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Abstract
Until recently, it has been common practice for a phylogenetic analysis to use a single gene sequence from a single individual
organism as a proxy for an entire species. With technological advances, it is now becoming more common to collect data sets
containing multiple gene loci and multiple individuals per species. These data sets often reveal the need to directly model
intraspecies polymorphism and incomplete lineage sorting in phylogenetic estimation procedures.
For a single species, coalescent theory is widely used in contemporary population genetics to model intraspecific gene trees.
Here, we present a Bayesian Markov chain Monte Carlo method for the multispecies coalescent. Our method coestimates
multiple gene trees embedded in a shared species tree along with the effective population size of both extant and ancestral
species. The inference is made possible by multilocus data from multiple individuals per species.
Using a multiindividual data set and a series of simulations of rapid species radiations, we demonstrate the efficacy of our
newmethod. These simulations give some insight into the behavior of the method as a function of sampled individuals, sam-
pled loci, and sequence length. Finally, we compare our newmethod to both an existing method (BEST 2.2) with similar goals
and the supermatrix (concatenation)method.We demonstrate that both BEST and ourmethod havemuch better estimation
accuracy for species tree topology than concatenation, and ourmethod outperforms BEST in divergence time and population
size estimation.

Key words: multispecies coalescent, species trees, gene trees, molecular systematics, Bayesian inference, censored
coalescent.
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Introduction
Despite huge advances both in evolutionary theory and in
sequencing technology, estimating the “Tree of Life” even
for a small subset of species can be challenging. Bettermath-
ematical models and more data improve our ability to infer
a single gene phylogeny, but a gene history may be differ-
ent from the species phylogeny. The potential for a discrep-
ancy between the gene tree and the species tree has been
known for decades and is especially problematic for closely
related species or species with large population sizes. Build-
ing a species tree requires combining information frommul-
tiple genes; all gene phylogenies need to be “embedded”
inside the species history while not violating the species
tree constraints: The time of a common ancestor of a gene
cannot be more recent than the time of divergence of the
respective species.

This simple yet useful view assumes no significant gene
flow between species such as horizontal gene transfer, reas-
sortment, or introgression.

Early theoretical work included the analytical deriva-
tion of the probabilities for different gene tree topologies
relating four individuals from two different species and
showed that when the two populations diverged only re-
cently an incorrect tree is not the exception but a com-
mon occurrence (Tajima 1983). Analytical results were also
known for three individuals from three species (Nei 1987).

By the late 1980s, the discrepancy between species trees
and gene trees was considered common knowledge, and
Pamilo and Nei (1988) suggested that combining informa-
tion from several independent loci was better than adding
more samples. Pamilo and Nei also mentioned that a short
branch in a species tree makes it likely that a gene tree
has a different topology irrespective of the rest of the
tree.

There are many potential sources of discrepancy be-
tween gene trees and species trees, including horizontal
transfer, lineage sorting, and gene duplication/extinction.
Early approaches to species tree estimation in the face of
multiple gene trees included a parsimony-based method
for constructing a species trees topology from gene trees
(Maddison 1997). Many of the sources of inconsistency be-
tween gene trees and species trees have since been subject
to further research, with the focus being on the develop-
ment of statistical inference procedures. In this paper, we
will term models that emphasize incomplete lineage sort-
ing as the main source of inconsistency between gene trees
and species trees, “multispecies coalescent models.”

Recent research into multigene phylogenetics demon-
strates that the common approach of concatenating
sequences frommultiple genes generates the wrong kind of
average (Degnan and Rosenberg 2006) and can lead to poor
estimation of the species tree (Kubatko 2007). Although
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FIG. 1. Species tree visualization. One locus for three individuals from
each of the three species giving a total of nine samples. Current popu-
lation size (t = 0) of A is 2 and at time 1.5 (where it split from B) the
population size is 1.

this common practice of concatenation can result in a well
supported but incorrect tree, it is still a widely usedmethod
(Rokas et al. 2003; Wu and Eisen 2008), largely because of a
lack of alternatives.

It has also been shown that the straightforward proce-
dure of using the estimated gene tree topology that occurs
most often among set of loci can be asymptotically guaran-
teed to produce the wrong estimate of the species tree in
the so-called anomaly zone (Degnan and Rosenberg 2006).
Two recent studies examined the performance of various
methods in this problematic region of species trees (Huang
and Knowles 2009; Liu and Edwards 2009).

A number of researchers have taken advantage of the
multispecies coalescent model to develop methods that
reconcile a set of gene trees with a shared species tree
(Wilson and Balding 1998; Rannala and Yang 2003; Wilson
et al. 2003; Liu and Pearl 2007; Liu et al. 2008). The multi-
species coalescent assumes that each gene tree represents
the relationships between orthologous genes from a small
sample of individuals frommultiple species and that there is
no horizontal gene transfer or admixture between individu-
als from different species. A number of Bayesian approaches
to inference have been developed in this context. The soft-
ware package BATWING (Wilson and Balding 1998; Wilson
et al. 2003) was developed to estimate a species tree from
a single gene tree, including the times of speciation, pop-
ulation sizes, and growth rates. The MCMCcoal (Rannala
and Yang 2003) software package estimates ancestral pop-
ulation sizes and divergence times on a known species tree
based on a strictmolecular clock andmultiple gene trees. Fi-
nally, BEST provides estimates of the species tree topology,
divergence times, and ancestral population sizes from a set
of gene trees via an importance sampling method (Liu and
Pearl 2007; Liu et al. 2008).

Multilocus species tree inference and the multispecies
coalescent continue to be the subject of intense interest
(Degnan and Rosenberg 2009; Knowles 2009; Liu et al. 2009).
STEM (Kubatko et al. 2009; McCormack et al. 2009) is a
new method that infers species trees from user supplied
gene trees, population sizes, and gene tree rates. STAR and
STEAC (Liu et al. 2009) are methods that use coalescence
summary statistics as the basis of inference. In addition to
the development of these newmethods, the performance of
consensus methods of species tree estimation has also been
investigated (Degnan et al. 2009).

The Species Tree
Coalescent theory explicitly links the effective population
size with the ancestral history of a small sample of genes
from a population. In the context of Bayesian phylogenetic
analysis, the coalescent acts as a prior distribution for gene
trees. In its basic form, it is restricted to analyzing genes of
individuals from the same species but it can be extended in
a natural way to serve as a prior when building a multiple
species phylogeny.

Please bear in mind that “species” above and in the
rest of the text is not necessarily the same as a taxo-
nomic rank, but designates any group of individuals that,
after some “divergence” time, have no history of breeding
with individuals outside that group. A species tree defines
barriers for gene flow, and so the term is a catch all for
taxonomic rank, subspecies, or any diverging “population
structure.”

A species tree specifies ancestral relationships (tree
topology), the times ancestral species separated into two
species (divergence times), and the population size history
for each species. Each species (extant or ancestral) is repre-
sented by one branch of the species tree.

Gene trees are “embedded” inside a species tree by fol-
lowing the stochastic coalescent process back in time from
the present within each branch, a process known as a mul-
tispecies coalescent or the “censored coalescent” (Rannala
and Yang 2003). A species tree can be visualized by setting
the y axis proportional to time and the intervals on the x axis
proportional to population size as shown in figure 1 (Wilson
et al. 2003).

Multiple samples per species are necessary for a complete
estimation. Even two samples per species are sufficient,
given enough loci. A single sample means no coalescent
events for that extant species and so no information to es-
timate population size. This may in turn have a detrimental
effect on inferring speciation times andperhaps even species
topology.

In this paper, we describe a full Bayesian framework for
species tree estimation. We have attempted to combine
the best aspects of previous methods to provide joint infer-
ence of a species tree topology, divergence times, popula-
tion sizes, and gene trees frommultiple genes sampled from
multiple individuals across a set of closely related species.
We have achieved this by extending BEAST, a large exist-
ing open source software package for Bayesian phylogenetic
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inference (Drummond and Rambaut 2007). The new
method is named *BEAST (pronounced “star beast”).

Methods
Given data D , we define the posterior distribution of the
complete species tree S as follows:

P (S |D ) ∝
∫
G

(
n∏

i=1

P (di |gi )P (gi |S )
)
P (S )dG . (1)

The data D = d1, d2, . . . , dn is composed of n align-
ments, one per locus. G = (G1 × G2 × · · · × Gn) is the
space of all gene trees over the respective alignments, where
gi ∈ Gi is one specific gene tree.

The term P (di |gi ) is the “Felsenstein” likelihood of the
i th sequence alignment given a gene tree (Felsenstein 1981),
P (gi |S ) is the multispecies coalescent, and P (S ) is a prior
distribution on the space of species trees. The model as-
sumes no recombinationwithin loci and free recombination
between loci.

In the context of species tree inference, gene trees act as
“nuisance parameters” and are integrated out in the pos-
terior. Direct evaluation of this integral is not possible, but
it can be approximated using Markov chain Monte Carlo
(MCMC) and a large amount of computation.

Computing the Multispecies Coalescent
The multispecies coalescent likelihood of a gene tree g
embedded in species tree S is computed by combining the
likelihood over all branches b of S ,

P (g |S ) =
∏
b∈S

P (Lb (g)|Nb (t)). (2)

Here, Lb (g) = {l , (t0, t1, . . . , tk , tk+1)} is the lineage his-
tory of g over b and Nb (t), t0 � t � tk+1 is the effective
population size function over b . t0 and tk+1 are, respectively
(moving back in time), the start and the end times of b and
l is the number of lineages at time t0 in the ancestral species
represented by b . l − k lineages remain at time tk and this
is unchanged at time tk+1.

For example, the lineages of species C in figure 1 decrease
from three at time 0–2, and the lineages of the (A,B) ances-
tor decrease from four to two.

The likelihood over a single branch is adapted from the
equations given in Griffiths and Tavare (1994) and Heled
and Drummond (2008) to account for no coalescent event
during the last interval (tk to tk+1),

P (Lb (g)|Nb ) =
k−1∏
i=0

1

Nb (ti+1)

k∏
i=0

exp

⎛
⎝−

ti+1∫
ti

(
l−i
2

)
Nb (t)

dt

⎞
⎠.

(3)

The exact form of the demographic function Nb is left
unspecified in equation (3). Most models in the literature
assume a constant population size over the lifetime of the
species, that is, Nb (t) = cb . In addition to this simple
model, we offer a model where population size changes lin-
early over the branch with one additional continuity con-
straint: The sum of population size of the two new species

at the time of split is equal to the population size of the an-
cestral species. The example in figure 1 illustrates this con-
tinuous model.

The Species Tree Prior
The prior on the complete species tree is composed of the
prior on the tree divergence times, fBD(S ), and the a prior
on population sizes, PN (S ):

P (S ) = fBD(S )PN (S ). (4)

The species topology prior is uniform on ranked labeled
trees. For the divergence times, we use the reconstructed
birth–death process (Gernhard 2008), parameterized by lin-
eage birth and death rates λ and µ:

fBD(S ) = ns!λ
ns−1(λ− µ) e−(λ−µ)x1

λ− µ e−(λ−µ)x1

×
ns−1∏
i=1

(λ− µ)2 e−(λ−µ)xi
λ− µ e−(λ−µ)xi , (5)

where ns is the number of species and x1, x2, . . . , xns−1 are
the divergence times of the species tree, x1 being the root
height.

Typically, there is no a priori knowledge regarding the
birth/death rates, so this is in fact a hyperprior where both
hyperparameters are estimated and a noninformative prior
is used for both. In our implementation, the parameters are
r = λ− µ and a = µ

λ
, and the priors used are uniform on

[0, 1] on a and f (x) = 1/x for r .
The prior for population sizes depends on the model

used. For constant population per branch, the population
size is assumed to be a sample fromaΓ (2,ψ)distribution—
a gamma distribution with a mean 2ψ and a shape of 2:

PN (S ) =

(∏
b∈S

1

ψ2
Nb e

−Nb /ψ

)
Pψ(ψ). (6)

Unless we have some specific knowledge about popula-
tion size, we again use the noninformative prior Pψ(x) =
1/x for hyperparameter ψ.

In the continuous linear model, we have ns population
sizes at the tips of the species tree, and two per each of
the (ns − 1) internal nodes, expressing the staring popu-
lation size of each of the descendant species. The prior for
the population sizes at the internal nodes are as above, but
for the ones at the tips, they are assumed to come from
a Γ (4,ψ) distribution. Because X1, X2 ∼ Γ (2,ψ) implies
X1 + X2 ∼ Γ (4,ψ), this corresponds to having the same
prior on all final (most recent) population sizes of both ex-
tant and ancestral species.

Results

Examining Rapid Radiation Using Simulated Data
The first set of simulations explored a region of species tree
space with seven extant species. A multipart data set was
constructed as follows.
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FIG. 2. (a) A simulated species tree from a birth–death process with continuous population sizes. (b ) A single gene tree embedded inside the same
species tree.

One hundred species trees were simulated using a birth–
death process with λ = 1 and µ = 0.2 (Gernhard 2008).
For each species tree, a linear population size function was
randomly assigned to each branch. First, each extant species
population size at t0 was set to ρ× z , where z was a random
Gaussian variate, z ∼ N (1.1, 0.4) and ρ = λ − µ = 0.8.
Second, because the continuity constraint determines the
population size at the tip-ward endof each ancestral species,
we only needed the population size at the root-ward end of
each ancestral branch to be specified. This value was drawn
from a log-normal distribution with a mean of p0 × f in
real space and variance v = 0.4, where p0 is the popula-
tion size at the tip-ward end of the branch. The reduction
factor f controls the amount of population growth from
the root to the tips. With f = 1, the total population
size, across all species, would stay roughly the same, that
is, the sum of the population size of two descendant pop-
ulation would on average be equal to the population size
of the ancestral species. For our purposes, f was set to 0.7,
generating trees with moderate expansion of total popula-
tion across all species. Note that this population size sim-
ulation does not exactly match the prior we employ for
inference.

One simulated tree is shown in figure 2a . A set of gene
trees “embedded” inside the species tree were simulated,
each with four individuals sampled per species. This was
repeated for each species tree with 1, 2, 3, 4, 8, 16, and 32
independent loci. A single locus from one run is shown in
figure 2b .

Finally, sequences (1,600bp long)were simulated for each
gene tree using the Jukes–Cantormodel under a strict clock
and a substitution rate of rµ = 0.005. Interpreting the sim-
ulated speciation times as millions of years, this rate cor-
responds to a real-life substitution rate of 5 × 10−9 per
site per year. The overall scenario is of a rapid species radia-
tion starting between 0.49 and 4.9 (mean 1.9) million years
ago.

Seven Species Rapid Radiation Results
It is not immediately obvious how to summarize 700

runs of species tree estimation. It is typical to focus on a
point estimate of the species tree topology and associated
clades probabilities, but this is unsatisfactory here for several
reasons. First, a Bayesian method generates a set of trees
drawn from the posterior, not a single tree. Second, looking
only at the topology ignores estimation of speciation times
and population sizes. Third, two trees with different topolo-
gies may in fact be very similar when divergence times are
considered. Finally, using only one bit of informationper test
would require running many replicates to obtain an accu-
rate measure of the performance of the method.

We have attempted to define some performance mea-
sures that make the most of the simulations carried out.
Figure 3 shows the averages of several measures computed
from the posterior distribution of species trees; each graph
point was obtained by averaging results from 100 runs,
where each run was produced by the Bayesian analysis of
a single simulated data set. Figure 3a plots two error mea-
sures, whereas figure 3b shows the mean number of species
tree topologies in the 95% credible interval.

The first errormeasure is the “Normalized Rooted Branch
Score.” This is the rooted equivalent of the “branch score”
metric suggested by Kuhner and Felsenstein (1994) and is
defined in Appendix. A tree metric provides a direct way of
measuring the distance of the estimate from the true species
tree. Normalizing by the tree length makes it possible to
meaningfully average this distance across runswith different
simulated species trees. The secondmeasure is the “Normal-
ized Rooted Tree Score.” This is an extension of the branch
score that incorporates the population sizes. The definition
is similar but uses the length of the branch in coalescent
units, that is, the integral of the inverse of population size
over the branch (see Appendix).

Although the tree score measures overall performance,
some specific point estimates such as speciation times are
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FIG. 3. (a) Species tree estimation error and (b ) 95% credible interval size as a function of the number of loci. The number of individuals sampled
per species is four for all experiments. Each graph point is obtained by averaging the error measure (described in the main text) over 100 analyses
of simulated data sets. The “branch score” is a measure of the distance in tree space of the estimated species tree to the true tree, incorporating
both topology and divergence times. The “tree score” is a measure of the distance between the estimated species tree and the true species tree
incorporating information about the population size as well. For details of the tree metrics used, see main text.

of interest as well. However, note that evaluating the errors
in point estimates of speciation times and population sizes
can be done only for clades that appear in the true species
tree. Figure 4a summarizes the estimation errors in specia-
tion times and population sizes for all runs.

Errors are computed as the absolute value of the differ-
ence between the posterior median vi and the true value v ,
normalized by the true value:

Err =

∑N
i=0 | vi−vv |
N

. (7)

The credible interval is the 95% highest posterior den-
sity (HPD) interval calculated from the posterior samples.
Figure 4b shows the credible interval size of speciation time
and population size point estimates, calculated as the cred-
ible interval range (hi − li ), normalized by the true value v ,

HPD size =

∑N
i=0

hi−li
v

N
. (8)

Another statistic of interest is the frequentist coverage;
that is, the percentage of estimateswhere the true value falls

inside the credible interval. Coverage statistics are harder
to estimate accurately given the relatively small number
of runs, but in our analyses, they ranged between 89%
and 98%.

Recent speciation events were harder to estimate (in
terms of relative error) than older ones and so contributed
more to the overall error. Figure 5 illustrates this by plotting
the relative error as a function of split time for the two loci
data set.

Seven Species Rapid Radiation—Effect of Sequence Length
Simulation may use any arbitrary sequence length, but

real-world sequences are subject to practical limits such
as time, cost, primer suitability, and haplotype block sizes.
Figure 6 shows the results of analyzing the four loci data set
where sequence length starts at 6,400 bp and is halved five
times down to 200 bp. The vertical line shows the error for
an “infinite” sequence, which is obtained by repeating the
analysis using the simulated gene trees directly and no se-
quence data. Please note that long but recombination free
sequences are not likely for species with large populations.
The parameter ranges of simulated data were chosen to

FIG. 4. (a) Relative error and (b ) credible interval size for both population size and speciation time point estimates. The number of individuals
sampled per species is four for all experiments. Each graph point is obtained by averaging over 100 analyses of simulated data sets (see main text
for details).
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FIG. 5. Speciation time estimate error as a function of speciation time.
Data are taken from the main 100 runs with two loci, four individuals
per species, and the sequence length of 1,600 bp.

illustrate trends andmay extend beyond real-life conditions.
In our simulations, increasing the sequence length from 200
to 1,600 roughly halved the error associated with speciation
time estimates (from 0.41 to 0.21). In comparison, increas-
ing the sequence length from 200 to 800 roughly halved the
average number of trees in the 95% credible set (from 18.5
down to 8.2).

Estimation of Relative Substitution Rates for Different Loci
So far sequence data were generated assuming that all

loci evolve at the same rate according to a strict molecu-
lar clock, not something that can be justified for most real
data sets. In this section, we examine the effect of allowing
each gene to have a separate substitution rate. In general, it
is not possible to estimate the absolutemolecular clock rate
for contemporaneous data sets, but it is possible to estimate
relative rates. In our case, this means fixing the substitution
rate of the one locus and estimating the rates of the other
loci relative to the reference locus.

For simplicity, we reuse the setting of the four loci seven
species rapid radiation. We set the substitution rate of the
first locus to rµ = 5×10−3 and set the rates of the other loci
to rµ×z , where z is a randomnumber distributed uniformly
in [0.2, 2].

Sequence data were regenerated under this new scenario
and analyzed in the same way as described for the previous
simulations. The analysis was carried out twice: Once under
the correct model that incorporated variation in substitu-
tion rate across loci, and once assuming a single substitution
rate across all loci, in order tomeasure the effect of this form
of model misspecification.

When estimating the relative rates across loci, the point
estimates of the rates had a mean error of 1.21 and an
HPD size of 1.99, both values computed as explained for the
other point estimates. In addition, the relative ordering of
rates from each run was compared with their true order-
ing by computing the permutation distance: In 61 cases,
the distance was 0, 30 had a distance 1, and 7 distance
of 2, giving a mean permutation distance of 0.5 over the
100 runs. This suggests that our method is successfully able
to discriminate between fast and slow loci in this set of
simulations.

The performance of species tree estimation under rate
variation across loci is shown in table 1. The two new sets
of analyses are summarized in rows 2 and 3, and the first
row shows the results of the equal rates simulations for
comparison.

The results show that incorrectly assuming the rates
across loci are equal had only a small impact on the es-
timation of species tree topology. However, ignoring rate
variation did adversely affect the estimation of species diver-
gence times, as shown by the drop in coverage percentage:
Only 67% (compared with 93%) of the true speciation times
fell inside the associated 95% credible interval.

Effect of Number of Sampled Individuals per Species
Next we considered the effect of varying the number of

individuals sampled from each species. Gene trees for 32 in-
dividuals per species and four loci were simulated for each of
the 100 species trees, then 16 individuals were removed to

FIG. 6. (a) Relative error and (b ) credible interval sizes as a function of sequence length. The number of individuals sampled per species is four
for all experiments. The number of independent loci are four for all experiments. Each graph point is obtained by averaging over 100 analyses of
simulated data sets. The horizontal line represents the theoretical maximumwhen sequence length approaches infinity and is calculated by using
the gene trees directly without error.
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Table 1. Summary of Seven Taxa, Four Loci Species Tree Estimation Where Genes Evolve at Different Rates. The Final Row Represents the
Case Where the Model is Misspecified: The Truth is That Each Gene Has a Different Rate, But the Method Assumes That All Genes Have the
Same Substitution Rate.

Topology inside Mean 95% Normalized branch Normalized tree Speciation time Speciation time Population size
Data/model 95% size score score inside 95% error/CI size error/CI size

Equal rates/equal rates 94 7.86 0.10 0.19 93 1.36/10.0 2.2/162
Rates vary/rates vary 95 8.08 0.12 0.19 93 1.43/12.0 2.2/189
Rates vary/equal rates 92 10.24 0.16 0.20 67 1.57/12.6 2.5/189

CI, credible interval.

leave 16, then halved again to 8, and so on down to 2 individ-
uals per species. To reduce the considerable computational
cost involved, the analysis was carried out using the gene
trees directly, that is, without sequence data. The results are
shown in figure 7.

Increasing the number of individuals sampled from each
species up to 32 results in a marked improvement in all as-
pects of the species tree estimation, including population
sizes. This result seems to be different to what is typically
foundwhen considering sampling schemes for a population.
For a single population, the number of independent loci is
the major factor and the return from additional individuals
diminishes quite quickly. Our somewhat unexpected result
may be specific to rapid radiations, where population sizes
are comparable in size to the species lifetime. Under those
conditions, additional sampled individuals result in more
lineages crossing the species boundary (looking backward
in time), adding more power to the estimate of divergence
times and population sizes.

Comparison with BEST
In 2007, Liu and Pearl (2007) and Liu et al. (2008) intro-
duced BEST, a Bayesian method whose goals are similar
to *BEAST. Both software packages estimate species tree
topology, divergence times, and population sizes from gene
trees under a multispecies coalescent model. Both extend
known and well-established software packages MrBayes
(Huelsenbeck and Ronquist 2001) and BEAST (Drummond
and Rambaut 2007)—providing users the convenience of
specifying powerful and well-testedmodels for gene tree es-
timation. There are various modeling differences: BEST re-
quires an outgroup, population size is assumed constant

over the branch, and the species tree prior is uniform. How-
ever, there is also a major difference in the computational
strategies employed—BEST estimates each gene tree indi-
vidually, then infers the species tree in two additional stages
using importance sampling. In contrast, *BEAST coestimates
the species tree and all gene trees in one Bayesian MCMC
analysis. We know that the main factor in estimating popu-
lation size is the number of independent loci, and so believe
that estimation will be better when using information from
all gene trees simultaneously.

To compare the twomethods, 100 four-loci species trees
have been generated. The process described in the begin-
ning of theMethods section wasmodified as follows to con-
formwith BEST requirements: Trees with eight species were
simulated but only those with a 7/1 split at the root were
retained with the lone species forming an outgroup. Each
species had four individuals except the outgroup which had
only one, and finally, the population size was set to be con-
stant along the branch with a value of the mean of the sizes
at the start and at the end of the branch.

Table 2 summarizes the 100 runs, the error measures
from BEST are substantially larger than the ones from
*BEAST, and the coverage percentages for point estimates
are much lower.

Comparison to Concatenation
A final experiment involving the simulated data sets com-
pared the performance of *BEAST with the standard super-
matrix method (concatenation). For each of 100 data sets
(four loci, 1,600 bp), we selected a single random individual
per species and concatenated the four alignments into a sin-
gle supermatrix of size 7 species× 6,400 sites. We then used

FIG. 7. (a) Relative error and (b ) credible interval sizes, as a function of number of individuals sample from each species. Each graph point is
obtained by averaging over 100 analyses of simulated data sets. The analysis used the true gene trees to reduce the computational cost.
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Table 2. Comparison of *BEAST, BEST, and “Supermatrix” Performance in Estimating Species Trees.

Topology inside Mean 95% Normalized branch Normalized Speciation time Speciation time Population size Population size
95% size score tree score inside 95% error/CI size inside 95% error/CI size

*BEAST 97 11.78 0.10 0.20 96 0.41/1.49 98 0.33/1.11
BEST 88 12.88 0.58 0.64 56 1.32/2.06 56 0.59/2.15
Supermatrix 9 1.4 0.77 NA 0.7 21.11/5.27 NA NA

NA, not available; CI, credible interval.

BEAST to estimate the species tree for each of these 100 con-
catenated data sets using a yule tree prior. Only 9 of the 100
replicates contained the true species tree topology in the
95% credible set of tree topologies. This is compared with
98 for *BEAST and 88 for BEST. The coverage percentage for
speciation times was close to 0. The full set of measures can
be found in table 2. It is clear that both multispecies coales-
cent methods are far superior to the supermatrix method.

Pocket Gophers
Belfiore et al. (2008) investigated the rapid species radiation
in Thomomys, a genus of pocket gophers spread over a wide
range including Texas, the Dakotas, Baja California, and the
southern edge of Canada. The authors collected data from
28 individuals belonging to seven Thomomys species and
two outgroups from the “sister tribe.” Seven noncoding nu-
clear sequenceswere sequenced fromeach individual (align-
ment length 471 to 819 bp), though this was not possible for
some of the outgroups.

The 28 individuals were distributed across the species as
follows: two from each of 5 species, 3 northern pocket go-
phers (Thomomys talpoides ), and 12 Botta’s pocket gophers
(Thomomys bottae ). This uneven distribution of individuals
among species is not optimal, but it does meet the mini-
mum of two individuals from each of the species of interest.

For the analysis, we used a general time reversible sub-
stitution model and strict molecular clock with a separate
mutation rate for each locus as described in the simulations
section. The highest posterior tree is shown in figure 8a .
There are four strongly supported clades, but the outgroup
is not where we expect it to be.

Experts are certain that the Orthogeomys heterodus is a
proper outgroup (Belfiore NM, personal communications),

and we can incorporate this knowledge into our Bayesian
model as part of the prior. Figure 8b shows the result on an
almost identical run, where the proper relation of the out-
group is a priori enforced. The divergence times on the two
trees are virtually identical except for the outgroup.

Given the proper tools, the reason for this discrepancy
is easy to spot. Figure 9 shows the median species tree and
embedded gene trees for the first run. The tendency to
place the outgroup incorrectly appears to be caused by just
one gene out of the six (TBO29 in green), which is closer
to the (T. bottae, Thomomys townsendi, Thomomys umbri-
nus) clade. It is a good reminder of the fact that species
tree are not the result of a consensus process—but of a
“reverse auction”—where the lowest bidder sets the limit.
Here, the other genes “do not care” as their shared ancestry
takes place as expected in the common ancestor.

Belfiore et al. made a considerable effort to collect
and sequence an outgroup, but it is only a requirement
for MrBayes/BEST. *BEAST does not require any outgroup
as it follows the BEAST mantra: “There are no unrooted
phylogenies—only phylogenies whose root position is un-
certain.” *BEAST uses either a strict or a relaxed molecu-
lar clock in order to estimate the roots of the individual
gene trees, which in turn combine, through themultispecies
coalescent, to estimate the root of the species tree.

Discussion
A natural consequence of taking a model-based approach
to statistical phylogenetics is the continuous refinement of
themodel to better reflect our understanding of the biolog-
ical reality of evolving populations. Tempering this refine-
ment is a need to control the number of parameters in the
model. This balance necessitates a focus on modeling only

FIG. 8. Phylogeny for seven groups of western pocket gophers (Geomyidae, Thomomys ). The analysis is based on seven noncoding nuclear genes
from 28 individuals. Clade posterior probability is indicated on the branch. (a) Analysis with no monophyly constraints and (b ) analysis with
ingroup monophyly enforced.
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FIG. 9.Western pocket gophers (Geomyidae, Thomomys ) species treewith embedded gene trees, each in a different color. The species treewas gen-
erated using median estimates for the divergence times and population sizes. Note that this representation is for the purpose of visual inspection
only, and any inferences should be made directly from the posterior data.

the essential details of the evolutionary process. It has been
known since Mendel’s experiments (Orel 1996) that “un-
linked” genetic loci segregate independently of each other
within a species or isolated population, but it was not un-
til a few decades ago that the implications of independent
segregation were fully appreciated in the context of gene
trees. Although the model we have described here is not
new (Maddison 1997; Rannala and Yang 2003) (apart from
small details such population size function and its prior), the
contribution we have made is to describe and implement
for practical use a full Bayesian inference of the species tree
under the multispecies coalescent model. Our implemen-
tation is based on a popular existing software package for
Bayesian phylogenetics, and as a result it can exploit exist-
ing models for gene trees such as relaxed molecular clocks
(Drummond et al. 2006) and previously implemented priors
for species tree such as the reconstructed birth–death prior
(Gernhard 2008).

There is no doubt that our proposed model still rep-
resents a very idealized view of the genetic relationships
of multiple loci between individuals from closely related
species. However, we believe that despite its obvious sim-
plifications, it represents a major improvement on the stan-
dard approaches to multigene phylogenetics. Besides the
ability to model incomplete lineage sorting and ancestral

polymorphism, our implementation also provides a very
natural way to include multiindividual data and missing
data into a phylogenetic analysis.

There are two obvious ways in which our model is defi-
cient. The first, and arguably most important, is that it lacks
any modeling of recombination within a locus. For nuclear
loci in eukaryotes, recombination rates may often be com-
parable tomutation rates. The impact of this on species tree
estimation under the multispecies coalescent has not been
assessed; however, it is known that the presence of recom-
bination can have a large biasing effect on estimated pop-
ulation sizes, if no recombination is assumed in the model
(Schierup and Hein 2000).

The second deficiency of our model is, arguably, our
treatment of speciation events. It has been suggested that
incorporating a substantial period of limited gene flow as
a transition between a single ancestral species and two de-
scendant species is more realistic (Hey and Nielsen 2004).
This approach has been taken for coalescent inference of
sister species in the IM/IMα software packages (Hey and
Nielsen 2007). Althoughwe think that this is a good research
direction and expect multispecies versions of isolation with
migrationmodels to be popular, we remain uncertain about
how much power there will be to perform inference under
suchmodels, withoutmaking very strong prior assumptions
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about the length of the transition period and associatedmi-
gration rates.

Conclusions
A transition from single gene to multigene analyses in
molecular systematics is well underway—and the exten-
sion of this transition into the fields of molecular ecology
and phylogeography has revealed the need to more accu-
rately model the relationships among gene trees at different
loci. Although it is well established that “more loci are bet-
ter” for estimating population sizes in a single population
(Pluzhnikov and Donnelly 1996; Felsenstein 2006), the op-
timal sequencing strategy for phylogenetic questions is not
yet established (but see Maddison et al. 2006). Our results
lend weight to the growing notion that sequencing mul-
tiple independent loci from a small representative sample
of individuals can, for many questions, yield better results
than sampling a large numbers of individuals at just one ge-
netic locus. However, it also seems clear that additional in-
dividuals per species provide a significant contribution to
the accurate estimation of species tree divergence times
and topologies, at least under the rapid radiation scenario
studied here.

In conclusion, we agree with a recent suggestion that
the multispecies coalescent represents a step toward the
unification of molecular systematics and phylogeography
(Edwards and Rausher 2009)—however, we can also see a
number of natural further steps that need to be taken to
address common situations facing researchers in molecu-
lar ecology and phylogeography. For example, it is often the
case that the exact number of species, and the assignments
of individuals to species or subspecies, is uncertain in re-
cently radiated groups (Meyer 1993; Das et al. 2004; Glor
et al. 2004; Belfiore et al. 2008; Leache 2009).

Using morphological and geographical data to define
pairwise probabilities of species identity, we can envis-
age extensions of the presented method that not only
sample the species tree topology, divergence times, and
population sizes but also estimate the total number of
species and consequently the assignments of individuals
to species. This would provide similar capabilities to pop-
ulation structure inference packages such as STRUCTURE
(Pritchard et al. 2000) and STRUCTURAMA (Huelsenbeck
and Andolfatto 2007) but would simultaneously provide
Bayesian inference about the relationships between the dif-
ferent populations/species. We hope that this general line
of research will eventually lead to a model-based synthe-
sis of the fields of population genetics, phylogenetics, and
phylogeography.
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Appendix

Normalized Rooted Branch Score
To measure the distance between two rooted trees, we use
the rooted branch score defined as

|T1, T2| =
√ ∑

c∈T1∪T2
(B (T1, c)− B (T2, c))2, (9)

where B (T , c) is the length of the branch connecting clade
c to the tree if it is present in T , 0 otherwise.

The posterior estimate is the mean of this distance to
the target over all posterior trees. This is normalized by tree
length, so the score units can be interpreted as a percent.
The normalization also allows us to meaningfully average
scores from different runs.

1

|T |
∑N

i=0 |T , Ti |
N

. (10)

Normalized Rooted Tree Score
The distance between two rooted species trees is defined

as:

|T1, T2| =
√ ∑

c∈T1∪T2
(D (T1, c)− D (T2, c))2, (11)

whereD (T , c) =
∫ b1
b0

1
Nb (t)

dt , and b is the branch connect-
ing clade c to the tree if it is present in T , 0 otherwise. The
score is normalized by the “tree area,” which is the total tree
length in coalescent units.

If all populations are constant and equal to 1, this reduces
to the branch score. Note that unlike the branch score, this
is not a true metric because branch length and population
size are confounded.
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