting βpalm= 0) individually, whilst the fourth model explores the
impact of both external covariates.

Approximate Bayesian Computation for SPD modeling. Our ABC approach to
SPD modeling builds on recent work by Porčić56, follows standard procedures used
in other fields, e.g.,105,106, and involves the following steps: (1) define the prior
distributions of the demographic model parameters; (2) sample n parameter
combinations from the prior distributions; (3) define the target SPD via random
thinning; (4) simulate SPDs from each combination; (5) compare the goodness-of-
fit between each simulated and observed SPDs using some distance measure ε (e.g.,
Euclidean distance); (6) reject parameterizations that deviate from a user-defined
cutoff value for the distance measure. The result of these steps is an approximated

joint posterior distribution of parameter values most consistent with the observed
radiocarbon dataset. We then compare the fit of models using approximate Bayes
factors, computed from the relative proportion of the four models in the non-
rejected ensemble.

The core assumption of the so-called dates as data approach107 can be
formalized as follows:

pt / Nt ð3Þ

where pt is the probability of sampling a radiocarbon date from the calendar time t.
For a given model and parameter values, this is achieved by calculating the vector
of population sizes Nt and dividing each of its values by the sum of all population
sizes within the window of analysis, and setting the initial population size as the
parameter Nt ¼ 0, which can be interpreted as the proportion of the carrying
capacity for the baseline model (i.e., when βSOI= βpalm= 0). Thus, our core
generative framework consists of sampling radiocarbon dates using the vector pt .
Following Crema and Bevan23, we use two different algorithms (calsample and
uncalsample) for transforming the vector pt into a vector of probabilities in

14C age.
While in other contexts the two approaches yields different results (with
uncalsample recovering more accurately the artificial spikes typical of some
observed SPDs), our results do not provide any qualitative differences
(see Supplementary Notes 4 and 7–11).

The key steps of our ABC approach are summarized as follows:
Step 1: The prior distributions for each of our demographic models are shown

in Table S1. The initial population size, Nt=0, is truncated to an upper bound of 1 to
specify that we assume the population size of the island at 800 cal BP to be below
carrying capacity. We assume a positive intrinsic growth rate with a conservative
magnitude that ensures that half of the draws are below a rate of ca. 0.01. Given
ongoing debates about the potential impacts of changes in forest cover and SOI on
the island’s carrying capacity, the prior distributions for the palms coefficient,
βpalm, and the SOI coefficient βSOI can take a range of positive and negative values.
The benefit of these relatively flat priors is that the ABC rejection algorithm will
select the parameter values that are most consistent with the empirical SPD
patterns. The prior parameter combinations for each model are visually assessed
via prior predictive checks (Fig. S4).

Step 2: We sample 250,000 parameter combinations from the prior distributions
of each of our four models.

Step 3: We sample a single radiocarbon date from each temporal bin and
generate a target SPD via summation and compute the proportion of dates that
were calibrated using SHCal20 and the mixed SHCal20/Marine20
calibration curve.

Step 4: We generate a vector of population sizes Nt;i for each ith parameter
combination θi ¼ fNt¼0;i; ri; βpalm;i; βSOI;ig using Eqs. 1 and 2, and obtained a
vector of probabilities pt;i following the procedure described above (see Fig. S3 for a
diagram of this process). We then sample 110 radiocarbon dates (corresponding to
the number of bins) that are each randomly assigned an error term by resampling
from the observed 14C errors, calibrate each date, and generate a candidate SPDi.
To evaluate the sensitivity to various algorithms and assumptions in the literature,
we sample radiocarbon dates using the calsample and uncalsample algorithms, and
calibrate dates with and without normalization. Calsample refers to the procedure
where dates are simulated from the null model in calendar time and then back-
calibrated, whereas in the uncalsample method the entire null model is back-
calibrated, weighted based on a uniform model, and then sampled from23. Thus,
for each parameter combination, we generate four SPDs depending on the
combination of these procedures. We have not identified any qualitative differences
between these different combinations of algorithms for the present study
(see Supplementary Notes 4 and 7–11). Both the sampling procedure and the
calibration process were carried out using SHCal20 and the mixed SHCal20/
Marine20 curves based on the proportions obtained during Step 3.

Step 5: We then compare the fit between each simulated SPDi and the observed
SPD using two error measures ε, Euclidean distance and normalized root-mean-
square error (see Supplementary Note 6). To ensure comparability between
candidate and observed SPDs, we generate the latter at each ith iteration by
randomly sampling a calendar date within each bin before summation.

Step 6: We obtain posterior distributions of our model parameters by selecting
the combinations yielding the 1000 lowest ε values for each model. Similarly, we
compare the relative fit of all models by combining all the ε values and selecting the
1000 lowest ε values across the four models. The relative proportions of models 1–4
in this set of 1000 best-fitting models are then used to compute approximate Bayes
factors, which provide an estimate of the relative weight of evidence in favor of one
model over another.

Step 6: We further evaluate the absolute goodness-of-fit between our four
models and the observed SPDs by posterior predictive checks. This step consists of
visual comparison of the observed SPDs and an envelope generated from the 95th
percentile interval of predicted SPD values for each calendar year based on the 100
best-fitting parameter combinations. All of our analyses are conducted in R version
4.0.3108 using the rcarbon package23. Fully reproducible code, along with a Shiny
app to explore the models’ dynamics, can be found at https://github.com/rdinapoli/
RN_demography
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Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All data necessary to reproduce these analyses are available at https://github.com/
rdinapoli/RN_demography and 10.5281/zenodo.4883617

Code availability
All code necessary to reproduce these analyses are available at https://github.com/
rdinapoli/RN_demography and 10.5281/zenodo.4883617
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