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ABSTRACT: As the physical scaling limit of silicon-based integrated circuits is approached, new
materials and device structures become necessary. The exclusive-OR (XOR) gate is a basic logic
gate performed as a building block for digital adder and encrypted circuits. Here, we suggest that

using the ambipolar property of carbon nanotubes and the threshold modulation ability of dual-gate %y e
field-effect transistors, an XOR gate can be constructed in only one transistor. For a traditional

XOR gate, 4 to 6 transistors are needed, and this low-footprint topology could be employed in the

future for hyperscaling and three-dimensional logic and memory transistor integration.

H INTRODUCTION top-gate FET shifts to the right (left), and the device’s on/off

state is transferred. Using the CNTFET’s ambipolar character-

It becomes increasingly difficult to overcome the physical
&Y Py’ istic, an XOR gate can be created.

limitations of traditional silicon-based transistors due to the so-
called. short channel effect,' which causes drain-ind}lced barrier B RESULTS AND DISCUSSION
lowering, threshold voltage roll off, and charge sharing between
the gate and drain as the transistor scales down. Aside from
silicon channel materials, quicker top-of-the-barrier injection
velocities and greater intrinsic carrier mobilities are required.”
Carbon nanotubes (CNTs) are a promising candidate for the
next generation of channel material in field-effect transistors
(FETs) due to their faster performance, small transistor
footprint,” and lower power consumption compared to that of
Si.* A CNT field-effect transistor (CNTFET) is an ambipolar
transistor because the major charge carrier can be switched
between holes and electrons.” However, the ambipolar
characteristic is frequently suppressed in current CNTFET-
based designs for classic complementary metal-oxide-semi-
conductor (CMOS) design considerations.”” The ambipolar
feature of CNTFETs was given less concern for the design
aspect. The exclusive-OR (XOR) gate is widely used in digital
encryption® and is a basic building block of adders.”'’ In a
typical XOR circuit based on traditional FETs, there should be
at least 4 or 6 FETs for various design purposes.'' To create an
XOR gate using a neural network, more than two layers are
required.'”

We show in this study that a two-input XOR gate can be
implemented in just one dual-gate transistor using the
ambipolar feature of CNTFETs. By applying a negative
(positive) bias to the back gate, the threshold voltage of the

The ambipolar CNTFET can be understood by the band
diagram structure. As schematically illustrated in Figure 1c,d,
the negative (Figure 1c) and positive (Figure 1d) back-gate
voltage biases, respectively, cause holes and electrons to
accumulate in the channel.” Electric field programming can
selectively and arbitrarily vary the major charge carriers in the
CNT between holes and electrons.” Figure lab shows the
band diagrams of a back-gate CNTFET in negative back-gate
bias and positive back-gate bias, respectively. As shown in
Figure 1b, a Schottky barrier (SB) can be built in the source
and drain connections. The energy difference between the
Fermi level of the metal electrode and the position of the
valence (p-type) or conduction (n-type) band edge of the
CNT determines the SB height, which can be reduced by
carefully selecting a metal with a suitable work function, such
as scandium (Sc) for p-type and palladium (Pd) for n-type,"
or by configuring bonding and wetting preparation.'* Figure 1a
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Figure 1. (a,b) Band diagrams of a back-gate CNTFET in negative back-gate bias and positive back-gate bias, respectively. (c,d) Illustration of the
charge accumulation in the CNT channel induced by negative and positive back-gate bias, respectively.

Vre?

(o)

Clcp Cback
<>VTG‘EFF VBG,EFF()
—e e
[ Cq Vent

L CONT !

10 : -
(a) Electrons as major carrier (b)
107
. Holes as major carrier
10
<
810%¢
10710 L
10-11 L
“ The vertex
10-12 L L 1 L L L 1
06 -04 -02 00 02 04 06
Ve V]

Figure 2. (a) Typical transfer curve of the ambipolar transistor. To the left of the vertex, the holes are the major carriers, and to the right of the
vertex, the electrons are the major carrier. (b) Dual-gate CNTFET. From bottom to top are the back gate (bottom yellow block), the back-gate
dielectric (bottom light blue block), the source/drain (left/right yellow block), the CNT channel, the top-gate dielectric (top light blue block), and
the top gate (top yellow block). (c) Equivalent capacitive circuit of the dual-gate CNTFET.

shows how the conductance band and valence band of the
CNT lifts for a negative back-gate bias, allowing holes to pass
through the valence band of the CNT from the source to the
drain. A positive back-gate bias lowers the conduction band
and valence band of the CNT channel, as illustrated in Figure
1b, allowing electrons to travel from the drain to the source
through the conduction band.

Figure 2a depicts the corresponding transfer curve, source—
drain current (Ipg) against gate voltage (Vg), of the back-gate
CNTEET, which has a distinct parabolic shape. The negative
gate voltage induces holes in the CNT channel as the major
carrier, corresponding to the left part of the curve. The lower
the gate voltage, the higher the current, and at a particular gate
voltage, the current is saturated. Similarly, a positive gate
voltage induces electrons as the major carrier, as shown in the
right part of the curve of Figure 2a.

For a dual-gate construction, as illustrated in Figure 2b,
using a single CNT as the channel, the top gate is on the
directly opposite side of the back gate. Because the n- or p-type
behavior is determined by the back-gate bias, the dual-gate
CNTEET allows for reconfiguration.'” This indicates that the
n- or p-type CNTFET can be obtained using a possible back
gate and drain bias.

Channel Voltage. Figure 2c depicts an equivalent
capacitive circuit'®'” based on the dual-gate CNTFET, as

illustrated in Figure 2b. C,q and C,,, represent the

8820

capacitance of the back dielectric and the top-gate dielectric,
respectively. The quantum capacitance (C,) of the CNT
channel must be considered as a series connection of the
dielectric capacitance as the density of state (DOS) of the
CNT channel is limited."® The corresponding low voltage in
the CNT channel causes a variation in the Fermi level,"® which
is denoted by Vcnr. V() represents the channel’s potential
variation due to source—drain bias (Vpg), and it ranges from
zero on the source side to Vg on the drain side. Vi gry is the
effective back-gate voltage, which takes into account any
possible charged interface states at the CNT/dielectric
interfaces, as well as deliberate or unintentional CNT doping,
to determine the potential requirements for carrier densities in
the CNT channel.'® Vpgerr can be calculated with the
following equation:

(1)

VBG,EFF = Vo = Vhoo

where Vg, is the back-gate voltage when the carrier density of
the CNT is minimum for zero applied top-gate and drain—
source voltages.'® The same consideration can be used to
determine the effect top-gate voltage, Viggrr = Vg — Vrgo
For the equivalent circuit depicted in Figure 2c, the following

equation may be used to obtain Kirchhoff's relation:'®

https://doi.org/10.1021/acsomega.1c07088
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+ [VBG,EFF - V(x)]
(2)

The coefficient of 1/2 is because of C’s unique reliance on
Venr- We can suppose Cy,, = Cpc = Cto simplify the equation
and produce a more symmetrical vertex shift, and then we have

[Vigerr T Vag,ere — 2V »)IC
1
2C + ;Cq
_ [Vig + Vee — 2V) = Vigo — VagolC
2C + €,

Venr =

©)

We can infer that, when Vyg is increased by 1 V for the same
Vent Vg should decrease by 1 V in response, and vice versa.

Source—Drain Current. The source—drain current equa-
tion can be derived by the Landauer formula:

Ins = % /dET(E)[f(E — Epg) — f(E — Egp)] (4)
which denotes the ideal contact ballistic transmission.'” T(E)
is the source—drain transmission,”’ which can be deduced by
the Schrodinger equation using the non-equilibrium Green’s
function.”' The first term represents the electrons coming from
the source (Egg) filling up the +k states, and the second term
represents the electrons coming from the drain (Egp) filling up
the —k states.'” The source—drain bias (Vp) is what causes
the difference between Epg (Fermi energy of the source) and
Epp (Fermi energy of the drain). After inte§rating all of the
energy sub-bands, the Ig can be written as’

ek, T S -A, +V
bs = . Zln[1+exppicNT
=1 kgT
Vs — A, + V
- ln[l + exp > P CNT)
kyT (s)

where e is the electron’s charge, kg is the Boltzmann constant, h
is the Planck constant, A, is the pth energy sub-band, and T is
the temperature.

We may deduce from the expressions of Vo (eq 3) and Ipg
(eq S) that when a given amount of back-gate bias is applied,
the top gate must be applied in the opposite direction to
produce the same kind of magnitude Ipg. This means the back-
gate bias causes the contrary shift of the top-gate voltage for
the same Ipg. A negative back voltage causes positive charges to
be induced in the CNT channel adjacent to the back-gate
dielectric, followed by negative charges being induced in the
CNT channel adjacent to the top-gate dielectric. As a result,
greater Vg values are required for achieving channel charge
inversion, leading to a positive shift of top-gate voltage in the
vertex.

Simulation Results. The as-expounded top-gate voltage
vertex shift caused by the back-gate bias phenomenon is then
simulation by the CNTFET Lab”’ in the nanoHUB platform.
A single carbon nanotube, with a (13,0) chirality and a 10 nm
length, was chosen as the channel material for the dual-gate
CNTFET with both top- and back-gate dielectrics of 10 nm
thickness and with 20 F/m dielectric constants. A Newman
boundary condition was used, which means that the contact is

8821

MOS-like. The source—drain voltage was fixed at 0.1 V. Figure
3a illustrates the source—drain current simulation results for
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Figure 3. (a) Transfer curve of the top-gate device of the dual-gate
CNTEET, showing the vertex of the curves’ right shift with the
decrease of the back-gate bias. (b) As-selected two transfer curves at
the Vg equal 0.3 and —0.3 V. The two blue circles and the two red
squares represent the four selected XNOR gate work points.

top-gate voltage sweeps from —0.35 to 0.35 V in 0.5 V steps,
with the back-gate bias shifting from —0.4 to 0.4 V in 0.1 V
steps. When the back-gate bias is set to Vg = 0 V, the vertex of
the curve occurs around Vg = 0 V. The vertex of the curve
right shifts when negative back-gate bias (—0.4 to 0 V) is
applied, and the more negative the bias, the righter the shifts
occur. Similarly, by applying a positive back-gate bias, the
vertex of the curve shifts left, and the higher positive the bias,
the more left shifts occur. These simulation results are
identified with the analysis above and from the results
published by other authors.”*™°

When the curves at the back-gate bias of Vg = 0.3 V and
Vig = —0.3 V are selected, as shown in Figure 3b, an X-shaped
structure is achieved. The top-gate voltage and back-gate
voltage are set as the input single and the drain current as the
output single. We define 0.3 and —0.3 V as the “1” and “0” for
both the back gate and the top gate, as illustrated by the
dashed line in Figure 3b. The output of the logic gate is false
only when exactly one of its inputs is true, performing a typical
XNOR gate property (Figure 4c). In real-world applications,
the output current should be converted to voltage using a pull-
up unit,”” thus the XNOR gate is converted to an XOR gate
(Figure 4c). The I—V; curve of a dual-gate CNTFET can be
moved considerably in practical applications by applying a
specified source voltage V; or appropriate doping to make the

https://doi.org/10.1021/acsomega.1c07088
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Figure 4. (a) Traditional XOR gate constructed by six transistors
(three PMOSs and three NMOSs). (b) Ambipolar dual-gate
CNTFET using top-gate and back-gate voltage as inputs and drain
voltage as output to construct XOR gate. (c) Truth table of (b).

output voltage capable of becoming the input of the logic gate
in the following step. The XOR gate is then configured by just
one dual-gate CNTFET. As depicted in the inset in Figure 3,
different from AND, NAND, and OR gates whose output can
be separated by a single line, the XOR gate cannot be divided
by a single line,”® and this property causes the first artificial
intelligence (AI) winter.”” Figure 4a depicts a traditional XOR
gate constructed by three n-channel MOS (NMSO) transistors
and three p-channel MOS (PMOS) transistors.'' Figure 4b,c
shows the XOR gate constructed by our ambipolar dual-gate
CNTEFET and the corresponding truth table, respectively. This
low footprint structure may be used in the era of hyperscaling
in the future” and for the three-dimensional (3D) integration
of logic and memory transistors.’” This device may have great
utilization potentiality in encrypted circuits. In addition, this
strategy can be used not only in CNTFET but also in all of the
ambipolar transistors consisting of ambipolar channels (e.g.,
graphene, black phosphorus, WSe,, MoTe,) and even
ambipolar tunneling FET (TFET).

In summary, we have shown the analysis and simulation
results of the construction of a single transistor XOR gate using
ambipolar dual-gate CNTFET. Using traditional FET's requires
4 to 6 transistors to build an XOR gate. We propose that an
XOR gate can be built in only one transistor using the
ambipolar property of carbon nanotubes and the threshold
modulation ability of dual-gate field-effect transistors. In the
encrypted circuit, this device may hold a lot of promise.
Hyperscaling and 3D logic and memory transistor integration
could also benefit from this low-footprint design in the future.
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