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Abstract: As a typical two-dimensional layered metal sulfide, MoS2 has a high theoretical capacity
and large layer spacing, which is beneficial for ion transport. Herein, a facile polymerization method
is employed to synthesize polypyrrole (PPy) nanotubes, followed by a hydrothermal method to obtain
flower-rod-shaped MoS2/PPy (FR-MoS2/PPy) composites. The FR-MoS2/PPy achieves outstanding
electrochemical performance as a sodium-ion battery anode. After 60 cycles under 100 mA g−1, the
FR-MoS2/PPy can maintain a capacity of 431.9 mAh g−1. As for rate performance, when the current
densities range from 0.1 to 2 A g−1, the capacities only reduce from 489.7 to 363.2 mAh g−1. The
excellent performance comes from a high specific surface area provided by the unique structure
and the synergistic effect between the components. Additionally, the introduction of conductive
PPy improves the conductivity of the material and the internal hollow structure relieves the volume
expansion. In addition, kinetic calculations show that the composite material has a high sodium-ion
transmission rate, and the external pseudocapacitance behavior can also significantly improve its
electrochemical performance. This method provides a new idea for the development of advanced
high-capacity anode materials for sodium-ion batteries.

Keywords: metal sulfide; PPy; pseudocapacitive; sodium-ion battery; anode material

1. Introduction

With the continuous development of the commercialization of lithium-ion batteries,
the scarce lithium resources on Earth can no longer meet the increasing demand for energy
storage in the future; therefore, sodium-ion batteries have come into being [1–3]. Sodium
belongs to the same group as lithium, thereby having many properties in common with
lithium. However, the larger radius of Na+ compared to Li+ can easily lead to the acceler-
ated crushing of electrode materials in the process of sodiation/desodiation [4,5]. Therefore,
the development of suitable anode materials is particularly important.

Recently, two-dimensional layered metal chalcogenides have attracted extensive atten-
tion. Park et al. synthesized a variety of metal sulfides/selenides and achieved excellent
performance in sodium-ion batteries [6–8]. Metal sulfides have good conductivity and large
layer spacing, so they possess high theoretical capacities [9–11]. In addition, layered metal
sulfides have unique structural advantages, namely a sandwich-like structure composed of
sulfur and metal atoms (M-S-M); the layers are connected by covalent bonds, while each
structure is connected by van der Waals force. This kind of structure can ensure rapid
sodiation/desodiation [12,13]. Among them, MoS2 has a larger interlayer spacing (0.62 nm)
compared to graphite, which is beneficial to accelerating kinetic processes. Li et al. [14]
prepared flower-like MoS2, which showed remarkable performance in lithium-ion batter-
ies. Kumar et al. [15] explored the binder effect on electrochemical capacity; the obtained
MoS2 microflower presented 595 mAh g−1 under a current density of 50 mA g−1 with a

Nanomaterials 2022, 12, 2006. https://doi.org/10.3390/nano12122006 https://www.mdpi.com/journal/nanomaterials

https://doi.org/10.3390/nano12122006
https://doi.org/10.3390/nano12122006
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com
https://doi.org/10.3390/nano12122006
https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com/article/10.3390/nano12122006?type=check_update&version=1


Nanomaterials 2022, 12, 2006 2 of 12

Na-alginate binder. Yao et al. [16] synthesized grain-like MoS2 particulates by sulfuring
MoO3; the unique structure could ease volume expansion. Although metal sulfide has its
own advantages, there are still factors affecting battery capacity and cycle life, such as its
low intrinsic conductivity, repeated electrochemical processes which lead to material struc-
ture crushing, formation of a solid electrolyte interface (SEI membrane) causing internal
resistance, volume expansion, and so on. In order to solve these problems, researchers have
obtained metal sulfide anode materials with good electrochemical properties by making
materials at nanometer scale, compounding them with carbon, and designing the spatial
structures of these materials [17–21]. Liu et al. [22] designed a type of MoS2 composite ma-
terial wrapped in nitrogen-doped 3D hollow carbon framework pores, which can improve
the stability of the structure and expose more active sites, such that it showed an excellent
electrochemical performance of 413.3 mA h g−1 after 100 cycles at 0.1 A g−1. Wu et al. [23]
synthesized Sn/MoS2@C double-walled hollow nanospheres; this hierarchical structure
greatly increased the specific surface area and internal space of the composite materials,
which could greatly alleviate the volume expansion of the materials during the charge
and discharge processes, such that the composite exhibits excellent long-cycle stability in
sodium-ion batteries and still has a capacity of approximately 432 mAh g−1 after 400 cycles
at 1 A g−1. Therefore, the structural stability of MoS2 can be greatly improved through
compounding, and the electrochemical performance can be enhanced.

Polypyrrole (PPy) has the advantages of high conductivity, a stable voltage window,
environmental friendliness, low toxicity, good thermal stability, and excellent mechanical
elasticity [24,25]. It could prevent oxidation of the electrode surface, build a conductive
channel in the active electrode materials, and offer reversible redox reactions in the elec-
trochemical processes, thereby attracting wild attention in electrochemical energy storage
devices [26–30]. Composite materials of MoS2 and PPy have been most commonly used in
supercapacitors. Tian et al. [31] used a simple method to guide PPy into an ordered molec-
ular structure by in situ forming of MoS2 nanosheets on a 3D PPy frame, presenting huge
application potential in supercapacitors. Hao et al. [32] prepared MoS2 nanosheets/PPy
composites which were deposited on reduced graphene oxide (rGO) through a one-step
hydrothermal method. Together, rGO and PPy could effectively improve the conductivity
of MoS2; therefore, the composite material has excellent cycle stability and high energy den-
sity. In addition, Wang et al. [33] prepared CNT/MoS2@PPy composite materials; CNTs and
PPy can provide effective ion transport channels, thereby reducing the electrical resistance
during cycling and the volume expansion of the material, such that it exhibits excellent
performance in lithium-ion batteries. Therefore, it can be expected that materials composed
of MoS2 and PPy should also have broad aplication prospects in sodium-ion batteries.p

Herein, a simple room-temperature polymerization method was used to synthesize
PPy nanotubes, followed by a hydrothermal method to obtain the final hollow flower-
rod-shaped MoS2/PPy nanotube composite materials (denoted as FR-MoS2/PPy). This
material is expected to have an ultra-long cycle life and good rate performance.

2. Materials and Methods
2.1. Materials Synthesis
2.1.1. Synthesis of PPy Nanotubes

A combination of 0.243 g of FeCl3 and 0.049 g of methyl orange was added to 30 mL of
deionized water and, after stirring for 0.5 h, 100 µL of pyrrole was added. After stirring for
24 h at room temperature, PPy nanotubes were obtained, which were washed for several
times with deionized water and dried in a vacuum oven at 50 ◦C.

2.1.2. Synthesis of FR-MoS2/PPy

A combination of 0.1 g of as-prepared PPy nanotubes, 0.300 g of (NH4)6Mo7O24·4H2O,
and 0.885 g of thiourea was stirred under ultrasound for 0.5 h and then added to 30 mL
of deionized water. The resulting homogeneous solution was transferred into a 40 mL of
Teflon-lined stainless-steel autoclave and heated at 180 ◦C for 24 h. The black precipitate
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was collected and washed several times with deionized water and ethanol, and the sample
was dried at 50 ◦C for 10 h.

2.2. Materials Characterization

X-ray diffraction (XRD, D/max-2500B2+/PCX, Rigaku, Tokyo, Japan) was used to
characterize the crystal structure of the as-prepared FR-MoS2/PPy, while X-ray photo-
electron spectroscopy (XPS, ESCALAB 250, ThermoFisher Scientific, Waltham, MA, USA)
was used for element valence analysis. A Fourier transform infrared spectrometer (FTIR,
Nicolet iS50, Thermo Nicolet, Ramsey, MN, USA) was used to determine the functional
groups of the conductive polymers. The content of MoS2 in the composite was tested by a
thermogravimetric test (TGA, TGA/DSC 1/1100 SF, METTLER, Greifensee, Switzerland)
at a temperature range of 25–800 ◦C. The morphology and element distribution of the
composite material were tested by a scanning electron microscope (SEM, Supratm55, ZEISS,
Oberkochen, Germany), its internal structure was observed by a transmission electron
microscope (TEM, Tecnai G2 F30, FEI, Hillsboro, OR, USA), and the crystal structure of
the material was further analyzed by a high-resolution transmission electron microscope
(HRTEM, Tecnai G2 F30, FEI, Hillsboro, OR, USA) and a selected-area electron diffraction
pattern (SEAD, Tecnai G2 F30, FEI, Hillsboro, OR, USA).

2.3. Electrochemical Measurements

To measure the electrochemical performance of the FR-MoS2/PPy composite material,
a CR2025 coin battery was assembled with sodium as the counter electrode. The as-prepared
composite material was mixed with a conductive agent (Super-P) and a binder (sodium
alginate) with a ratio of 6:2:2, forming a uniform slurry. The slurry was coated uniformly
on the copper foil, and then it was dried thoroughly in a vacuum at 120 ◦C for more than
10 h. The active-substance loading was about 1 mg cm−2. The electrolyte used was 1 M
sodium perchlorate with 5% FEC dissolved in 1:1 ethylene carbonate and diethyl carbonate;
an appropriate amount of FEC additive can not only significantly inhibit the decomposition
of electrolyte solvents, but also improve the cycle stability of batteries. The cycle and rate
performance were tested by a Neware CT3008 battery test system. Cyclic voltammetry
(CV) was tested by a CS350 at different scan rates of 0.1–1 mV s−1, and electrochemical
impedance spectroscopy (EIS) was performed at the same electrochemical workstation
with a frequency ranging from 100 kHz to 0.01 Hz.

3. Results and Discussion

The preparation process of the FR-MoS2/PPy composite material is shown in Scheme 1.
First, methyl orange and ferric chloride are used to initiate the polymerization of pyrrole
monomers into nanotubes at room temperature. Then, the MoS2 nanosheets grow uniformly
on the surface of the PPy nanotubes by a hydrothermal method. Finally, the MoS2 composite
material is obtained.
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It can be seen from the XRD pattern (Figure 1a) that the characteristic peaks of MoS2
before and after compounding with PPy have no significant changes. The peaks at about
16◦, 33◦, and 57◦ in the figure correspond to the (0 0 2), (1 0 0), and (1 1 0) crystal planes
of MoS2, respectively, which proves that MoS2 forms a hexagonal phase structure (JCPDS
77–1716); the existence of the (0 0 2) plane can prove that MoS2 nanosheets grow uniformly
on PPy [34].
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Figure 1. (a) XRD patterns of MoS2 and FR-MoS2/PPy, (b) FT-IR spectra, and (c) TGA curve of
FR-MoS2/PPy.

The FT-IR result is presented in Figure 1b; the absorption peak at 1540 cm−1 rep-
resents the stretching vibration peak of C-C, the peak at 1400 cm−1 corresponds to the
out-of-plane bending vibration peak of C-N, the peak at 1111 cm−1 corresponds to the
in-bending vibration peak of =C-H, the peak at 1026 cm−1 corresponds to the in-plane
bending vibration peak and out-of-plane bending vibration peak of N-H, the peak at
890 cm−1 corresponds to the out-of-plane bending vibration of =C-H, and the small peak
at 1287 cm−1 is related to the doping state of PPy, all of which prove the successful com-
bination of PPy and molybdenum sulfide [32,35,36]. Figure 1c shows the TGA result of
FR-MoS2/PPy. After heating material from room temperature to 800 ◦C in an air atmo-
sphere, 49.95% of the mass remains. Typically, the reaction of the composite material is
as follows: 2MoS2 + 7O2 = 2MoO3 + 4SO2. Therefore, in addition to the transformation of
PPy to CO2, the mass loss in the TGA curve also includes the SO2 loss in the reaction of
MoS2, such that the equations can be listed as follows:

W(MoS2)

M(MoS2)
=

W(MoO3)

M(MoO3)

Among them, W(MoS2) and W(MoO3) represent the mass fraction of MoS2 and MoO3,
and M(MoS2) and M(MoO3) represent the relative molecular masses of MoS2 and MoO3;
therefore, the content of MoS2 in the composite material can be calculated as 55.6% [37].

The elemental composition and valence information are tested by XPS. Figure 2a
shows the fitting peaks of the Mo element; two peaks at 228.9 and 232.1 eV can be seen,
representing Mo 3d5/2 and Mo 3d3/2, respectively. They prove that there is Mo4+ in the
composite material, which exists in the form of 1T-MoS2 in a metastable state with strong
metallicity and good conductivity. The two peaks appearing at the higher binding energy
area prove that the material contains part of the 2H-MoS2, which is a proper stable state.
Figure 2b shows that the peaks at about 161.7 and 162.9 eV correspond to S 2p3/2 and S
2p1/2, respectively, which proves that S2− exists in the composite material. The small peak
near 168.7 eV corresponds to the part of the S6+ has not been fully reduced. Figure 2c shows
the peak splitting of C 1s. It can be seen that there are four peaks at about 288.8, 286.4,
285, and 284.2 eV, corresponding to the existence of C-O, C-O-C, C-N, and C-C bonding,
respectively. Figure 2d is the total spectrum of the composite material, which further proves
the existence of nitrogen in the composite materials [38,39]. The above tests can prove the
successful synthesis of the FR-MoS2/PPy.
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Figure 2. Peak-fitting curve of (a) Mo 3d, (b) S 2p, (c) C 1s, and (d) a survey of FR-MoS2/PPy.

Figure 3a,b show SEM images of pure MoS2 at different magnifications. It can be
observed that the morphology of pure MoS2 presents a compact nanoflower structure which
has a particle size of about 1 µm and is composed of numerous nanosheets. Figure 3c,d show
that, after being compounded with PPy, a large number of MoS2 nanosheets are grown
vertically on the PPy nanotubes, exhibiting a flower-rod morphology with a diameter
of about 300 nm. It can be seen that the staggered arrangement of a large number of
MoS2 nanosheets makes the material morphology more dispersed, so it can be expected to
increase the specific surface area of the composite material, as well as increase the active
sodium storage sites of the composite material and the sodium storage capacity. Figure 3e–h
display the EDS mapping analysis of the FR-MoS2/PPy composites; the elements Mo, S, C,
and N can be observed, further verifying the results of the XPS.

It can be seen from the TEM results (Figure 4a,b) that the composite material, with a
diameter of about 300 nm, has a hollow structure, with PPy nanotubes inside and MoS2
nanosheets uniformly coated on the outside. The HRTEM results (Figure 4c) show two
different crystal plane spacings of 0.62 and 0.27 nm, corresponding to the two crystal planes
(0 0 2) and (1 0 0) of MoS2, respectively. The SAED pattern (Figure 4d) can be observed
showing three clear diffraction rings, corresponding to the three crystal planes (0 0 2),
(1 0 0), and (1 1 0) of MoS2 [40,41].

As shown in Figure 5a, the CV curves of the FR-MoS2/PPy were measured at a scan
rate of 0.1 mV s−1. It can be seen that, during the first cathodic scan, the small reduction
peak at 1.1 V corresponds to the beginning stage of the sodium ion insertion among the
MoS2 layers and the formation of the SEI film. The reduction peak at 0.1 V corresponds
to the conversion reaction of MoS2 to Mo [38]. In the anode process, the oxidation peak
at about 1.7 V corresponds to the conversion of elemental Mo to MoS2, which proves the
reversibility of the electrode reaction during the electrochemical cycle [16]. In the second
cycle, the reaction peak of the electrode shifts slightly, which is due to the polarization
phenomenon that cannot be avoided during the battery reaction [42]. The reaction formula
can be written as follows [43]:

MoS2 + 4Na+ + 4e− ↔Mo + 2Na2S
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Both pure MoS2 and FR-MoS2/PPy share the same sodium storage mechanism. As
shown in Figure 5b, at a current density of 100 mA g−1, the initial discharge capacity of the
FR-MoS2/PPy composite is 642.7 mAh g−1, and the initial charge capacity is 443.5 mAh g−1.
After the second cycle, the discharge curves gradually overlap, indicating that the composite
material has excellent cycle stability.

Figure 6 shows the electrochemical performance of pure MoS2 and FR-MoS2/PPy com-
posite materials. As shown in Figure 6a, after 60 cycles at a current density of 100 mA g−1,
the FR-MoS2/PPy can still maintain a stable capacity of 431.9 mAh g−1, showing excellent
cycle stability, while the capacity of the pure material shows a declining trend, and only a
capacity of 58.5 mAh g−1 remains after 60 cycles. Figure 6b shows the rate performance;
when FR-MoS2/PPy cycles 10 times under current densities of 0.1, 0.2, 0.5, 1, and 2 A g−1,
the capacities are 489.7, 452.8, 416.2, 394.5, and 363.2 mAh g−1, respectively, showing
excellent rate performance, and when the current density returns to 0.1 A g−1, the capacity
can be stably maintained at 475.2 mAh g−1. However, under the same current density
as with FR-MoS2/PPy, the rate performance of the pure material is relatively inferior,
maintaining capacities of only 168.7, 133.5, 90.7, 66.0, and 47.4 mAh g−1, and when the
current density returns to 0.1 mA g−1, the capacity can only reach 94.7 mAh g−1. The cycle
stability of the two materials was also tested under a relatively high current (500 mA g−1);
as shown in Figure 6c, FR-MoS2/PPy and pure MoS2 can maintain 386.9 and 27.4 mAh g−1

after 150 cycles, respectively. The above results show that the compounding with PPy
helps MoS2 gain higher capacity and more stable performance than pure MoS2, which
could benefit from the synergistic effect between the two compounds and the enhanced
electrochemical performance brought by PPy.

The EIS test is performed after 20 cycles under a current density of 200 mA g−1; the
fitting results can be used to judge the improvement of the electroconductivity and charge
transfer rate of the composite. As shown in Figure 7a, the impedance curves of MoS2 and
FR-MoS2/PPy are both made up of semicircles and inclined straight lines, indicating that
the electrochemical kinetics of the materials can be divided into two steps. First, sodium
ions migrate through the electrolyte to reach the vicinity of the electrode surface, such
that the external circuit transfers electrons to the electrode surface to maintain charge
balance. In this period, the semicircle of the EIS represents the formation of SEI layer
impedance (Rf), charge transfer impedance (Rct), and double capacitance impedance (C).
Then, a large amount of sodium ions can accumulate on the electrode surface. Therefore,
the Na+ concentration on the electrode surface becomes much higher than that of the
interior. The resulting Na+ concentration gradient can cause sodium ions to diffuse from
the electrode surface to the interior to maintain balance. This process produces a diffusion
impedance, called “Warburg impedance” (Ws), which can be reflected by the slash part
of the EIS results. In addition, Re represents the impedance of the battery, which can be
reflected in the intercept of the high-frequency region Z’ [44]. The fitting results of Re, Rf,
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and Rct for the MoS2 and FR-MoS2/PPy electrodes are shown in Table 1. It can be clearly
seen that the Rct values of MoS2 and FR-MoS2/PPy are 105.60 and 75.06 Ω, respectively.
The charge transfer resistance of FR-MoS2/PPy is significantly reduced compared to that
of pure MoS2, owing to the introduction of PPy increasing the electronic conductivity of
composite material, which is beneficial to improving the electrochemical performance of
material. Table 2 shows the electrochemical performance comparison of different MoS2
composite materials.
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Table 1. EIS fitting results of MoS2 and FR-MoS2/PPy.

Samples Re/Ω Rf/Ω

MoS2 5.13 25.14
FR-MoS2/PPy 5.54 18.46
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Table 2. Comparison of different MoS2 anode materials in sodium-ion batteries.

Samples Current Density (mA g−1) Cycle Number Capacity (mAh g−1) Reference

MoS2 microflowers 100 50 595 [15]
G-MoS2 500 300 312 [16]

MoS2 hollow spheres 100 100 391.4 [17]

FR-MoS2/PPy 100 60 431.9
This Work500 150 386.9

In addition, the fitting results in the low-frequency region can be used to calculate
the diffusion coefficient (DNa) of Na+, and the calculation equations can be written as
follows [45,46]:

Z′ = Re + Rct + σω
−0.5

DNa+ =
(RT)2

2
(

An2F2Cσ
)2

Among them, R represents the ideal gas constant with a value of 8.314, T represents
the absolute temperature in Kelvin, with a value of 298.15 K, and n represents the number
of electrons transferred in the electrochemical process. F is the Faraday constant with a
value of 96,500 C mol−1. C is the sodium ion concentration. Ω stands for the angular
frequency and σ represents the Warburg factor, which can be calculated from Z′ fitting.
Figure 7b shows the Z′-ω−0.5 graph. The sodium diffusion coefficients of the MoS2 and
FR-MoS2/PPy are 7.23 × 10−11 and 1.07 × 10−10 cm2 s−1, respectively, indicating that
FR-MoS2/PPy has a higher ion transfer rate.

In order to further study the characteristics of the sodium storage processes of the
FR-MoS2/PPy electrode, the CV curves were tested under scan rates ranging from 0.2 to
1 mV s−1 (Figure 8a). The following equation can express the relationship between Log
(scan rate, mV s−1) and Log (peak current, A):

i = avb

Log(i) = bLog(v) + Log(a)

In the above formula, when the b value is close to 0.5, ion diffusion determines the
electrochemical reaction, and when the b value is close to 1, it is mainly controlled by the
pseudocapacitance process [46,47]. The linear relationship between Log (i) and Log (v) is
shown in Figure 8b. The corresponding b values of the two main redox peaks are 0.91074
for the anode and 0.94115 for the cathode, respectively, which indicates that the redox
process of the FR-MoS2/PPy composite includes partial pseudocapacitive performance,
leading to its relatively remarkable rate performance. The total current at a fixed potential
includes the pseudocapacitance mechanism (k1v) and the ion diffusion process (k2v1/2),
which can be calculated by the following formula:

i = k1v + k2v1/2

Here, k1v and k2v1/2 represent the pseudocapacitance process and the diffusion-
controlled Na+ insertion–extraction, respectively [48]. Figure 8c shows the ratio of the
pseudocapacitance process at a scanning speed of 0.8 mV s−1. It can be seen that the ratio
of the pseudocapacitance contribution is about 80.4% (green shaded area). Figure 8d shows
that the contribution rates of the pseudocapacitance were 67.5%, 76%, 78.5%, 80.4%, and
82.8% at different scanning speeds of 0.2, 0.4, 0.6, 0.8, and 1 mV s−1. This means that, as the
scanning speed increases, the contribution of the pseudocapacitance gradually accounts for
more of the total capacitance.
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4. Conclusions

Herein, a hollow MoS2/PPy composite material with flower-rod morphology (FR-
MoS2/PPy) was successfully synthesized through a two-step method. The as-prepared
material obtained outstanding performance in electrochemical tests. Under a current
density of 100 mA g−1, the FR-MoS2/PPy can maintain a capacity of 431.9 mAh g−1

after 60 cycles, and even under a high density of 2 A g−1, the composite can still reach
a high capacity of 363.2 mAh g−1. The excellent electrochemical performance can be
attributed to the synergistic effect between the different components of the composite
material. The hollow structure also relieves the volume expansion of the material during
the deintercalation of the sodium. In addition, the dispersed MoS2 nanosheets can increase
the specific surface area of the material, to a certain extent, and increase the active sites of
sodium storage. Furthermore, the pseudocapacitance characteristics can effectively increase
the energy density of the electrode material so as to obtain excellent rate performance.
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