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Abstract: We investigate structural and dynamical properties of Janus nanodimers (NDs) dispersed
in lamellar phases of a diblock copolymer. By performing molecular dynamics simulations, we
show that an accurate tuning of the interactions between NDs and copolymer blocks can lead to a
close control of NDs’ space distribution and orientation. In particular, NDs are preferentially found
within the lamellae if enthalpy-driven forces offset their entropic counterpart. By contrast, when
enthalpy-driven forces are not significant, the distribution of NDs, preferentially observed within
the inter-lamellar spacing, is mostly driven by excluded-volume effects. Not only does the degree of
affinity between host and guest species drive the NDs’ distribution in the polymer matrix, but it also
determines their space orientation. In turn, these key structural properties influence the long-time
dynamics and the ability of NDs to diffuse through the polymer matrix.

Keywords: polymer nanocomposites; molecular dynamics; nanoparticles; janus; copolymer; lamellar;
coarse-grained; nematic; orientational order; diffusion

1. Introduction

Polymer nanocomposites (PNCs) are hybrid materials comprising a host polymer
matrix embodying guest nanoparticles (NPs). They couple many of the advantageous char-
acteristics of polymers, such as flexibility, processability and ductility, to enhanced thermal
and mechanical stability as well as optical, electrical, magnetic and other intriguing NPs’
properties. Incorporating nano-sized rather than micron-sized fillers poses a comparatively
relevant difference in terms of available polymer/NP interface, where the interactions
between the two species are able to enhance the material performance by triggering new
properties [1]. In particular, NPs display a surface area-to-volume ratio that is orders of
magnitude larger than that provided by similarly shaped micrometric particles, with the
tremendous potential of generating new properties at a relatively low loading [2]. This is
not of secondary importance as the resulting material’s weight can be kept very close to
that of the pristine polymer, with evident benefits in industrial applications requiring light
materials, such as low CO2 emission vehicles where metal components, heavier and prone
to corrosion, are gradually being substituted by PNCs [3]. PNCs are also being investigated
for applications in food packaging to offer high barrier to diffusion of atmospheric gases [4],
enhanced thermal properties for cook-in-bag or microwavable packages [5] and even to de-
tect undesired volatile molecules that would flag poor food integrity or spoilage as a more
precise alternative to uncertain sell-by dates [6]. Another intriguing cutting-edge research
field where PNCs are showing a promising potential is that of organic solar cells. In this
context, PNCs can provide, e.g., enhanced protection to UV light, flexibility, transparency
and more contained costs of production and maintenance as compared to conventional
silicon cells [3,7,8].
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Despite these fascinating technological opportunities, there are still pressing issues
hampering the implementation of PNCs in large-scale applications and an accurate control
of their impressive potential [9]. These issues include the difficulty of uniformly dispersing
NPs in the polymer matrix and avoiding the formation of separate clusters [10–13]. Not
only would these clusters of NPs leave the polymer’s properties practically unchanged,
but they could also trigger the occurrence of structural defects. Therefore, significant effort
has been devoted to enhance the NP miscibility by chemically modifying their surface with
polymer grafts or ligand molecules [14–18]. This sort of problems is also being addressed
by theoretical methods. These include field-theoretic approaches, such as the self-consistent
field theory (SCFT) and the single-chain mean-field theory, currently mostly applied to
pure block copolymers [19–21]. The phase behaviour of PNCs can be studied by combining
SCFT with density functional theory [22,23], but their accuracy in the description of the
orientation of anisotropic nanoparticles is still quite limited [24]. Alternatively, hybrid
particle-field approaches can be considered, where particles are explicitly modelled, but
the polymer chains are treated in a mean-field fashion [25–27]. Equally relevant in case of
anisotropic NPs is controlling their orientation in the polymer matrix, for instance to en-
hance barrier properties against gas permeability [4] or to modulate their optical response
and induce fluorescence anisotropy [28,29]. Due to their amorphous or semicrystalline
morphology, most polymers offer a relatively low barrier to molecular permeability and dif-
fusion, which two-dimensional NPs, by developing a rather tortuous permeation network,
could in principle improve [30]. Nevertheless, the simple incorporation of well-dispersed
nanoplatelets might have a very limited benefit if not accompanied by a close control on
their orientation [31,32]. To this end, by orienting 2 wt% graphene oxide nanoplatelets
in compressed polystyrene film coatings, Wan and coworkers very recently observed a
96% reduction in oxygen permeation as compared to the pristine polymer [33]. Similar to
their oblate counterparts, prolate NPs also disclose a wide spectrum of fascinating applica-
tions. For instance, noble metal nanorods are excellent NPs to amplify local electric fields,
while semiconducting nanorods enhance the efficiency of polymer-based photovoltaic
devices by increasing electron mobility and hence electrical conductivity [34]. The latter
displays a complex dependence on the degree of nanorods’ alignment. More specifically, it
increases by slightly orienting the nanorods, but, when these are highly aligned, it shows
a drastic decrease, especially at low anisotropies and volume fractions [35]. There are
different options to align nanorods or similar one-dimensional NPs, such as nanowires and
nanotubes [36–39], but none of them, for the time being, seem to exhibit a notably more
accurate control on particle orientation than the others.

Although the design and production of PNCs incorporating positionally and orien-
tationally ordered anisotropic NPs implies severe experimental challenges, the general
consensus is that spatial organisation is instrumental to fully exploit their technological
potential [40–46]. Realising that spatial organisation can be tailored by simultaneously
controlling enthalpy and entropy-driven forces fuelled the interest in PNCs consisting of
block copolymers (BCPs) and functional NPs [47]. The reason these mixtures are especially
suitable to tune enthalpic and entropic contributions is because they present microphase
separated domains promoting favourable NP/BCP thermodynamic and geometric inter-
actions that can accurately direct NPs’ position and orientation [32,48,49]. Most of the
research work on these systems has been limited to BCPs incorporating spherical NPs or,
to a much lesser extent, rod-like [46,50] and disk-like [32,51] anisotropic NPs. Nevertheless,
studies on non-spherical NPs that exhibit two chemically distinct compartments and are
therefore anisotropic in both shape and interactions are still at a stage where theory and
simulation are paving the path for experiments [26,44,52–54]. Such a double anisotropy
provides additional degrees of freedom to more precisely control the interplay between
enthalpy and entropy by tuning NP size, shape and surface chemistry, in relation to the
architecture of the BCP employed and its potential ability of self-assembling into period-
ically ordered mesophases. By preferentially orienting at the interface between the two
copolymer domains, these intriguing NPs, generally referred to as Janus NPs after the



Polymers 2021, 13, 1524 3 of 20

double-faced Roman god, provide an opportunity to better control the functionalisation of
the BCP for an ample spectrum of industrial applications.

In this work, we perform molecular dynamics (MD) simulations to investigate the
structural and dynamical properties of Janus and homogeneous nanodimers (NDs) em-
bedded in lamellar phases of a diblock copolymer (di-BCP) melt. To this end, rather than
an atomistic model that would be too computationally demanding to explore the relevant
time and length scales of PNCs, we opt for a coarse-grained representation of the polymer
chains, a strategy that in the past allowed us to study the behaviour of BCPs in solu-
tions [55–61] and melts [62–64]. Coarse-grained models portray groups of atoms as single
interaction sites, reducing the number of degrees of freedom and thus allowing the study
of longer time and length scales. Even though this reductionist model lacks full chemical
detail, it still proves to be an efficient method to study properties at the mesoscale such as
self-assembly [65,66], phase behaviour [67], structure [68], dynamics [69] and viscoelastic
and thermal properties [70,71]. Our interest is understanding how the interactions between
the polymer chain and the NDs impact distribution and orientation of the particles in the
lamellae and how this ordering (or lack of) influences their mobility at long-time scales.

2. Model and Simulation Methodology

In this section, we discuss the model employed to mimic the behaviour of a di-BCP
hosting NDs, the computational details of our MD simulations and the characterisation
techniques to determine structural and dynamical properties of the model PNC.

2.1. Molecular Model

Coarse-grained (CG) models of di-BCP chains and NDs have been applied to generate
ordered lamellar phases with specific NP content and chain-dimer interaction, as detailed in
Section 2.2. By disregarding computationally expensive chemical details, CG models allow
to simulate the mesoscale behaviour of materials, which fully evolves over considerable
length and time scales. While of fundamental importance at the molecular scale, these
degrees of freedom are less and less relevant at increasing time and length scales to
determine, for instance, chain conformations and structural relaxation [62,72–75]. To
coarse-grain a polymer chain, a small portion of the macromolecule is reduced to a single
interaction site, here referred to as bead, whose interactions average the contributions of the
atoms it comprises. More specifically, our model copolymer chain consists of l = 30 beads
separated into a head block (h) and a tail block (t) of 15 beads each. This value was chosen
to obtain lamellar layers thicker than the size of the NDs and systems with enough polymer
chains to minimise finite-size effects. At the same time, it is not too large to hamper the
study of the long-time diffusive regime within our simulation time. Each chain bead has a
diameter σh = σt = σ and a mass mh = mt = M, which define, respectively, the system’s
unit length and unit mass in Lennard–Jones (LJ) units. Additionally, NDs consist of two
beads of diameter σH = σT = σ0 = 3 σ and mass mH = mT = m0 = 19.59 M, which are
bonded to each other with a small overlap (see Section S1 of the Supplementary Materials
for a detailed calculation of the NDs’ mass). Depending on their chemical affinity to the
two chain blocks, ND beads can be head-like (H), tail-like (T) or neutral (0). A schematic
representation of a copolymer chain and the full set of the NDs studied in this work is
shown in Figure 1.

The force-field defining the interactions between the different components of our sys-
tems is a combination of the models proposed by Kremer and Grest for polymer chains [76]
and Smith et al. for NPs [77]. These models have been applied in the past to investigate
structural and dynamical properties across several length and time scales [72,73,78,79]. In
particular, non-bonded interactions are described by a shifted Weeks–Chandler–Andersen
(WCA) potential [80] that reads:
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Uαβ(r) =

4εαβ

( σ

r− ∆αβ

)12

−
(

σ

r− ∆αβ

)6
+ εαβ

× H
[
−(r− ∆αβ − rc)

]
(1)

where εαβ is the intensity of the force between beads α and β, with α, β ∈ {h, t, H, T, 0}; ∆αβ

is a shifting parameter, H[x] is the Heaviside step distribution; and rc = 21/6 σ is the cutoff
distance. The limits of this potential are Uαβ(r− ∆αβ 6 0) = ∞ and Uαβ(r− ∆αβ > rc) = 0.
The parameter ∆αβ 6= 0 effectively provides the beads with a hard core and a soft shell [64].
The values of ∆αβ and εαβ have been chosen to favour the formation of a lamellar phase
while hampering NP aggregation [81,82]. The cutoff distance is the typical one of the WCA
potential, which drops the attractive range of the LJ function, thus turning it into a purely
repulsive potential. The complete parameterisation of this potential is provided in Table 1.

Figure 1. Model di-BCP chain with h-block beads in orange and t-block beads in cyan (top); and
model nanodimers with neutral (grey), head-like (red) and tail-like (blue) beads (bottom).

Table 1. Force-field parameters employed in Equations (1) and (2), respectively, describing the
non-bonded and bonded interactions of h-block and t-block chain beads and H, T and 0-ND beads.
For all interactions, rc = 21/6 σ. All parameters are invariant under subindex inversion (Aαβ = Aβα).

Bead Non-Bonded Bonded

α β εαβ/ε ∆αβ/σ Kαβ/εσ−2 R0,αβ/σ σαβ/σ

h h 1 0 30 1.5 1
h t 52 0 30 1.5 1
t t 1 0 30 1.5 1

H H 52 2 15 3.0 3
H T 52 2 15 3.0 3
H 0 52 2 15 3.0 3
T T 52 2 15 3.0 3
T 0 52 2 15 3.0 3
0 0 52 2 15 3.0 3

H h 1 1
H t 52 1
T h 52 1
T t 1 1
0 h 1 1
0 t 1 1

To describe the interaction between two contiguous chain beads as well as between
two beads of the same dimer, we applied the Finitely Extensible Non-linear Elastic (FENE)
potential combined with a WCA potential, which reads [76]:
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Vstretching(r) = −
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KαβR2
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σαβ
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)12
−
(
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)6
]
+ ε

}
× H[−(r− rc)]

(2)

where Kαβ and R0,αβ are the intensity and range of the interaction, respectively; σαβ =
(σα + σβ)/2; and ε is the system’s unit energy. Polymer chain bonds, i.e., h-h, h-t and t-t
bonds, are parameterised as proposed by Kremer and Grest [76]. However, the force-field
parameters used for the beads forming Janus and homogeneous NDs have been derived
specifically for this work and are set in such a way to allow a partial overlap between them
and a mutual distance dND ≈ 2.5 σ. The complete set of bonded interaction parameters is
reported in Table 1.

2.2. Simulation Methodology

We studied the structural and dynamical properties of the systems listed in Table 2,
which also include a reference system (PNC0) containing polymer only. All systems consist
of lamellar phases incorporating 12,696 diblock copolymer chains and 96, 510 or 1080 NDs,
corresponding to 1 wt%, 5 wt% or 10 wt%, respectively. These mass fractions are those
usually employed in experimental PNCs. Below 1 wt%, it is difficult to see tangible
modifications of the macroscopic material properties, and above 10 wt% the long-range
ordering might be destroyed [83]. All systems were equilibrated and characterised by
performing MD simulations on the Large-scale Atomic/Molecular Massively Parallel
Simulator (LAMMPS) [84,85]. All MD simulations were parallel-run on 4 Intel Skylake
nodes (160 CPUs) [86].

Table 2. Summary of systems studied. Information includes the system id number, the number of
di-BCP chains (n), ND type, the mass fraction of NDs (w/wt%) and the total number of NDs (nND).

System n ND Type w/wt% nND

PNC0 12,696 0 0

PNC1 12,696 00 1 96
PNC2 12,696 HH 1 96
PNC3 12,696 H0 1 96
PNC4 12,696 HT 1 96

PNC5 12,696 00 5 510
PNC6 12,696 HH 5 510
PNC7 12,696 H0 5 510
PNC8 12,696 HT 5 510

PNC9 12,696 00 10 1080
PNC10 12,696 HH 10 1080
PNC11 12,696 H0 10 1080
PNC12 12,696 HT 10 1080

The time-step for all the simulations was fixed at δt = 0.001 τ, with τ = σM1/2ε−1/2

the system’s unit time. Equilibration and production runs were performed in the isothermal-
isobaric (NPT) ensemble, i.e., at constant temperature T = ε/kB, with kB the Boltzmann
constant, constant pressure P = 11.3 εσ−3 and constant number of chains and dimers. To
this end, a Nosé–Hoover barostat and thermostat were used [87,88].
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Systems were considered to be at equilibrium when the total energy E and the volume
Vbox achieved a steady value within reasonable statistical fluctuations, which involved
runs of 2–3 · 108 δt. We also monitored the fluctuations of the box length perpendicular to
lamellar-planes Lz and made sure these were also very small at equilibrium. The pressure
was set to a value that produced a number density of ρ = 1.0 σ−3 in the pristine polymer,
right in the faster-dynamics section of the lamellar phase (see equations of state in Figure 2).
We note that energy minimisation was generally observed right after reaching the target
temperature and pressure, suggesting that, for most of the equilibration run, the structural
relaxation of the system was mostly due to entropic forces. A fully detailed description of
the equilibration process is provided in Section S2, including Figures S1 and S2. [89–92]
Production runs of t = 108 δt were then performed to generate trajectories at both linear
and logarithmic time intervals that would be used for subsequent data analysis.
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Figure 2. Isothermal curves at T = 1 ε/kB and pressure rates δP/δt = 1.5 · 10−2 εσ−3τ−1 (black)
and δP/δt = 3.0 · 10−3 εσ−3τ−1 (red) obtained by expanding and then compressing between
P1 = 1.5 εσ−3 and P2 = 150 εσ−3. The continuous vertical line marks our system’s pressure
P = 11.3 εσ−3 and density ρ = 1.0 σ−3 (magenta). (Left) Pressure vs. density plane. It contains
the isotherms (continues lines) and linear regressions of the slow-rate curve at each end (dashed
and dotted red lines). Their intersection (P = 8.82 εσ−3, ρ = 0.95 σ−3) distinguishes isotropic (light
yellow area) from lamellar (yellow-purple mixed-coloured and purple areas) phases. The inset shows
the same results in the low-density region. (Right) Box dimensions vs. density plane. It displays
evolution of Lx (dashed lines), Ly (dashed-dotted lines) and Lz (continuous lines) at the two pressure
rates. An abrupt change in δLi/δρ is observed at ρ = 1.13 σ−3.

2.3. Data Analysis

To characterise the morphology of our model PNC, we computed the density profiles
perpendicularly to the lamellae as well as the distribution and orientation of dimers and
chains. The homemade software, written in FORTRAN 90, is available online to the interested
reader [93]. In particular, the density profiles provide the number density of component α
in rectangular bins parallel to the lamellae:

ρα(zi ± δz) =
〈nα(zi ± δz)〉i

Vbin
(3)

where δz is half the width of bin i, ρα is the local density of component α, nα is the number of
beads of component α in i, Vbin = 2LxLyδz is the volume of bin i and 〈...〉i indicates ensem-
ble average. The orientational distribution of dimers is especially useful to understand how
the polymer–dimer interactions affect the dimer orientation in space, i.e., the orientation
of the vector connecting the centres of mass of the dimer beads,

#»

d ND. To estimate this
distribution, we determined the orientation by measuring the polar angle θ ∈ [−90◦, 90◦],
its absolute value and the azimuthal angle φ ∈ [−180◦, 180◦). More specifically:
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〈θ〉 = 〈arccos (d̂ND · êz)− 90◦〉 (4)

〈|θ|〉 = 〈| arccos (d̂ND · êz)− 90◦|〉 (5)

〈φ〉 =
〈

sgn(d̂ND · êy) arccos

[
d̂ND · êx

(d̂ND · êx)2 + (d̂ND · êy)2

]〉
(6)

where d̂ND =
#»

d ND/|| #»d ND|| is the unit vector defining the dimer orientation and {êx, êy, êz}
are canonical vectors oriented as the cartesian axes of the simulation box. With the values
yielded by Equations (4)–(6) and their standard deviation, a clear picture of the average
dimer orientation can be obtained. Notice that Equation (5) helps discern whether results
from Equation (4) are caused by uniformly or randomly oriented particles. The calculation
of the distribution profiles along z of both polar and azimuthal angles, detailed in Section
S3, is especially useful to understand the relation between position and orientation.

Since our systems display a degree of orientational order, it makes sense to investigate
whether the anisotropic particles (dimers) they host are also oriented along a preferential
direction. To this end, we calculated the nematic order parameter S2 and the nematic
director n̂ of particles, which, respectively, are the largest eigenvalue and the corresponding
eigenvector of the following second-rank symmetric tensor [63]:

Q =
1
2

〈
3d̂ND ⊗ d̂ND − I

〉
(7)

with ⊗ the dyadic product and I the second-rank unit tensor.
To characterise the dynamics of polymer chains and dimers, we calculated their

translational and rotational diffusion coefficients. The former were obtained via the mean-
squared displacement (MSD), defined as

〈∆r2(t)〉α = 〈| #»r (t)− #»r (0)|2〉α (8)

Given the anisotropic nature of the lamellar phases, we also computed the MSD along
z and in planes perpendicular to z (i.e., xy) [63] as reported, respectively, in Equations (9)
and (10):

〈∆r2
z(t)〉α = 〈|[ #»r (t)− #»r (0)] · êz|2〉α (9)

〈∆r2
xy(t)〉α = 〈| #»r (t)− #»r (0)|2 − |[ #»r (t)− #»r (0)] · êz|2〉α (10)

where #»r (t) is the position at time t and 〈...〉α stands for ensemble average over species α.
Diffusion coefficients are proportional to the slope of the MSD at long times, where chains
and NDs are supposed to have entered a diffusive regime. In particular:

Dα = lim
t→∞

1
6

∂

∂t
〈∆r2(t)〉α

Dz,α = lim
t→∞

1
2

∂

∂t
〈∆r2

z(t)〉α

Dxy,α = lim
t→∞

1
4

∂

∂t
〈∆r2

xy(t)〉α

(11)

To assess the dimers’ ability to orient and rotate with respect to the layers formed by
the di-BCP, we calculated the rotational diffusion coefficient, defined as

Drot,ND =

[
2
∫ ∞

0
dt 〈P1[d̂ND(t) · d̂ND(0)]〉

]−1
(12)
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where P1 is the first-order Legendre polynomial [94,95]. This coefficient is relevant to
ponder whether, at equilibrium, NDs are relatively free to rotate around their centre of
mass or are perhaps constrained along a given direction, thus suggesting the existence of a
preferential orientation.

3. Results and Discussion

In this section, our aim is to discuss the dynamics of neutral and Janus NDs incorpo-
rated in lamellar phases of a di-BCP. To this end, aware of the relevance of the background
structure in determining specific dynamical characteristics, we first report on the structural
properties of our systems, with special focus on the NDs’ distribution and orientation
within the di-BCP matrix. To start with, we examine the morphology of the pristine di-
BCP. Its density profiles along the direction perpendicular to the lamellae are reported in
Figure 3a and exhibit the typical periodicity of the copolymer blocks. As expected, the topo-
logical centres of the di-BCP chains are uniformly distributed within the inter-layer region
(see also Section S2), where the total bead density (black solid line in Figure 3a is found to
decrease slightly. Such a density reduction, while relatively soft, has in fact a crucial impact
on the NDs’ distribution by providing some extra room to accommodate them.

(a) 0 wt%

0 0.2 0.4 0.6 0.8 1

z / L
z

0

1

2

3

4

5

ρ
i /

 ρ
i
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Figure 3. Density profiles of the pristine polymer (a) and the systems with 5 wt% particle mass
fraction (b) in the z direction. The density profiles of h-block, t-block, chain beads and chains’ centre
of mass are, respectively, indicated by orange, cyan, solid black and dashed black curves. The density
profiles of H-like, T-like and neutral ND beads are represented as solid diamonds in red, blue and
grey, respectively, and those of the NDs’ centre of mass as violet solid lines.
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The incorporation of NDs into this di-BCP does not destroy its smectic liquid-crystalline
ordering, even at the largest nanoparticle loading considered here (10 wt%). A visual repre-
sentation of the resulting PNCs as obtained after equilibration is reported in Figure 4 (a
perspective view of the same configurations is also provided in Figure S4). As a general
tendency, all types of NDs tend to arrange at the interfaces formed by the two polymer
blocks, except HH-NDs, which are preferentially located within the h-block layers, as
observed in Figure 4c,g,k at 1, 5 and 10 wt%, respectively. This can also be appreciated
in the density profiles reported in Figure 3b for PNCs with 5 wt% of NDs and Figure S3
for all the PNCs studied here. While most NDs are constrained within the inter-layer
region and thus display a quasi-two-dimensional distribution, HH-NDs tend to occupy the
whole space available within the h-block, sufficiently far from the interface with the t-block,
and their distribution assumes a three-dimensional character. This difference is especially
evident at larger particle loading, as revealed by the broader base of peaks formed by
HH-NDs in Figure S3c. We note that qualitatively similar tendencies were observed by
Pine and co-workers, who investigated gold nanoparticles coated with polystyrene (PS)
in poly(styrene-b-2 vinylpyridine) di-BCPs [96]. Although these nanoparticles exhibit a
roughly spherical shape, they form preferential interactions with the PS block, similarly to
our HH-NDs with the polymer h block. The authors found the nanoparticles mostly in the
centre of the PS domains, with Gaussian distribution profiles whose width decreases as
the PS domain size decreases or as the particle weight fraction increases. In principle, this
behaviour would also be expected for 00-NDs, whose neutral interactions with both copoly-
mer blocks should promote their homogeneous distribution throughout the mesophase,
and for H0-NDs, which form favourable interactions with the h-block, where they should
preferentially and uniformly disperse. In fact, this is not the case.

Figures 3b and 4 and Figure S3 reveal that 00-NDs and H0-NDs are rather located at
the h-block/t-block interfaces, suggesting the existence of entropic forces that, by offsetting
those of an enthalpic origin, displace these NDs from the in-layer to the inter-layer domains.
Enthalpy-driven forces are regulated by the intensity of the interactions between copolymer
blocks and NDs, and are especially relevant when there is a significant affinity between
these two species, as it is the case for HH-NDs and copolymer h-blocks. By contrast,
entropy-driven forces are regulated by the volume available to the polymer chains and
their subsequent ability to maximise the number of possible conformations. This can
be achieved if the region between adjacent NDs, being excluded to the polymer chains,
is minimised, resulting in an effective attraction between NDs, usually referred to as
depletion attraction. Because thermodynamic equilibrium depends on the balance between
these two contributions, if enthalpic forces are dominant, the ND/polymer contacts are
maximised, whereas if entropic forces are dominant, these contacts are minimised. In
almost all our model PNCs, the interactions between NDs and alike blocks are never
dominant. Consequently, NDs are generally depleted from the polymer-rich domains and
preferentially locate where the polymer density is lower, that is at the h-block/t-block
interface. Functional NDs with an especially strong affinity with one copolymer block, that
is HH-NDs, represent the only exception. However, it is sufficient to substitute one of the
two H beads with a neutral bead (H0-NDs) to invert this tendency and re-establish the
general behaviour. These preliminary considerations are necessary to understand what
elements might enhance or hamper the mobility of both species, but they are not sufficient.
Additional key factors are represented by NDs’ loading and space orientation.
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Figure 4. Frontal view of typical equilibrated configurations of the model PNCs studied in this work.
NDs’ monomers are shown as spherical beads. Most polymer chains are depicted as points for clarity.
However, some of them are magnified to better appreciate their conformations across the interface.
Different colours indicate h-block (orange), t-block (cyan), neutral (grey), head-like (red) and tail-like
(blue) monomers. Subfigures a to m are each identified by ND type and ND mass fraction, as detailed
in Table 2.
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Increasing the content of NDs from 1 to 10 wt% promotes the partial penetration of
the NDs located at the interface into the adjacent layers. This effect is especially evident
when separated inter-layer distributions of H0-NDs at 10 wt% enter in contact with each
other, as observed in Figure 4l and density profiles of Figure 3b and Figure S3. Similarly,
HH-NDs tend to homogeneously occupy the whole space available in the h-block regions
and necessarily approach the interface. This can be appreciated by visual inspection of
Figure 4 and by the analysis of Figure S3, where the NDs’ density distributions become
broader and their peaks reduce upon increasing nanoparticle loading. Moreover, with the
exception of PNCs comprising HH-NDs, the increase in particle load leads to a decrease
in the di-BCP’s density at the interface. Although the lower chain density at the interface,
observed in pristine polymers (see Figure 3a), does not stem from the presence of NDs,
the latter indeed contribute to the re-arrangement of chain monomers at the interface. By
contrast, HH-NDs create additional chain monomer density wells in the middle of h-block
lamellae in addition to those already mentioned.

To assess the NDs’ orientation in the lamellar phases, we have determined the proba-
bility distributions of polar (θ) and azimuthal (φ) angles as well as their average values,
respectively, shown in Figures 5 and 6. In particular, θ is the angle between the ND longi-
tudinal axis and its projection on the lamellar (xy) plane, whereas φ is the angle between
this projection and a generic reference direction lying on the lamellar plane. The values of
θ and |θ| indicate that both ND-chain interactions and interface topology have a relevant
effect on the orientation of NDs, which, in contrast, is not especially influenced by the NDs’
loading. On the other hand, the azimuthal angle appears to be completely independent
from both particle type and load. These observations suggest that there is not a preferential
particle orientation within the xy plane but, depending on how NDs are functionalised,
one can control their inclination with respect to this plane. Surprisingly, neutral NDs,
which would be expected to exhibit random orientations and thus a uniform distribution
of polar and azimuthal angles, are in fact almost completely constrained on the lamellar
plane, as the relatively narrow Gaussian distributions of θ in Figure 5a and the small
standard deviations of both θ and |θ| in Figure 6 suggest. This can also be appreciated in
Figure S5, where the average value of these angles as a function of the ND position along
the z-axis is reported. Less constrained appear to be HH-NDs, whose polar angles denote
a more significant and broadly distributed inclination, thus suggesting a slightly larger
propensity to explore more orientations than 00-NDs. Because of the periodic arrangement
of h-block and t-block lamellae, the distribution of Janus NDs would also be expected to
follow a similar pattern. This is indeed detected in the form of an alternating sign for θ
in Figure S5. Such a sign alternation determines a split in the polar angle distributions of
Figure 5a, which become bimodal, as opposed to the monomodal distributions generated
by homogeneous NDs. These bimodal distributions are completely symmetric, as the left
frame of Figure 6 indicates. The polar angle distributions, together with the values of |θ| in
Figure 6 and the profiles in Figure S5 suggest that Janus NDs do not to lie on the lamellar
plane, but display an inclination of at least 60◦. Finally, the azimuthal angle, φ, does not
show any relevant change with NDs’ interactions or content. Moreover, its average value
and standard deviation are those typical of a uniform probability distribution, with no
preferred orientation in the lamellar plane. The interested reader is referred to Section S4
and Table S1 for additional details on the properties of the continuous uniform probability
distribution and the specific values of both polar and azimuthal angle distributions.
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Figure 5. Probability distribution functions of polar (θ) and azimuthal (φ) angles at particle mass
fractions 1 wt% (purple lines), 5 wt% (yellow lines) and 10 wt% (green lines).
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Figure 6. Polar (〈θ〉, 〈|θ|〉) and azimuthal (〈φ〉) average angle values of particles (00, H0, HH and HT)
at mass fractions 1 wt% (empty purple circles), 5 wt% (yellow diamonds) and 10 wt% (green crosses).

To confirm these last observations on the orientation at the particle scale, we calculated
the nematic order parameter, S2, reported in Figure 7, and the average values of the
nematic director components in the three space dimensions, shown in Table S2. We observe
that homogeneous NDs, namely 00-NDs and HH-NDs, are very weakly ordered, with
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S2 < 0.3. Janus NDs, and especially HT-NDs, display a more ordered arrangement,
with significantly larger values of S2, indicating a clear preference to be aligned along
the z-direction, perpendicularly to the lamellar planes. The nematic order parameter is
practically independent from the particle loading, being the differences observed among 1,
5 and 10 wt% in Figure 7 safely negligible.

00 HH H0 HT
0

0.2

0.4

0.6

0.8

1

S
2

Figure 7. Nematic order parameter at mass fraction values 1 wt% (empty purple circles), 5 wt%
(yellow diamonds) and 10 wt% (green crosses).

In the light of these considerations on positional and orientational distribution of our
model NDs, we now discuss the dynamical properties of the systems studied. To this end,
we have first calculated the MSD of polymer chains and NDs. The latter are reported in
Figure 8 and the interested reader is referred to Figure S6 for the polymer chains’ MSD. As
a general tendency, the MSD of the di-BCP chains are not especially affected by the specific
nature of NDs or their content. In particular, the chains dynamics in the lamellar xy plane
exhibits a diffusive behaviour at long-time scales, which follows a moderate cage-effect
imposed by neighbouring particles and chains. In the z direction, perpendicular to the
lamellae, the chain dynamics is much slower and never achieves the long-time diffusive
regime within our simulations (eight time decades). NDs display analogous anisotropic
dynamics with very similar trends in their MSDs across the time scales. Only PNCs with a
small number of HH-NDs, the only NDs that are located within the lamellar layers, show
slightly faster dynamics, with the MSD at long times approximately twice as large as that
of other NDs (see Figure S7a). We believe that such a larger mobility is due to the space
available to HH-NDs to diffuse, which is larger than the quasi-2D interface region where
the other NDs are constrained to move. This difference becomes less and less relevant at
increasing ND loading.
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Figure 8. Mean squared displacement of neutral and Janus NDs at 5 wt% in 3D-space (continuous
lines), within the lamellar xy plane (dashed-dotted lines) and along the z direction (dashed lines).
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In addition to the translational dynamics, we also investigated the NDs’ ability of
reorienting over time, which is especially important to understand to what extent NDs can
be responsive to thermal fluctuations and external stimuli. To this end, we calculated the
time autocorrelation functions of ND orientation, shown in Figure 9. Janus NDs display
very strong correlations, approaching an asymptotic value at relatively short times and
suggesting a rather constrained rotational dynamics that does not achieve the diffusive
regime. By contrast, 00-NDs and HH-NDs display a very different behaviour, with a
fast decay of C1 to zero at relatively short time scales, denoting the full achievement of
the diffusive regime. While the functionalisation of NDs induces relevant changes in the
rotational dynamics, the impact of ND loading is practically negligible, further confirming
that specific dynamical properties can be achieved at very low nanoparticle loading.
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Figure 9. Time autocorrelation functions of the orientation of NDs. The inset provides a zoom at short
time scales (notice the log-lin scale). Systems containing 00 (empty circles), HH (solid triangles), H0
(solid diamonds) and HT (empty squares) NDs are shown at particle mass fractions 1 wt% (purple),
5 wt% (yellow) and 10 wt% (green).

From the NDs’ MSD and orientational autocorrelation functions, the translational
and rotational diffusion coefficients were, respectively, determined. The former were
obtained by applying Equation (10) at long times, that is when the diffusive regime was
reached and MSD ∝ t. This calculation is only possible in the lamellar (xy) plane as no
diffusion regime is achieved in the z direction. Rotational diffusivities were calculated as
the inverse of the integrated autocorrelation functions, according to Equation (12). The
integral curves of the autocorrelation functions together with the convergence behaviour of
DRot,ND are displayed in Figure S8. These curves evidence the convergence of diffusivities
of homogeneous NDs and their divergence in the case of Janus NDs. In other words, no
rotational diffusion coefficients could be obtained for H0-NDs and HT-NDs because no
diffusive regime is achieved. The so-calculated translational and rotational diffusivities are
shown, respectively, in the left and right frames of Figure 10. Interestingly, translational
diffusivities, Dxy, which assume values approximately between 2 and 5× 10−4σ2τ−1, do
not seem to depend significantly on particle load, except in PNCs incorporating HH-
NDs. We know that these dimers are preferentially concentrated in the core of the h-
block domains, which are significantly larger than the quasi-two-dimensional inter-layer
spacings hosting neutral or Janus NDs. Consequently, the number of HH-NDs per unit
volume is comparatively low and Dxy significantly larger. However, upon increasing ND
loading, this difference gradually diminishes and becomes practically negligible at 10 wt%,
where Dxy ≈ 2× 10−4σ2τ−1 for all particle species. Rotational diffusivities are shown for
those NDs whose integrated autocorrelation functions converged and a diffusive regime
is actually achieved, i.e., homogeneous NDs only. It seems that rotational diffusivities
are affected by both interactions and particle content. Specifically, HH-NDs show faster
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rotational dynamics than 00-NDs for all ND mass fractions, with lower ND load producing
larger rotational diffusivities. In the case of 00-NDs, changing particle mass fraction does
not have any relevant effect on the rotational diffusivity. We believe that this is most
likely due to similar considerations to those valid for translational diffusion: while 00-NDs
are constrained in the inter-layer region and show a very narrow distribution of planar
angles, HH-NDs can rotate in a significantly larger volume allowing for a much broader
distribution of angular inclinations.
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Figure 10. Translational diffusivity of NDs in the plane (left) and rotational diffusivity (right) for
various particle mass fractions: 1 wt% (purple empty circles), 5 wt% (yellow full diamonds) and
10 wt% (green crosses).

4. Conclusions

In summary, we investigated the structural and dynamical properties of PNCs of di-
BCP chains assembled in lamellar structures. These amphiphilic polymers are particularly
attractive because they can self-assemble into liquid-crystalline mesophases, providing a
long-ranged ordered pattern for the controlled position and orientation of guest particles.
It is generally accepted that controlling the distribution of NPs in a polymer matrix can
be achieved by chemically modifying their surface and thus enhancing their affinity with
the copolymer. Nevertheless, we showed here that pure entropy-driven forces are indeed
able to position NPs in specific domains regardless of whether they form strong enthalpic
interactions with either copolymer block. In particular, four distinct types of NDs (two
homogeneous and two Janus-like) at different mass fractions were studied. Anisotropic
particles with a uniaxial symmetry, such as NDs, have two additional degrees of freedom
that characterise their orientation in space. Understanding how to orient functional NPs in
a polymer is crucial for a number of industry-relevant applications. We showed that, by
accurately tuning the balance between enthalpic and entropic contributions, it is indeed
possible to control orientation as well as position of NDs in a lamellar phase of a di-BCP. In
general, NDs tend to concentrate in the inter-layer spacing separating the two copolymer
blocks. However, this was not the case for NDs forming especially strong interactions with
one of the two copolymer blocks, which are accommodated far from the inter-layer spacing.
Moreover, while homogeneous NDs are preferentially lying on planes parallel to the
lamellae, either in the core of the copolymer block or at the interface between two distinct
copolymer blocks, Janus NDs are significantly tilted, with their longitudinal axis almost
perpendicular to the lamellae. These structural properties determine the dynamics of both
NDs and polymer chains. Here, we specifically focused on the dynamics of the former
species and estimated their mobility by calculating translational and rotational diffusion
coefficients in planes xy parallel to the lamellae and in the z direction perpendicular to
them. While all NDs achieve the long-time diffusive regime in xy planes, none of them
are found to diffuse in the z direction, basically being constrained in smectic layers or
inter-layers. Similarly, Janus NDs display a very limited rotational dynamics as compared
to that of homogeneous NDs, unveiling strong angular correlations that persist over time.
Considering the little attention that PNCs incorporating Janus NDs have thus far received,
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we hope that our contribution will be able to stimulate further experimental work and
solid ground to corroborate our predictions.
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PNC Polymer nanocomposite
NP Nanoparticle
BCP Block copolymer
ND Nano-dimer
MD Molecular Dynamics
CG Coarse-grain(ed)
LJ Lennard–Jones (potential)
WCA Weeks–Chandler–Andersen (potential)
FENE Finitely Extensible Non-linear Elastic (potential)
NPT Isothermal-isobaric or constant N, P and T (ensemble)
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