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A B S T R A C T   

Background: Osteosarcoma (OS) is a common malignant tumor in osteoarticular system, the 5-year overall sur-
vival of which is poor. Enhancer RNAs (eRNAs) have been implicated in the tumorigenesis of various cancer 
types, whereas their roles in OS tumorigenesis remains largely unclear. 
Methods: Differentially expressed eRNAs (DEEs), transcription factors (DETFs), target genes (DETGs) were 
identified using limma (Linear Models for Microarray Analysis) package. Prognosis-related DEEs were accessed 
by univariate Cox regression analysis. A multivariate model was constructed to evaluate the prognosis of OS 
samples. Prognosis-related DEEs, DETFs, DETGs, immune cells, and hallmark gene sets were co-analyzed to 
construct an regulatory network. Specific inhibitors were also filtered by connectivity Map analysis. External 
validation and scRNA-seq analysis were performed to verify our key findings. 
Results: 3,981 DETGs, 468 DEEs, 51 DETFs, and 27 differentially expressed hallmark gene sets were identified. A 
total of Multivariate risk predicting model based on 18 prognosis-related DEEs showed a high accuracy (area 
under curve (AUC) = 0.896). GW-8510 was the candidate inhibitor targeting prognosis-related DEEs (mean =
0.670, p < 0.001). Based on the OS tumorigenesis-related regulation network, we identified that CCAAT 
enhancer binding protein alpha (CEBPA, DETF) may regulate CD8A molecule (CD8A, DEE), thereby promoting 
the transcription of CD3E molecule (CD3E, DETG), which may affect allograft rejection based on CD8+ T cells. 
Conclusion: We constructed an eRNA-based prognostic model for predicting the OS patients’ prognosis and 
explored the potential regulation network for OS tumorigenesis by an integrated bioinformatics analysis, 
providing promising therapeutic targets for OS patients.   

Abbreviation: OS, osteosarcoma; TF, transcription factor; KEGG, kyoto encyclopedia of genes and genomes; ssGSEA, single sample gene-set enrichment analysis; 
GSVA, gene set variation analysis; CCLE, cancer cell line encyclopedia; GEPIA, gene expression profiling interactive analysis; GTEX, genotype-tissue expression; ROC, 
the receiver operator characteristic; AUC, area under the curve; FDR, false discovery rate; GO, gene oncology; DEE, differential expressed eRNA; CIBERSORT, cell 
type identification by estimating relative subsets of RNA transcripts; BP, biological process; CC, cell component; MF, molecular function; eRNA, enhancer RNA; 
ATAC-seq, assay for targeting accessible-chromatin with high throughout sequencing; Cdk2, cyclin kinase 2. 
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Instruction 

Osteosarcoma (OS) is a common malignant tumor in osteoarticular 
system, and it originates from primitive mesenchymal cells [1]. There 
will be 3610 new cases and 2060 new deaths of bone and joint cancer in 
2021 estimated by the American Cancer Society [2]. However, the 
5-year overall survival of OS patients in 0 to 14 and 15 to 19 is only 68% 
and 67%, respectively [2]. What’ worse, the 5-year overall survival of 
OS patients with complication like pathologic fractures is only 46% in 
adults [3]. Moreover, the 5-year overall survival of metastasis and 
relapse OS is only 25% [4]. Many researchers devote to exploring the 
latent mechanism and therapy targets like IGF-1 receptor antagonist, 
HER2 receptor blocker and PDFG inhibitor [5]. However, the etiology is 
ambiguous up to date, and the poor quality of OS patients’ survival at-
tributes to metastases and pathologic fractures. Therefore, it is impor-
tant to investigate the possible tumorigenic mechanism of OS and 
subsequently to identify the prognostic biomarkers and treatment tar-
gets underlying the interactions between potential factors. In this study, 
prognostic biomarkers that associate with tumorigenesis of OS were 
identified. 

With the development of the second- and third-generation 
sequencing assays, non-coding RNAs (ncRNAs) have gained a lot of 
attention due to their ability to regulate gene expression. Enhancer 
RNAs (eRNAs) are ncRNAs transcribed from enhancers, which indicates 
the activation of according enhancers [6]. Gene expression can be 
regulated by eRNAs via directing chromatin accessibility, chromatin 
stabilization, chromatin remodeling, epigenetic modification, and 
transcription factors (TFs) [7]. Recent studies have validated the po-
tential role of eRNAs interacting with oncogenes and pathways acti-
vating in various human diseases [8,9]. And eRNAs activate the 
transcription of target genes, which potentially promotes the tumor 
genesis [10]. We proposed that eRNAs may play significant roles in the 
tumorigenesis of OS, indicating the clinical use of eRNA-associated 
treatments. 

In this study, differentially expressed eRNAs (DEEs) were identified, 
the prognostic value of which was accessed by univariate Cox regression 
analysis. Besides, a multivariate model was constructed to evaluate the 
prognosis of OS samples. For exploring the potential signaling axis un-
derlying the mechanism of OS tumorigenesis, differentially expressed 
target genes (DETGs), differentially expressed TFs (DETFs), immune 
cells, and hallmark gene sets significantly co-expressed with DEEs were 
determined using correlation analysis. In addition, an eRNA centric 
regulatory network was established to further decode the potential 
interplay between these factors. Besides, specific inhibitors targeting 
DEEs/DETFs were also filtered by connectivity Map (CMap) analysis. 
Finally, a series of multidimensional validation based on serval multi- 
omics databases were utilized to further validate the reliability of our 
findings. Our findings may promote the understanding of the mecha-
nism underlying the tumorigenesis of OS, which allow a more selective 
application of therapeutic agents targeting specific eRNAs and their co- 
factors. 

Methods 

Data acquisition 

RNA-sequencing (RNA-seq) data of 189 OS samples were down-
loaded from Target database (https://ocg.cancer.gov/programs/target) 
and Treehouse database (https://treehousegenomics.soe.ucsc. 
edu/public-data/#datasets) (74 from Target and 115 from Three 
house database). Raw count of RNA-seq data obtained from Target 
database and Treehouse database were quantified, respectively, which 
were then standardized using voom function in limma (Linear Models 
for Microarray Analysis) package. To eliminate the batch effect, these 
two batches of RNA-seq data were corrected using normal-
izeBetweenArrays function in limma package, which were then merged 

for differential expression analysis [11]. Moreover, RNA-seq profiling of 
3 normal bone tissue was from Sequence Read Archive (SRA) database 
(https://www.ncbi.nlm.nih.gov/sra) (SRX3436393, SRX3436394, 
SRX3436395). Besides, demographic information like gender and age, 
clinical information like metastasis and primary site and endpoint data 
were also available from Target database. Therefore, the following 
survival analysis was performed based on the data from the target 
database. 

Based on eRNA in cancer (eRic) database (https://hanlab.uth. 
edu/eRic/) [10], the normalized profiles of eRNA expression in OS 
were obtained. Chromatin-immunoprecipitation followed by 
sequencing (ChIP-seq) for Histone 3 Lysine 27 acetylation (H3K27ac) 
was used to annotate eRNAs in the form of the official gene symbol in 
line with their location in hg38 genome [12]. A total of 318 TFs, 50 
Hallmark gene sets, and 80 target genes were obtained from Cistrome 
database (http://cistrome.org) [13], Molecular Signatures Database 
(MSigDB) v7.1 (https://www.gsea-msigdb.org/gsea/msigdb/index.jsp) 
[14], and eRic database (https://hanlab.uth.edu/eRic/) [10], 
respectively. 

Differential expression analysis and functional enrichment analysis 

DETGs and DEEs were identified between 3 normal bone tissue and 
189 OS samples by Linear Models for Microarray Data (limma) package 
[11] and edge R algorithm [15]. When the absolute value of log2 Fold 
Change (FC) more than 1.0 and False Discovery Rate (FDR) value less 
than 0.05, genes and eRNAs can be defined as DEGs and DEEs, respec-
tively. What’s more, Gene Oncology (GO) and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) analysis were performed to explore the 
biological processes and signaling pathways which enriched DEGs [16]. 

Construction of eRNA prognostic model 

Univariate Cox regression analysis, based on the expression levels of 
the DEEs, was conducted on the 189 OS patients with the threshold of p 
< 0.01 to determine the DEEs that were related to prognosis of OS. least 
absolute shrinkage and selection operator (LASSO) Cox regression 
analysis was further performed on the screened DEEs to optimize the 
eRNAs and construct a prognostic model by utilizing the glmnet package 
in R [17]. Then risk score of each OS patient was calculated by utilizing 
the following formula based on the screened prognosis-related DEEs 
[18]: 

Risk score = β1 × eRNA1 + β2 × eRNA2 + … + βn × eRNAn 

In the equation, “β”, “eRNA” and “n” represented the coefficient of 
each eRNA calculated using LASSO Cox regression, the expression level 
of eRNA in each sample, and the sequence number of corresponding 
eRNA, respectively. OS samples were divided into low-risk and high-risk 
groups according to the median risk score. Further, the efficiency and 
accuracy of the prognostic model were assessed using receiver operating 
characteristic (ROC) curve analyses. Then, to evaluate accuracy of the 
risk score, the Kaplan-Meier survival analysis was utilized. Gender, age, 
metastasis, and primary site were included in our work as the clinico-
pathological factors affecting the prognosis of OS patients as well as 
many other cancers. The independent prognosis predicting value of risk 
score was accessed by univariate and multivariate Cox regression 
analysis with the correction of the demographics and clinical informa-
tion discussed above. The four factors and Risk Score were integrated in 
the multivariate Cox regression analysis as variables. 

Clinical correlation analysis and cell type identification by estimating 
relative subsets of RNA transcripts (CIBERSORT) analysis 

Nonparametric test was applied to analyze the correlation between 
prognosis-related DEEs and clinical information that included first event 
and metastasis. Then, the profiling of gene expression was input into 
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CIBERSORT algorithm, and the infiltration proportion of eight different 
immune cell types was identified. The sum of estimated infiltration 
proportion of all immune cells in each OS patient was 1. Besides, the 
correlation analysis was utilized to evaluate the correlation between 
these immune cell types. 

Identification of differentially expressed TFs, hallmark gene sets, and 
immune cells/functions 

Limma package and edge R algorithm were utilized to identify dif-
ferential expressed TFs and hallmark gene sets between normal bone 
and OS samples. Besides, Gene Set Variation Analysis (GSVA) [19] was 
utilized to quantify the expression of 50 hallmark gene sets in all sam-
ples. Specifically, TFs and hallmark gene sets with FDR < 0.05 and the 
absolute value of log2 FC > 1.0. Further, immune infiltration patterns of 
29 types of immune cells/functions in OS and normal bone samples were 
investigated by utilizing single-sample gene set enrichment analysis 
(ssGSEA) based on specific gene markers [20,21]. 

Regulatory network of prognosis-related DEEs for OS tumorigenesis 

Prognosis-related DEEs, DETFs, and DETGs were retrieved from the 
above screening; then differentially expressed hallmark gene sets were 
quantified as continuous variables using GSVA, and immune cells and 
immune functions were investigated by utilizing CIBERSORT and 
ssGSEA, respectively. Then, correlation analysis was conducted among 
the factors discussed above, which were shown in different colors. 
Specifically, purple indicated the immune cell types by CIBERSORT, 
blue indicated the hallmark gene sets by GSVA, indigo blue indicated the 
immune cells/functions by ssGSEA, yellow indicated potential upstream 
DETFs of prognosis-related DEEs, and pink indicated potential DETGs of 
prognosis-related DEEs. The interaction pairs between those prognosis- 
related DEEs and DETFs, DETGs, immune cell types, hallmark gene sets, 
and immune functions were used to construct the regulatory network for 
OS oncogenesis. In this network, thresholds were set as R (correlation 
coefficient) > 0.85 and p < 0.05 between prognosis-related DEEs and 
DETGs; R > 0.70 and p < 0.05 between prognosis-related DEEs and 
DETFs; R > 0.50 and p < 0.05 between prognosis-related DEEs and 
infiltrating immune cells; R > 0.50 and p < 0.05 between prognosis- 
related DEEs and immune gene sets; R > 0.60 and p < 0.05 between 
prognosis-related DEEs and hallmark gene sets. Furthermore, the Pear-
son co-expression analysis was also conducted to estimate the correla-
tions between the six components in the regulatory network. 

Clinical characteristic and prognostic analysis of prognosis-related DEEs 

Enhancers control cellular identities and play as biomarkers for 
various cancers [22]. Therefore, we reasoned that eRNA profiles, which 
was easily detectable, could be clinically used as biomarkers. Machine 
learning for estimating patients’ prognosis was currently believed to be 
more robust compared with traditional methods in multiple settings and 
disease conditions [23–25]. Here, we obtained the ncRNA profiling by 
array and clinical phenotypes of 91 OS patients (accession number: 
GSE39058) to validate the prognostic value of our candidate eRNAs 
[26]. 

Identification of potential small-molecule inhibitors 

In the Connectivity Map (CMap) database (https://portals.broad 
institute.org/cmap/) [27], DEG maps were used to predict the correla-
tions between small-molecule drugs and multiple diseases. The positive 
score was the same as the reference gene expression profile, while the 
negative score might be the opposite. Herein, CMap was utilized to 
identify small-molecule drugs which may target DEGs in OS based on the 
expression profiles of DEGs. Specifically, the database was used to 
screen enrichment fractions < -0.85 and p < 0.05, and small-molecule 

drugs with negative scores were considered as potential therapeutic 
molecules for OS therapy. 

Assay for targeting accessible-chromatin with high throughout sequencing 
(ATAC-seq) and ChIP-seq validation 

The profiling of eRNAs was obtained to analyze the state of chro-
matin [28]. And ATAC-seq data for prognosis-related DEEs (accession 
number: GSE139190 and GSE139099) were used to determine the 
chromatin accessibility of prognosis-related DEEs in OS tissue as well as 
in the pan-cancer level. Furthermore, to determine whether 
prognosis-related DEEs and DETF binding overlap at active enhancers, 
comparative analyses of our ChIP-seq data (accession number: 
GSE134744) and the enhancer-related histone marks H3K27ac were 
conducted. 

External validation based on multidimensional data 

Considering the data limitation in our work, verification based on 
multiple databases was performed to further demonstrate the reliability 
of our findings, which was essential for optimizing the universality and 
authenticity of our results. Therefore, CellMarker [10] databases and 
PathCard (https://pathcards.genecards.org/) were utilized to explore 
the top three gene markers of specific immune cells and top five genes of 
hallmark pathways. 

In addition, Gene Expression Profiling Interactive Analysis (GEPIA) 
[29], Oncomine [30], UALCAN [31], Linkedomics [32], SurvExpress 
[33], cBioportal [34], Genotype-Tissue Expression (GTEx) [35], and 
UCSC xena [36] were used to validate our key results in transcriptome 
level, Cancer Cell Line Encyclopedia (CCLE) [37] were used to validate 
our results in cellular level, The human protein atlas [38] was used to 
verify gene expression in tissue level. And the Protein-Protein Interac-
tion (PPI) network was plotted by String database [39]. The ChIP-seq 
analysis was utilized in Cistrome data browser [13] based on seven 
studies [40–44], the chromatin location and targeted drugs for identi-
fied prognosis-related DEEs were explored in eRic database [10]. 

Single-cell RNA sequencing transcriptome analysis 

The single-cell RNA sequencing (scRNA-seq) data of human OS 
(accession number: GSE162454) were downloaded from Gene Expres-
sion Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/geo/ 
query/acc.cgi?acc=GSE162454), including 6 OS patients [45]. All 
data were integrated using “IntegrateData” function and analyzed by 
utilizing the R toolkit Seurat (http://satijalab.org/seurat/). Those single 
cells were extracted for the subsequent analysis which had more than 
100,000 transcripts expressing. After the top 2000 variable genes were 
identified by “vst” method, “FindConservedMarkers”, and “Find-
Markers” function, the marker genes of each cell type were determined. 
The tumor stem cell markers were also utilized to determine the tumor 
stem cells. Data dimensionality was reduced by utilizing principal 
component analysis (PCA), and the top 20 principal components (PCs) 
were extracted for the further clustering analysis and Uniform Manifold 
Approximation and Projection for Dimension Reduction (UMAP) anal-
ysis. “CellCycleScoring” function and cell cycle-related gene markers 
were used to determine the cell cycle stages of each cell type. Eventually, 
“iTALK” package [46] was utilized to determine the ligand-receptor 
interactions between different cell types, and the “edgebundleR” pack-
age (https://github.com/garthtarr/edgebundleR) was utilized to visu-
alize the intercellular communication. 

Statistics analysis 

In this study, two-side p value less than 0.05 was considered as sta-
tistically significant in all analysis processes. And R software was uti-
lized to analyze (www.r-project.org; version 3.6.1; Institute for Statistics 
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and Mathematics, Vienna, Austria) (Package: limma, edgeR, ggplot2, 
survminer, survival, rms, randomForest, pROC, glmnet, pheatmap, 
timeROC, vioplot, corrplot, ConsensusClusterPlus, forestplot, survi-
valROC, beeswarm, edgeR, chromVAR, Biostrings, BSgenome.Hsapiens. 
UCSC.hg38, ChIPseeker, TxDb.Hsapiens.UCSC.hg38.knownGene, clus-
terProfiler, org.Hs.eg.db, karyoploteR, GSVA, GSEABase, stringr, GEO-
query, dplyr, ComplexHeatmap, RColorBrewer). 

Results 

Differential expression analysis 

All analysis processes were illustrated in the flow chart (Fig. 1). 
Based on edge R algorithm, 3981 DEGs were identified between normal 
and OS samples in the heatmap and volcano plot (Fig. 2A, B). GO and 
KEGG enrichment analyses were conducted using R’s cluster Profiler 
software package. The most significant GO items of biological processes 
(BPs), cellular components (CCs), and molecular functions (MFs) were 
regulation of hemopoiesis, extracellular matrix, and receptor ligand 
activity, respectively (Fig. 2C). Cytokine-cytokine receptor interaction 

Fig. 1. The flow chart of whole analysis.  
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was the most critical KEGG pathway, in which most DEGs were enriched 
(Fig. 2D). Similarly, 468 DEEs were identified, and their expression level 
was demonstrated in the heatmap and volcano plot (Fig. 3A, B). 

Univariate cox regression and multivariate cox model construction 

A total of 468 DEEs were screened by univariate Cox regression 
analysis, and 72 prognosis-related DEEs were identified. In addition, 
with the aim of avoiding over-fitness, the Lasso regression was per-
formed to determine lambda coefficients of the model (Fig. 3C, D). 18 
key prognosis-related DEEs were integrated into multivariate Cox 
regression, which were critical for model fitting according to p-value <
0.05, which were shown in the forest map (Fig. 3E). Samples were 
divided into low- and high-risk groups according to the median of risk 
score. And the risk scatter plot (Fig. 4A), risks line plot (Fig. 4B) showed 
the distribution of risk score among all OS patients. Kaplan–Meier sur-
vival curve showed risk score for overall survival had prognostic value 
for OS patients with the survival time of the high-risk group was 
significantly shorter than that of the low-risk group (Fig. 4C, p < 0.001). 
Besides, the ROC curve illustrated that the area under curve (AUC) in the 
prognostic model was 0.896, which validated that the risk score model 
exhibited a stable performance (Fig. 4D). Furthermore, through prin-
cipal component analysis (PCA) of low-risk and high-risk groups based 
on respective median risk score, it also showed that OS patients in 
different risk groups were clearly distributed into two directions 
(Fig. 4E). Then, we conducted univariate Cox regression analyses and 
multivariate Cox regression analyses to determine whether clinical pa-
rameters (gender, age, metastasis, and primary site) and the risk score 
were independent prognostic factors of OS patients’ overall survival. 
Finally, the univariate (HR = 90.635, 95%CI (16.334-502.922), p <

0.001) (Fig. 4F) and multivariate (HR = 1.006, 95%CI (1.003–1.009), p 
< 0.001) (Fig. 4G) Cox regression analyses showed the risk score was an 
independent prognostic predictor for OS patients. The data also showed 
that metastasis was an independent prognostic predictor in the univar-
iate (HR = 4.613, 95%CI (2.020–10.537), p < 0.001) (Fig. 4F) and 
multivariate (HR = 3.580, 95%CI (1.411–9.084), p = 0.007) (Fig. 4G) 
Cox regression analyses. 

Clinical correlation analysis and the immune responses 

Here, we compared the differences between expression of prognosis- 
related DEEs and clinical pathologic characteristics. The boxplots illus-
trated the clinical correlation analysis of 18 prognosis-related DEEs 
among first event (Fig. 5A) and metastasis (Fig. 5B). The expression of 
ACKR3, LINC00598, BMP8B, and TDRP for the censored OS patients 
were significantly lower than those for the dead patients, whereas the 
expression of UBB, AMACR, CDK6, CTNNBIP1, and CD8A was signifi-
cantly higher in censored patients compared to dead patients (all p <
0.05). The same phenomenon was identified for metastasis. The 
expression of PDPN, RPS15A for the non-metastatic OS patients were 
significantly lower than those for the metastatic patients, whereas the 
expression of AMACR, CDK6, and CTNNBIP1 was significantly higher in 
non-metastatic OS patients compared to metastatic OS patients (all p <
0.05). 

Further, the relationship between the expression of prognosis-related 
DEEs and tumor-infiltrating immunocytes was explored, and a summary 
of the cell compositions in OS patients and normal samples was depicted 
using CIBERSORT algorithm. The proportions of 8 types of immune cells 
in OS patients and normal samples were illustrated in the bar plot, 
encompassing B cells, cancer associated fibroblasts, CD4+ T cells, CD8+

Fig. 2. The differential analysis of all genes. The heatmap plot (A), volcano plot (B), Gene Oncology (GO) enrichment analysis (C) and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) enrichment analysis (D). 
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Fig. 3. The differential analysis of eRNAs. The heatmap plot (A), volcano plot (B), Lasso regression (C-D) and univariate Cox regression analysis (E).  
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T cells, endothelial cells, macrophages, NK cells, and uncharacterized 
cells (Fig. 5C). Compared with normal samples, infiltration degrees of 
endothelial cells (p < 0.05) were increased in OS patients, which sug-
gested that these immune cells had a significantly prognostic value for 
OS (Fig. 5D). Moreover, immune cells were co-analyzed (Fig. 5E). 
Importantly, infiltration of cancer associated fibroblasts was negatively 
related to that of CD4+ T cells (R = -0.73), whereas infiltration of 
macrophages was positively correlated with infiltration of endothelial 
cells (R = 0.70). 

Identification of the prognosis-related DEEs co-expressed DETFs, 
pathways, and DETGs 

To explore DETFs, the edge R algorithm was performed. A total of 51 
DETFs was selected, the expression of which was illustrated in the 
heatmap (Fig. 6A) and volcano plot (Fig. 6B). TFAP2A, BATF, CBX2, 
IRF5, LYL1, CEBPA, CBX8 and HOXB7 were lowly-expressed in normal 
tissue, as compared with the tumor samples. Similarly, differentially 
expressed hallmark gene sets were also filtered by the edge R algorithm, 
and a total of 27 differentially expressed hallmark gene sets were 
identified, which were shown in the heatmap (Fig. 6C) and volcano plot 
(Fig. 6D). What’ more, the correlation of GSVA score of hallmark gene 
sets and OS was investigated (Fig. 6E). Additionally, immune cells and 
immune functions were explored by ssGSEA to identify the correlations 
between the OS patients and normal samples with tumor immune 
characteristics. Specifically, 29 immune cells or immune functions were 
incorporated to deconvolve the abundance of diverse immune responses 
in OS patients and normal samples (Fig. 5F). Eventually, 63 DETGs were 
screened by the edge R algorithm, which were shown in the heatmap 
plot (Fig. 6G) and volcano plot (Fig. 6H). 

The heatmap illustrated the expression of prognosis-related DEEs, 

DETFs, and DETGs in Fig. 7A. A total of six different dimension regu-
latory network was constructed based on 4 prognosis-related DEEs, 27 
DETFs, 25 DETGs, 8 immune cells by CIBERSORT, 28 immune gene sets 
by ssGSEA, and 42 hallmark pathways by GSVA, which illustrated the 
potential regulatory relationships among these factors (Fig. 7B). Inter-
estingly, four key prognosis-related DEEs (CD8A, CDK6, FAAH, and 
SAMD4A) exhibited significant co-expression patterns in the six 
different dimension regulatory network. It indicated that these 
prognosis-related DEEs may play important roles in the tumorigenesis of 
OS. Furthermore, the interaction coefficients among these components 
were shown by the heatmap using Pearson correlation analysis (Fig. 7C). 
Specifically, our data showed that, CD8B (R = 0.789, p < 0.001) was the 
significant eRNA for CD8A. CEBPA was the significant TF (R = 0.633, p 
< 0.001) (yellow arrow) for CD8A, CD3E was the significant target gene 
(R = 0.913, p < 0.001) (pink hexagon) for CD8A, CD8+ T cell was the 
significant immune cell type (R = 0.643, p < 0.001) (green triangle) for 
CD8A by CIBERSORT, CD8+ T cell was the significant immune cell type 
(R = 0.969, p < 0.001) (violet ellipse) for CD8A by ssGSEA, and allograft 
rejection was the significant hallmark gene set (R = 0.733, p < 0.001) 
(blue rectangle) for CD8A. These factors had the most significant co- 
expression relationships within the regulatory network, which may 
play crucial roles in the tumorigenesis of OS. 

Prognosis-related DEEs predict clinical outcomes of OS patients 

Based on the publicly available OS ncRNA datasets, we strikingly 
observed that our candidate prognosis-related DEEs can robustly predict 
the prognosis of patients (Fig. 7D). Importantly, upregulation of CD3D 
(p = 0.009), CDK6 (p = 0.32), and SAMD4A (p = 0.009) was associated 
with worse prognosis of OS patients, whereas upregulation of CD8A (p 
< 0.001), CD8B (p = 0.040), and FAAH (p < 0.001) was correlated with 

Fig. 4. The multivariate Cox regression analysis of prognosis eRNA. The risk scater plot (A), risk line plot (B), Kaplan-Meier curve (C), ROC curve (D), risk score PCA 
(E), univariate (F) and multivariate (G) Cox regression analysis. 
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better prognosis of OS patients. 

Identification of candidate small molecule inhibitors 

To explore the potential inhibitors of prognosis-related DEEs as well 
as their co-factors in OS, the CMap analysis (Fig. 7E) was applied, and 
GW-8510 was the most significant inhibitor (mean = 0.670, p < 0.001). 

ATAC-seq and ChIP-seq validation 

Then, ATAC-seq assay was performed to depict the accessible chro-
matin sites for CD8A, CDK6, FAAH and SAMD4A in OS tissue, indicating 

the strong chromatin accessibility of these key prognosis-related DEEs 
(Fig. 8A). Additionally, the accessible chromatin sites for these 
prognosis-related DEEs in the pan-cancer level were also demonstrated 
based on ATAC-seq (Fig. S13). Furthermore, the UCSC Genome Browser 
tracks showed significant enrichment of H3K27ac on multiple loci in the 
prognosis-related DEEs identified in the present study (CD8A, CDK6, 
FAAH, and SAMD4A) (Fig. 8B). 

Multidimensional validation 

Serval online databases were utilized to validate the expression level 
and the prognostic value of key biomarkers identified in our study. By 

Fig. 5. Analysis for clinical correlation and co-expression. The correlation with first event (A) and disease at diagnosis (B). the barplot (C), boxplot (D) and co- 
analysis (E) of CIBESORT. 
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Fig. 6. The differential analysis of transcription factors, target genes, immune cells and hallmark gene sets. The heatmap plot (A) and volcano plot (B) of tran-
scription factors. The heatmap plot (C) and volcano plot (D) of hallmark gene sets. The GSVA analysis (E) of hallmark gene sets. The heatmap plot (F) immune cells in 
ssGSEA. The heatmap plot (G) and volcano plot (H) of target genes. 
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utilizing GeneCards database (www.genecards.org/), we identified that 
the HLA-DMA and HLA-DMB were the top two marker genes of allograft 
rejection (hallmark gene set). Besides, the CellmMarker was applied to 
determine the cell markers of CD8+ T cells, and CD8A, CD3E, and CD3D 
were selected. The results were illustrated in Figs. S1–S11. The corre-
lations among CEBPA, CD8A, CD3E, CD8B, CD3D, HLA-DMA, and HLA- 
DMB were shown in Table S1, the expression level was summarized in 
Table S2, and their prognostic value was summarized in Table S3. 
CEBPA (p = 0.029, figure S1H; p = 0.026, figure S4A; p < 0.001, figure 
S5F; p < 0.001, figure S6A), CD8A (p = 0.026, figure S4B), CD3E (p =
0.037, figure S1J; p = 0.012, figure S4C), CD8B (p = 0.030, figure S1K; p 
= 0.002, figure S4D), CD3D (p < 0.001, figure S4E), HLA-DMA (p =
0.031, figure S1M; p = 0.029, figure S4F; p = 0.033, figure S6F), HLA- 
DMB (p = 0.016, figure S1N; p = 0.033, figure S6G), and integrated 
genes (p < 0.001, figure S5M) had significant prognostic value. We 
strikingly identified that these key eRNAs can robustly predict the 
prognosis of OS patients (Fig. 4B). 

Moreover, the ChIP-seq validation were performed based on the 

Cistrome database, and peaks of binding domain between CEBPA 
(chr6:52003572-52426257) and CD8A (chr2:86,784,611-86,808,396) 
were showed in the Fig. S12. And targeted drugs for CD8A were pre-
dicted based on eRic database and summarized in Table S4. 

Single-cell RNA-seq transcriptome analysis 

Unsupervised clustering clearly identified 7 cell clusters based on 
tumor samples from 6 OS patients, including B cell, cancer associated 
fibroblast (CAF), endothelial cell, myeloid cell, NK/T cell, OS cell, and 
osteoclast (Fig. 9A). The average cell number and proportions of 7 cell 
clusters diverse well among the 6 OS patients (Fig. 9B). Furthermore, the 
top highly expressed gene markers for each cell cluster were determined 
by comparing the expression profile of the target cluster with the rest of 
cells based on non-parametric Wilcoxon Rank Sum test (p < 0.01 and FC 
> 2). Fig. 9D illustrated the up-regulated or down-regulated genes in the 
7 cell clusters. The dot plots showed the proportion of cells expressing 
LYZ (cancer marker) [47], CD3D (T cell marker) [48], ALPL (bone 

Fig. 7. Construction of regulatory network for OS tumorigenesis. The heatmap plot (A) of key genes and gene sets in the network. The heatmap plot (B) of prognosis- 
related DEEs, DETFs, DETGs, immune cells, and gene sets in the network by Pearson correlation analysis. The six different dimension regulatory network for OS 
tumorigenesis (C), and blue rectangles represent hallmark gene sets, violet ellipses represent immune cells in ssGSEA, pink hexagons represent target genes, green 
triangles represent immune cells in CIBESORT, yellow arrows represent transcription factors, and red diamonds represent eRNAs. Evaluation of the clinical relevance 
of prognosis-related DEEs (D). The cMAP analysis (E) for osteosarcoma. 
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remodeling indicator or marker of osteoblast activity) [49], and ACP5 
(progression and metastasis-related oncogene) [50] and their scaled 
relative expression level in 7 cell clusters (Fig. 10A). Specifically, LYZ, 
ALPL, and ACP5 was highly expressed in OS cell clusters, indicating 
highly malignant behaviors and osteogenic activities of these tumor 
cells. As demonstrated in the top variable genes, specifically OS cell 
clusters expressed high levels of stemness-related gene markers (CD24, 
CD44, and MKI67) [51–53] (Fig. 10B). The expression profiling of 
prognosis-related DEEs in distinct cell subclusters were presented 
(Fig. 10B). As demonstrated in the feature plots, specifically NK/T cell 
clusters expressed high levels of CD3D, CD3E, CD8A, CD8B, while CAF 
cluster expressed high levels of SAMD4A (Fig. 10B). Additionally, 
myeloid cell clusters exhibited high expression of HLA-DMA and 
HLA-DMB, which were the representative genes involved in our candi-
date DEE-associated pathway (allograft rejection) (Fig. 10B). All these 
findings showed that our candidate prognosis-related DEEs and their 
cofactors were extensively expressed in the immune microenvironment 
of OS, which were potential targets for the treatment of OS. Cell cycle 
distribution of the 7 cell clusters was illustrated in the UMAP plot 
(Fig. 10C). OS cells were mainly in G2 phase and S phase. The 
ligand-receptor plot showed ligand-receptor interactions across these 
cell clusters (Fig. 10D). It showed that OS cells and CAF occupied the 
cellular communication center and mostly sent out signals to other cell 
clusters and even to themselves, whereas endothelial cells and osteo-
clasts turned more role on receptors. 6 genes (ligands: COL1A1, 
COL1A2, SPP1; receptors: ITGA1, ITGA5, and CD36) showed the most 
significant ligand-receptor function on cellular communication, which 
were potential targets for tumor treatment. 

Discussion 

OS is a rare malignant disease that occurs mainly in adolescents, and 
the pain, the pathological fracture decreases the life quality [1]. What’ 
worse, the prognosis gets poor as the consequence of distant metastasis 
[1]. However, the clear pathogenic mechanism remains unclear, more 
signatures and targets are required to early diagnose, precise therapy 
target and predict the prognosis. eRNAs are generated during the tran-
scription process of active enhancer [10]. Importantly, expression 

patterns of eRNAs are specific to cancer types in human cancers [54]. In 
prostate cancer, multiple eRNAs was validated to be differentially 
expressed [55]. In breast cancer cell lines, transcription of eRNAs 
induced by estrogen was significantly upregulated [56]. Nevertheless, a 
recent study indicated that expression of eRNAs was significantly 
inhibited in throat cancer [10]. Upregulation of oncogenes or oncogenic 
pathways was related to the aberrant generation of eRNAs in various 
human cancers, and eRNAs may play a broad role in the pathophysi-
ology of OS. 

Based on edge R algorithm, 3981 DEGs, 468 DEEs, 51 DETFs, and 27 
differentially expressed hallmark gene sets were identified. A total of 
468 DEEs were screened by univariate Cox regression analysis, and 72 
prognosis-related DEEs were identified. After the LASSO regression, 18 
key prognosis-related DEEs were integrated into multivariate Cox 
regression. In addition, the Kaplan-Meier curve (p < 0.001) and the ROC 
curve (AUC = 0.896) were utilized to access the accuracy of risk score 
and detect the discrimination of the multivariate model. Additionally, 
the Pearson analysis was performed to plot the six different dimension 
regulatory network, which included 4 prognosis-related DEEs, 27 
DETFs, 25 DETGs, 8 immune cells by CIBERSORT, 28 immune gene sets 
by ssGSEA, and 42 hallmark pathways by GSVA. CD8A, CDK6, FAAH 
and SAMD4A were the most significant prognosis-related DEEs, which 
occupied the communication center of the regulatory network. CD8B (R 
= 0.789, p < 0.001), CEBPA (R = 0.633, p < 0.001), CD3E (R = 0.913, p 
< 0.001), CD8+ T cell (R = 0.643, p < 0.001; R = 0.969, p < 0.001) and 
allograft rejection (R = 0.733, p < 0.001) were the significant eRNA, TF, 
target gene, immune cell, and hallmark gene sets for CD8A, respectively. 
Based on the CMap analysis, GW-8510 was the most significant inhibitor 
for OS (mean = 0.670, p < 0.001). Then, ATAC-seq was performed to 
depict the accessible chromatin sites for CD8A, CDK6, FAAH, and 
SAMD4A, which demonstrated the strong chromatin accessibility of 
these key prognosis-related DEEs. Further, external validation based on 
multidimensional online databases was performed to verify our key 
findings, which showed the identified biomarkers had important prog-
nostic value and could be used as potential reference markers. Eventu-
ally, mapping the single-cell transcriptomic landscape of OS, we 
explored the intercellular and intracellular communications in detail. It 
showed that our candidate prognosis-related DEEs played a critical role 

Fig. 8. The ChIP–seq validation for CD8A, CDK6, FAAH, and SAMD4A in OS tissue (A). The ATAC-seq validation for CD8A, CDK6, FAAH, and SAMD4A in OS 
tissue (B). 
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in the immune microenvironment of OS, which could be used as 
important reference markers for future research. It indicated highly 
malignant features and osteogenic activities of OS cells, as well as the 
extensive cellular communications between OS cells and other cell 

types, plenty of which were well worth further researches. 
Tumor microenvironment plays an important role in the tumor 

genesis of OS, and T cells and macrophages actually showed the most 
abundant infiltration in OS [57]. Activated osteoclast cells destroy the 

Fig. 9. Single-cell transcriptomic analysis reveals cellular heterogeneity in OS tissue. (A) The uniform manifold approximation and projection for dimension 
reduction (UMAP) plot of the 17 cell clusters and 7 identified main cell types in tumor tissue collected from 6 OS patients. (B) Average number and cell proportion of 
7 cell types in tumor tissue collected from 6 OS patients. (C) Gene co-expression of top 5 genes among the 7 cell types, where the colors from red to blue represented 
changes from high expression to low expression. (D) Significantly up- or down-regulated genes in the 17 cell clusters. 
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Fig. 10. Subpopulation analysis and intercellular communication analysis. 
(A) The proportion of classical marker genes in all cell types. (B) Feature plots of stemness-related biomarkers and our candidate prognosis-related DEEs in all cell 
types. (C) The cell cycle distribution and the cell cycle score in 7 cell types. (D) The ligand-receptor pairs among 7 cell types. 
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normal cells and promotes the genesis of OS in early stage, and then they 
disturb the immune response mediated by T cells [57]. Tumor cells have 
an impact on the immune infiltrating environment by recruiting and 
interacting with immune cells, such as PD-L1 on OS cells that can bind 
with the PD-1/B7-1 in T cells, and then decreases T cell proliferation and 
increases apoptosis [57]. The ratio of CD8+ T cells in the relapse and 
metastasis OS was lower than primary OS in the single cell RNA-seq 
[58]. 

CEBPA encodes a transcription factor named CCAAT enhancer 
binding protein alpha, it is not only critical in the differentiation of 
myeloid lineage, but also can regulate the lineage commitment and 
differentiation of osteoclast cells [59]. Mesenchymal cells can differen-
tiate into osteoblasts and adipocytes, the abnormal differentiation of 
which relates to the OS, and CEBPA plays a role in the adipogenesis [1, 
60]. Some studies showed that lncRNA CEBPA-AS1 can regulate NCOR2, 
and then affected the Notch signal pathway and cell apoptosis [61]. 

CD8A and CD3E encode the cell markers of CD8+ T cells, and they 
were detected in the tumor microenvironment [62]. CD8+ T cells 
mediate the anti-tumor effect, and in animal experiments, the decrease 
of CD8+ T cells was related to the poor survival in OS [63]. Then we 
proposed that the disfunction of CD8A and CD3E may affect the immune 
environment for tumorigenesis, which was associated with clinical 
characteristics, the immune response, and prognosis of OS patients. 

Although there was no study reporting the interaction between 
CEBPA and CD8A, as well as CD8A and CD3E, we proposed that CEBPA 
may promote the expression of CD8A, and CD8A might target on CD3E 
as an eRNA, thereby promoting the transcription of CD3E. 

Because the allograft rejection aggregates a variety of genes related 
to allograft rejection, it refers to an immune cell-mediated biological 
process. HLA-DMA and HLA-DMB are related to the allograft rejection 
[64]. The tumor microenvironment of OS is related to immune infil-
tration. Besides, tumor cells can be the antigen presenting cells to pre-
sent major histocompatibility complex (MHC) class II-restricted 
endogenous antigens, and leads to abnormal activated T cells [65]. 
Besides, HLA-DMA and HLA-DMB were the main components of the 
MHC II, HLA-DMB was positively related to the CD8+ T cells and may 
improve the prognosis in patients with ovarian cancer [66]. However, 
HLA-DMB was defined as an independent prognosis factor for OS [67]. 
And HLA-DMB was identified as a latent susceptibility gene for Kaposi’s 
sarcoma [68]. 

We proposed that tumor cells recruited CD8+ T cells and presented 
the normal components of the normal cells to CD8+ T cells, and then 
depressed the activation of CD8+ T cells to escape the immune system. 

GW-8510 is an inhibitor of Cdk2 (cyclin kinase 2) [69], which reg-
ulates the cell cycle. And it can be applied to the therapy of non-small 
cell lung cancer and colorectal cancer [70,71]. 

In summary, the four prognosis-related DEEs were identified to have 
independent prognostic significance for tumorigenesis of OS. CEBPA 
may regulate CD8A, thereby activating the transcription of CD3E, which 
could affect the allograft rejection based on tumor infiltrating CD8+ T 
cells. However, some limitations existed in our analysis, such as the bias 
of data selection, lack of sample size and sufficient demographic infor-
mation to perform the survival analysis, and the exploration for mech-
anism is required. Therefore, a series of multidimensional validation was 
utilized. And in the future, experiments in vivo and in vitro to validate the 
indirect and direct mechanism like gain/loss function, Co-IP will be 
applied. 

Conclusion 

Based on the regulatory network for tumorigenesis of OS-related 
eRNAs, key eRNAs and their co-factors were identified to construct a 
prognostic model for OS patients. Our findings provided bioinformatics 
information in exploring the molecular mechanisms of the tumorigen-
esis of OS. We speculated that CEBPA (DETF) may regulate CD8A (DEE), 
thereby promoting the transcription of CD3E, which may affect allograft 

rejection based on CD8+ T cells. 
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