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Objective: The present study was designed to identify potential diagnostic markers for

acute myocardial infarction (AMI) and determine the significance of immune cell infiltration

in this pathology.

Methods: Two publicly available gene expression profiles (GSE66360 and GSE48060

datasets) from human AMI and control samples were downloaded from the GEO

database. Differentially expressed genes (DEGs) were screened between 80 AMI and 71

control samples. The LASSO regression model and support vector machine recursive

feature elimination (SVM-RFE) analysis were performed to identify candidate biomarkers.

The area under the receiver operating characteristic curve (AUC) value was obtained and

used to evaluate discriminatory ability. The expression level and diagnostic value of the

biomarkers in AMI were further validated in the GSE60993 dataset (17 AMI patients and

7 controls). The compositional patterns of the 22 types of immune cell fraction in AMI

were estimated based on the merged cohorts using CIBERSORT.

Results: A total of 27 genes were identified. The identified DEGs were mainly

involved in carbohydrate binding, Kawasaki disease, atherosclerosis, and arteriosclerotic

cardiovascular disease. Gene sets related to atherosclerosis signaling, primary

immunodeficiency, IL-17, and TNF signaling pathways were differentially activated in

AMI compared with the control. IL1R2, IRAK3, and THBD were identified as diagnostic

markers of AMI (AUC = 0.877) and validated in the GSE60993 dataset (AUC = 0.941).

Immune cell infiltration analysis revealed that IL1R2, IRAK3, and THBD were correlated

with M2 macrophages, neutrophils, monocytes, CD4+ resting memory T cells, activated

natural killer (NK) cells, and gamma delta T cells.

Conclusion: IL1R2, IRAK3, and THBD can be used as diagnostic markers of AMI,

and can provide new insights for future studies on the occurrence and the molecular

mechanisms of AMI.
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INTRODUCTION

Acute myocardial infarction (AMI) is a common event in
coronary heart disease that results from interrupted blood flow
to a certain area of the heart. It is considered one of the primary
causes of disability and death from cardiovascular disease
worldwide, and is a leading health threat in humans (1). AMI
remains the primary cause ofmorbidity andmortality worldwide,
with ∼7 million patients diagnosed with AMI each year (2,
3). AMI continues to be the primary cause of death in 2020.
Approximately half of patients who suffer from cardiovascular
diseases die from AMI (4). The rapid and accurate diagnosis
of AMI is the first step to improve the clinical management
and survival rate of AMI patients. A spectrum of biochemical
markers have been related to the incidence of AMI and are
widely used for the clinical diagnosis of AMI including the MB
isoenzyme of creatine kinase (CK-MB), lactate dehydrogenase
(LDH), cardiac myoglobin, and cardiac troponin I (cTnI) and
T (cTnT) (5, 6). However, they are insufficient for the early
detection of AMI because of limitations in sensitivity and
specificity (7). Furthermore, the well-known risk factors for AMI,
such as a history of smoking, obesity, high serum cholesterol, bad
eating habits, diabetes, and hypertension, can only predict AMI
prevention and outcomes and fall to adequately provide an acute
diagnosis (8). These results demonstrate that genetic factors also
play a vital role in the pathogenesis of AMI. In fact, AMI is a
complex and multifactorial disease that occurs as a result of the
interaction between genetic and environmental factors (9).

In recent years, microarray technology, together with

integrated bioinformatics analysis, has been performed to

identify novel genes related to various diseases that might act

as diagnostic and prognostic biological markers (10–14). For
example, the expression of FFAR2, also known as GPR43, in
AMI patients has been found to be notably lower than in the
controls, and low levels of FFAR2 expression in peripheral blood
was confirmed as an independent risk predictor for AMI, with
an odds ratio of 6.308 (15). The upregulation of the suppressor
of cytokine signaling 3 (SOCS3) gene increases the risk of AMI
by potentiating inflammatory responses (16). Moreover, research
has shown that immune cell infiltration plays an increasingly
significant role in the occurrence and development of various
diseases (11, 17–19). With regards to AMI, mast cells, M2
macrophages, and eosinophils have been demonstrated to affect
cardiac function after AMI, providing novel insights into the
significance of immune modulation in the infarcted heart (20).
However, to date, few studies have applied CIBERSORT to
explore immune cell infiltration in AMI and investigate candidate
diagnostic markers for AMI.

In this study, we downloaded two microarray datasets of AMI
from the GEO database. The two datasets were merged into a
meta-data cohort. Differentially expressed gene (DEG) analysis
was performed between the AMI and controls. Machine-learning
algorithms were used to filter and identify diagnostic biomarkers
of AMI. Candidate genes strongly related to immune infiltration
were identified and validated in another validation cohort and
were used to construct the diagnostic prediction model using
a logistic regression method. In this study, CIBERSORT was

used for the first time to quantify the proportions of immune
cells in samples of AMI and normal tissues based on their gene
expression profiling. Furthermore, we explored the relationship
between the identified biomarkers and infiltrating immune cells
to provide a basis for further research.

MATERIALS AND METHODS

Microarray Data
The series of matrix files of the GSE48060 and GSE66360 datasets
were obtained from http://www.ncbi.nlm.nih.gov/geo/, which
were both based on the GPL570 platform of Affymetrix Human
Genome U133 Plus 2.0 Array. The GSE48060 dataset included
49 AMI and 50 controls collected from circulating endothelial
cells, whereas the GSE66360 dataset included 31 AMI and 21
controls collected from the peripheral blood. The probes in each
dataset were changed into gene symbols based on their probe
annotation files. For more than one probe corresponding to the
same gene symbol, the probe average was calculated as the final
expression value of the gene. These two datasets were merged
into a metadata cohort for further integration analysis because
they have the same platform and are significant for combining
data from different datasets. Furthermore, the combat function
of the “SVA” package of R software was applied to remove the
batch effect (21). In addition, the GSE60993 dataset, collected
from peripheral blood and containing 17 AMI and 7 control
samples, was used as the validation cohort using the Illumina
HumanWG-6 v3.0 expression beadchip.

Data Processing and DEG Screening
The two datasets were merged into a metadata cohort and the
combat function of the SVA package was used to preprocess
and remove batch effects. The limma package of R (http://
www.bioconductor.org/) was used for background correction,
normalization between arrays, and differential expression
analysis between 80 AMI and 71 control samples. Samples with
an adjusted false discovery rate P < 0.05 and |log fold change
(FC)| > 1.2 were considered as the threshold points for DEGs.

Functional Enrichment Analysis
Disease ontology (DO) enrichment analyses were performed
on DEGs using the “clusterProfiler” and DOSE packages in R
(22, 23). Gene set enrichment analysis (GSEA) was used to
identify the most significant functional terms between the AMI
and control groups. The “c2.cp.kegg.v7.0.symbols.gmt” from
the Molecular Signatures Database (MSigDB) was used as the
reference gene set. A gene set was regarded as significantly
enriched if a P < 0.05 and false discovery rate <0.025.

Candidate Diagnostic Biomarker Screening
To identify significant prognostic variables, two machine-
learning algorithms were used to predict disease status. The
least absolute shrinkage and selection operator (LASSO) is a
regression analysis algorithm that uses regularization to improve
the prediction accuracy. The LASSO regression algorithm was
carried out using the “glmnet” package in R to identify the
genes significantly associated with the discrimination of AMI
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and normal samples. Support vector machine (SVM) is a
supervised machine-learning technique widely utilized for both
classification and regression. To avoid overfitting, an RFE
algorithm was employed to select the optimal genes from the
meta-data cohort (24). Therefore, to identify the set of genes
with the highest discriminative power, support vector machine
recursive feature elimination (SVM-RFE) was applied to select
the appropriate features. The overlapping genes between the two
algorithms were included and the expression levels of candidate
genes were further validated in the GSE60993 dataset.

Diagnostic Value of Feature Biomarkers in
AMI
To test the predictive value of the identified biomarkers, we
generated an ROC curve using the mRNA expression data from
80 AMI and 71 control samples. The area under the ROC
curve (AUC) value was utilized to determine the diagnostic
effectiveness in discriminating AMI from control samples and
further validated in the GSE60993 dataset.

Discovery of Immune Cell Subtypes
To quantify the relative proportions of infiltrating immune cells
from the gene expression profiles in AMI, a bioinformatics
algorithm called CIBERSORT (https://cibersortx.stanford.edu/)
was used to calculate immune cell infiltrations. The putative
abundance of immune cells was estimated using a reference
set with 22 types of immune cell subtypes (LM22) with 1,000
permutations (25). Correlation analysis and visualization of
22 types of infiltrating immune cells were performed using
the R package “corrplot.” Violin plots were drawn using the
“vioplot” package in R to visualize the differences in immune cell
infiltration between the AMI and control samples.

Correlation Analysis Between Identified
Genes and Infiltrating Immune Cells
The association of the identified gene biomarkers with the levels
of infiltrating immune cells was explored using Spearman’s rank
correlation analysis in R software. The resulting associations were
visualized using the chart technique with “ggplot2” package.

Statistical Analysis
All statistical analyses were conducted using R (version 3.6.3).
Group comparisons were undertaken for continuous variables
using Student’s t-test for normally distributed variables or
the Mann–Whitney U-test for variables with an abnormal
distribution. LASSO regression analysis was carried out using
the “glmnet” package, and the SVM algorithm was performed
using the e1071 package in R. ROC curve analysis was used to
determine the diagnostic efficacy of the diagnostic biomarkers
included. The relationship between the expression of gene
biomarkers and infiltrating immune cells was analyzed using
Spearman’s correlation. All statistical analyses were two-sided
with P < 0.05 were regarded statistically significant.

RESULTS

Identification of DEGs in AMI
Data from a total of 80 AMI and 71 control samples from two
GEO datasets (GSE66360 and GSE48060) were retrospectively
analyzed in this study. The DEGs of the metadata were analyzed
using the limma package after removing the batch effects. A
total of 27 DEGs were obtained: 25 genes were significantly
upregulated and 2 genes were significantly downregulated
(Figure 1).

Functional Correlation Analysis
DO pathway enrichment analyses were conducted to investigate
the function of DEGs. The results indicated that diseases
enriched by DEGs were mainly associated with arteriosclerotic
cardiovascular disease, atherosclerosis, lymphadenitis, and
Kawasaki disease (Figure 2A). The GSEA results demonstrated
that the enriched pathways mainly involved cytokine–cytokine
receptor interaction, atherosclerosis, IL-17 signaling pathway,
primary immunodeficiency, and TNF signaling pathways
(Figure 2B). These findings strongly suggest that the immune
response plays an essential role in AMI.

Identification and Validation of Diagnostic
Feature Biomarkers
Two different algorithms were used to screen potential
biomarkers. The DEGs were narrowed down using the LASSO
regression algorithm, resulting in the identification of 17
variables as diagnostic biomarkers for AMI (Figure 3A). A
subset of five features among the DEGs was determined using
the SVM-RFE algorithm (Figure 3B). The four overlapping
features (IL1R2, IRAK3, NR4A2, and THBD) between these two
algorithms were ultimately selected (Figure 3C). Furthermore, to
generate more accurate and reliable results, the GSE60993 dataset
was used to verify the expression levels of the four features. The
expression levels of IL1R2, IRAK3, and THBD in AMI tissue were
notably higher than those in the control group (Figures 4A–C; all
P < 0.05). However, there was no significant difference between
the two groups in terms of THBD expression (Figure 4D).
Therefore, the three identified genes were used to establish the
diagnostic model using a logistic regression algorithm in the
metadata cohort.

Diagnostic Effectiveness of Feature
Biomarkers in AMI
As shown in Figure 5A, the diagnostic ability of the three
biomarkers in discriminating AMI from the control samples
demonstrated a favorable diagnostic value, with an AUC of
0.849 (95% CI 0.781–0.902) in IL1R2, AUC of 0.845 (95% CI
0.778–0.899) in IRAK3, and AUC of 0.843 (95% CI 0.775–
0.897) in THBD. When the three genes were combined into one
variable, the diagnostic ability in terms of AUC was 0.871 (95%
CI 0.807–0.920) in the meta-data cohort. Moreover, a powerful
discrimination ability was confirmed in the GSE60993 dataset
with an AUC of 0.782 (95% CI 0.567–0.922) in IL1R2, AUC of
0.916 (95% CI 0.729–0.990) in IRAK3, and AUC of 0.765 (95%
CI 0.549–0.912) in THBD. Importantly, the diagnostic ability of
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FIGURE 1 | Differentially expressed genes between acute myocardial infarction tissue and control samples.

the three biomarkers combined yielded an AUC of 0.941 (95% CI
0.764–0.996; Figure 5B), indicating that the feature biomarkers
had a high diagnostic ability.

Immune Cell Infiltration
First, we explored the composition of immune cells in AMI
tissues vs. normal control tissues. The proportions of CD4+

resting memory T cells (P < 0.001), gamma delta T cells (P
< 0.001), M1 macrophages (P = 0.007), and resting mast cells

(P < 0.001) in AMI tissues were significantly lower than in
normal tissues. However, the proportion of monocytes (P <

0.001), activated mast cells (P < 0.001), neutrophils (P < 0.001),
and follicular helper T cells (P = 0.012) in AMI tissues was
significantly higher than that in normal tissues (Figure 6A).

The correlation of 22 types of immune cells was calculated
(Figure 6B). CD4 memory resting T cells were significantly
positively correlated with memory B cells (r = 0.23, P = 0.042),
but significantly negatively correlated with monocytes (r =
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FIGURE 2 | Functional enrichment analyses to identify potential biological processes via disease ontology and gene set enrichment analysis. (A) Disease ontology

enrichment analysis of differentially expressed genes between AMI and control samples. (B) Enrichment analyses via gene set enrichment analysis.

−0.42, P = 0.023), activated mast cells (r = −0.43, P = 0.014),
and neutrophils (r = −0.55, P < 0.001). Follicular helper T
cells were significantly positively correlated with plasma cells (r
= 0.42, P = 0.00011) and regulatory T cells (r = 0.42, P =

0.0247), but significantly negatively correlated with CD8T cells
(r = −0.31, P = 0.0051). Gamma delta T cells were significantly
positively correlated with CD8T cells (r = 0.22, P = 0.046), but
significantly negatively correlated with monocytes (r = −0.44,
P = 0.0092), activated mast cells (r = −0.44, P = 0.011), and
neutrophils (r=−0.55, P < 0.001). Monocytes were significantly
positively correlated with follicular helper T cells (r = 0.29, P
= 0.0084) and mast cell activated (r = 0.43, P = 0.016), but
significantly negatively correlated with CD8T cells (r = −0.29,
P = 0.0083), CD4 memory resting T cells (r = −0.42, P =

0.0001), and gamma delta T cells (r = −0.44, P < 0.0001). M1
macrophages were significantly positively correlated with gamma
delta T cells (r = 0.25, P = 0.027) and resting dendritic cells (r =
0.49, P = 0.0008). Resting mast cells were significantly positively
correlated with M0 macrophages (r= 0.26, P= 0.018). Activated
mast cells were significantly positively correlated with follicular
helper T cells (r = 0.31, P = 0.0042), activated NK cells (r =
0.43, P < 0.0001), monocytes (r = 0.42, P < 0.0001), and M2
macrophages (r = 0.34, P = 0.0017), but significantly negatively
correlated with CD8T cells (r=−0.23, P= 0.037), CD4memory
resting T cells (r = −0.43, P < 0.0001), gamma delta T cells (r
= −0.43, P < 0.0001), and M0 macrophages (r = −0.22, P =

0.043). Neutrophils were significantly positively correlated with
activated NK cells (r = 0.22, P = 0.045), monocytes (r = 0.34, P
= 0.0017), M2macrophages (r= 0.26, P= 0.0181), and activated
mast cells (r = 0.51, P < 0.0001), but significantly negatively
correlated with CD8T cells (r=−0.28, P= 0.011), CD4memory
resting T cells (r = −0.55, P < 0.0001), and T cells gamma delta
(r=−0.54, P < 0.0001).

Correlation Analysis Between the Three
Biomarkers and Infiltrating Immune Cells
As shown in Figure 7A, IL1R2 was positively correlated with
neutrophils (r = 0.66, P < 0.0001), activated mast cells (r =

0.55, P < 0.0001), activated NK cells (r = 0.42, P = 0.00011),
monocytes (r = 0.28, P = 0.01), M2 macrophages (r = 0.25, P =

0.027), and resting NK cells (r = 0.23, P = 0.038) and negatively
correlated with CD4 memory resting T cells (r = −0.48, P <

0.0001), and gamma delta T cells (r = −0.39, P = 0.00029).
IRAK3 was positively correlated with activated mast cells (r =
0.65, P < 0.0001), neutrophils (r= 0.62, P < 0.0001), monocytes
(r = 0.55, P < 0.0001), activated NK cells (r = 0.46, P < 0.0001),
resting NK cells (r = 0.36, P = 0.001), and M2 macrophages (r
= 0.29, P = 0.0089) and negatively correlated with CD4 memory
resting T cells (r = −0.58, P < 0.0001), gamma delta T cells (r =
−0.48, P < 0.0001), CD4 naïve T cells (r = −0.24, P = 0.027),
and memory B cells (r = −0.23, P = 0.038; Figure 7B). THBD
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FIGURE 3 | Screening process of diagnostic biomarker candidates for acute myocardial infarction diagnosis. (A) Tuning feature selection in the least absolute

shrinkage and selection operator model. (B) A plot of biomarkers selection via support vector machine-recursive feature elimination (SVM-RFE) algorithm. (C) Venn

diagram demonstrating four diagnostic markers shared by the least absolute shrinkage and selection operator and SVM-RFE algorithms.

was positively correlated with monocytes (r = 0.54, P < 0.0001),
activated mast cells (r = 0.45, P < 0.0001), activated NK cells (r
= 0.42, P < 0.0001), neutrophils (r = 0.41, P = 0.00012), resting
dendritic cells (r = 0.26, P = 0.018), and M2 macrophages (r =
0.23, P = 0.0418) and negatively correlated with CD4 memory
resting T cells (r = −0.36, P = 0.0008), gamma delta T cells (r
= −0.32, P = 0.0029), and CD8T cells (r = −0.26, P = 0.0178;
Figure 7C).

DISCUSSION

AMI remains a leading cause of mortality and disability despite

great improvements in early diagnosis and treatment over

the past decade (26). As a result, the clinical prognosis of
patients with AMI is poor. Because of the lack of an effective
early diagnosis, patients with AMI often lose the chance to
benefit from treatment, resulting in poor outcomes. Recently,
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FIGURE 4 | Validation of the expression of diagnostic biomarkers in the GSE60993 dataset. (A) IL1R2; (B) IRAK3; (C) THBD; (D) NR4A2.

immune cell infiltration has been confirmed to play a vital
role in the occurrence and development of AMI (20, 27,
28). Therefore, researchers are increasingly searching for novel
diagnostic biomarkers and exploring the compositions of AMI
immune cell infiltration, which could have a highly beneficial
impact on the clinical outcomes of AMI patients. Recently,
mRNAs and microRNAs have emerged as promising biomarkers
in cardiovascular disease in general and in AMI in particular.
For example, SOCS3 could serve as a biomarker to predict
the risk of AMI, where the elevated expression of the SOCS3
gene is an independent risk factor for AMI (16). In particular,
miR-34, which is known to modulate immunity, was found to
be significantly modulated in post-MI heart failure, providing
important information on its role in heart failure (29, 30).

However, very few studies have focused on the aberrantly
expressed gene biomarkers associated with immune infiltration
between AMI and normal tissues. Therefore, we aimed to identify
candidate diagnostic biomarkers for AMI and investigate the role
of immune cell infiltration in AMI.

To the best of our knowledge, this is the first retrospective
study to identify diagnostic biomarkers associated with immune
cell infiltration in patients with AMI by mining multiple GEO
datasets. We collected two cohorts from the GEO datasets
and conducted an integrated analysis of the data. A total of
27 DEGs were identified, including 25 upregulated genes and
2 downregulated genes. The results of enrichment analyses
indicated that diseases enriched by DEGs were mainly associated
with atherosclerosis and arteriosclerotic cardiovascular disease.
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FIGURE 5 | The receiver operating characteristic (ROC) curve of the diagnostic effectiveness of the three diagnostic markers. (A) ROC curve of IL1R2, IRAK3, and

THBD after fitting to one variable in the metadata cohort; (B) ROC curve of IL1R2, IRAK3, and THBD after fitting to one variable in the GSE60993 dataset.

The GSEA results demonstrated that the enriched pathways
generally involved inflammation and immune response
pathways, such as cytokine–cytokine receptor interaction,
atherosclerosis, and TNF signaling. These findings are in general
agreement with the previous finding that an inflammatory
response involving leukocytes participates in the pathogenesis
of AMI (31). In fact, AMI is mainly caused by atherosclerosis
and is regarded as a chronic inflammatory disorder (32). A
substantial amount of inflammatory responses were induced
during the acute phase of cardiac injury, caused by an abrupt
cessation of blood flow, resulting in MI. The tumor necrosis
factor (TNF) signaling pathway participates in inflammatory cell
accumulation, platelet aggregation, vulnerable plaque formation,
cardiomyocyte apoptosis, and poor remodeling after AMI (33).
Cytokines, such as TNF and interleukin-8, have been confirmed
to be involved in cell differentiation and inflammatory response
via binding to specific receptors on the cell surface during the
development of AMI (34). This evidence is consistent with our
results, confirming that the findings in the present study are
accurate, as well as demonstrating that the immune response
plays a vital role in AMI. The significance of the immune system
for cardiac repair after AMI is undeniable. Perhaps the most
diverse and complex reaction after AMI is the immune response,
which has been confirmed to influence various repair processes.
Thus, a precise control over various types of immune cells is
needed to achieve a safe and effective treatment (35). Therefore,
the identification of novel biomarkers of AMI correlated with the
magnitude of immune cell infiltration by bioinformatics analysis
will contribute to its treatment.

Based on two machine-learning algorithms, three diagnostic
markers were identified. Interleukin-1 (IL-1) is a major

pro-inflammatory cytokine produced by smooth muscle cells,
endothelial cells, and macrophages, which can stimulate the
expression of genes related to inflammation and immunity.
Interleukin-1 receptor type 2 (IL1R2), a cytokine receptor that
belongs to the IL-1 receptor family, has been reported to serve
as a critical mediator involved in many cytokines induced by
immune and inflammatory responses (36). IL1R2 gene can
control cell metabolism, as well as immune response induced by
many cytokines (37). IL-1-mediated inflammation contributes to
the pathology of many diseases including systolic heart failure,
and IL-1R2 has been implicated in atherosclerosis (38). The
aforementioned evidence suggests that IL1R2 plays a key role
in AMI. Interleukin 1 receptor associated kinase 3 (IRAK3),
which encodes a member of the IL-1 receptor-associated kinase
protein family, functions as a negative regulator of Toll-like
receptor signaling and participates in innate host defense and
in the control of adaptive immune responses (39). Evidence in
a mouse model of AMI demonstrated that IRAK3 gene silencing
could minimize AMI damage, indicated by a reduced infarct area
and collagen content (40). A mutation in the thrombomodulin
(THBD) gene is the main cause of thromboembolic disease.
AMI is typically precipitated by thrombosis superimposed on a
ruptured coronary plaque. Therefore, we believe that THBDmay
play a vital role in the development of AMI.

The types of immune cell infiltration in AMI and normal
samples were assessed using CIBERSOTR. As a result, a variety
of immune cell subtypes were found to be closely involved in
important biological processes of AMI. An increased infiltration
of monocytes, activated mast cells, neutrophils, and T follicular
helper cells, and a decreased infiltration of CD4+ resting memory
T cells, gamma delta T cells, M1 macrophages, and resting mast
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FIGURE 6 | Distribution and visualization of immune cell infiltration. (A) Comparison of 22 immune cell subtypes between acute myocardial infarction tissues and

normal tissues. Blue and red colors represent normal and acute myocardial infarction samples, respectively. (B) Correlation matrix of all 22 immune cell subtype

compositions. Both horizontal and vertical axes demonstrate immune cell subtypes. Immune cell subtype compositions (higher, lower, and same correlation levels are

displayed in red, blue, and white, respectively).
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FIGURE 7 | Correlation between IL1R2 (A), IRAK3 (B), THBD (C), and

infiltrating immune cells in acute myocardial infarction.

cells were found to be potentially related to the occurrence and
development of AMI. Furthermore, by performing correlation
analysis between IL1R2, IRAK3, THBD, and immune cells,
IL1R2, IRAK3, and THBD were all found to be correlated
with neutrophils, monocytes, M2 macrophages, CD4+ resting
memory T cells, gamma delta T cells, and activated NK cells.
In fact, inflammatory and immune circulatory cells, such as
neutrophils, lymphocytes, and platelets, have previously been
shown to play an important role in the progression of heart
disease (41, 42). The innate immune system begins immediately
on the onset of necrotic cell death accompanied by intense
sterile inflammation and the MI of a number of immune cell
subtypes including monocytes and neutrophils during the first
few days after AMI (28). Neutrophils can infiltrate the infarcted
area, subsequently mediating the injury of infarcted tissues by
releasing reactive oxygen species and matrix-degrading enzymes
(43). CD4+ and CD8+ T cells, regulatory T cells, and NK T cells
can infiltrate the infarcted myocardium during the proliferative
phase of repair and facilitate the transition toward maturation.
They may be motivated by cardiac autoantigens and limit
adverse ventricular remodeling by enhancing wound healing,
inflammation resolution, and scar development via collagen
matrix formation (43). Furthermore, the therapeutic activation of
regulatory T cells may well be an encouraging therapy for AMI to
promote cardiac repair and limit adverse ventricular remodeling
(44). The substantial evidence mentioned earlier together with
our present findings have demonstrated that several types of
infiltrating immune cells play vital roles in AMI and should be
the focus of future investigations.

The limitations of this study should be acknowledged. First,
the study was retrospective; thus, important clinical information
was not available. Second, the number of cases in the GSE60993
validation cohort was low, which should be acknowledged as a
limitation. In addition, the biomarker profiles in the blood and
the immune cell profile were obtained from the two datasets,
and their reproducibility should be further validated. Last, the
functions of three biomarkers and immune cell infiltration in
AMI were inferred by bioinformatics analysis, and prospective
studies with larger sample sizes should be conducted to validate
our conclusions.

CONCLUSION

In summary, IL1R2, IRAK3, and THBD were identified as
diagnostic biomarkers of AMI. Neutrophils, monocytes, M2
macrophages, CD4+ restingmemory T cells, gamma delta T cells,
and activated NK cells may be involved in the development of
AMI. These immune cells have the potential to be developed as
targets of immunotherapy in patients with AMI.
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