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Abstract Altered Ca2+ handling is often present in diseased hearts undergoing structural

remodeling and functional deterioration. However, whether Ca2+ directly regulates sarcomere

structure has remained elusive. Using a zebrafish ncx1 mutant, we explored the impacts of

impaired Ca2+ homeostasis on myofibril integrity. We found that the E3 ubiquitin ligase murf1 is

upregulated in ncx1-deficient hearts. Intriguingly, knocking down murf1 activity or inhibiting

proteasome activity preserved myofibril integrity, revealing a MuRF1-mediated proteasome

degradation mechanism that is activated in response to abnormal Ca2+ homeostasis. Furthermore,

we detected an accumulation of the murf1 regulator FoxO in the nuclei of ncx1-deficient

cardiomyocytes. Overexpression of FoxO in wild type cardiomyocytes induced murf1 expression

and caused myofibril disarray, whereas inhibiting Calcineurin activity attenuated FoxO-mediated

murf1 expression and protected sarcomeres from degradation in ncx1-deficient hearts. Together,

our findings reveal a novel mechanism by which Ca2+ overload disrupts myofibril integrity by

activating a Calcineurin-FoxO-MuRF1-proteosome signaling pathway.

DOI: https://doi.org/10.7554/eLife.27955.001

Introduction
The establishment and maintenance of rhythmic cardiac contractions require tightly regulated Ca2+

signaling and intact contractile machinery. In the heart, a small amount of Ca2+ enters cardiomyo-

cytes upon stimulation by an action potential. This Ca2+ influx induces the release of a larger amount

of Ca2+ from the sarcoplasmic reticulum (SR) resulting in an abrupt increase in cytosolic Ca2+ levels

and muscle contraction. The re-sequestration of Ca2+ to the SR by SERCA2 and extrusion of Ca2+

from the cell by NCX1 allows the muscle to relax (Bers, 2002). Abnormal Ca2+ handling has been

associated with cardiac diseases including heart failure and arrhythmia in humans and animal models

(Luo and Anderson, 2013) and structurally defective myofibrils are also often observed in diseased

hearts (Lopes and Elliott, 2014). However, whether or not there is a causal relationship between

abnormal Ca2+ handling and myofibril disarray in diseased myocytes has not yet been established.

The RING finger protein MuRF1 (also known as TRIM63) is a muscle-specific E3 ubiquitin protein

ligase involved in the regulation of muscle turnover in normal physiology and under pathological

conditions. MuRF1 acts on several sarcomeric target proteins, tagging them with polyubiquitin
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chains for proteasome-dependent degradation (Kedar et al., 2004; Clarke et al., 2007;

Cohen et al., 2009; Mearini et al., 2010). Through this mechanism, MuRF1 regulates normal sarco-

mere protein turnover and removes misfolded and/or damaged proteins in skeletal and cardiac

muscles (Lyon et al., 2013; Pagan et al., 2013; Willis et al., 2014). Murf1 expression is elevated

under muscle catabolic conditions and overexpression of murf1 in the heart results in a thin ventricu-

lar wall and a rapid transition to heart failure upon transaortic constriction, suggesting that MuRF1 is

a major player in muscle catabolic processes (Bodine et al., 2001; Labeit et al., 2010; Baehr et al.,

2011; Files et al., 2012; Gomes et al., 2012; Bodine and Baehr, 2014). Conversely, knockout of

murf1 promotes resistance to muscle atrophy and an exaggerated hypertrophic response to pres-

sure overload (Willis et al., 2007; Willis et al., 2009a; Willis et al., 2009b). In humans, patients with

specific murf1 gene variants develop hypertrophic cardiomyopathy at a younger age (Chen et al.,

2012; Su et al., 2014), revealing a pathological role for MuRF1 in the progression of cardiac

diseases.

In skeletal muscles, the Forkhead box O (FoxO) transcription factor family serves as a nodal point

controlling muscle degradation via the regulation of MuRF1 expression. Under catabolic conditions,

the PI3K-Akt pathway is suppressed and hypophosphorylated FoxO translocates into the nucleus

causing murf1 induction and muscle atrophy (Lecker et al., 2004; Waddell et al., 2008). Conversely,

upon IGF stimulation, the phosphorylation of FoxO by activated AKT sequesters FoxO in the cyto-

plasm, resulting in reduced murf1 expression and an increase in myocyte mass (Sacheck et al.,

2004; Stitt et al., 2004). Similarly, an AKT-FoxO-mediated suppression of murf1 expression in

response to insulin has been noted in cardiac muscles (Skurk et al., 2005; Paula-Gomes et al.,

2013).

In this study, we used the zebrafish tremblor/ncx1h mutant to explore the regulatory relationship

between Ca2+ homeostasis and the maintenance of cardiac muscle integrity. We have previously

shown that ncx1h (also known as slc8a1a) encodes a cardiac specific sodium-calcium exchanger 1

(NCX1) in zebrafish and that the tremblor (tre) mutant lacks functional NCX1h (Langenbacher et al.,

2005). NCX1 is a primary Ca2+ efflux mechanism in cardiomyocytes (Ottolia et al., 2013), and con-

sistent with this important role in Ca2+ homeostasis, cytosolic Ca2+ levels are increased and cyclic

Ca2+ transients are abolished in tre/ncx1h cardiomyocytes resulting in fibrillation-like chaotic cardiac

contractions (Ebert et al., 2005; Langenbacher et al., 2005; Shimizu et al., 2015). Like NCX1-/-

mice, tre/ncx1h zebrafish hearts also develop severe myofibril disarray (Koushik et al., 2001;

Wakimoto et al., 2003; Ebert et al., 2005), suggesting that a conserved molecular link exists

between aberrant Ca2+ handling and myofibril disarray. From a microarray analysis, we found that

the expression of murf1 is significantly upregulated in ncx1h-deficient hearts. This MuRF1 upregula-

tion was responsible for the myofibril disarray in ncx1h-deficient hearts, and normal cardiac myofi-

brils could be restored by genetic and pharmacological manipulation of MuRF1 or proteasome

activity. We also found that elevated intracellular Ca2+ levels enhanced murf1 expression via activa-

tion of Calcineurin signaling, which dephosphorylates the murf1 transcriptional regulator FoxO, lead-

ing to its nuclear translocation. Our findings reveal a novel signaling pathway in which Ca2+

homeostasis modulates the integrity of cardiac muscle structure via murf1 regulation.

Results and discussion

NCX1 is required for the maintenance of myofibril integrity in
cardiomyocytes
Zebrafish ncx1h mutant embryos lack functional NCX1 in myocardial cells resulting in aberrant Ca2+

homeostasis and a fibrillating heart (Ebert et al., 2005; Langenbacher et al., 2005; Shimizu et al.,

2015). Similar to the myofibril phenotype observed in NCX1-/- mice, sarcomeres in zebrafish ncx1h

mutant cardiomyocytes are damaged (Koushik et al., 1999; Wakimoto et al., 2003; Ebert et al.,

2005). To investigate whether NCX1 activity affects the assembly or the maintenance of sarcomeres

in myocardial cells, we examined the distribution of a-actinin protein. In striated muscles, a-actinin is

localized to the Z-line and is a good marker for assessing sarcomere structure. We found that a-acti-

nin is organized into a periodic banding pattern in both wild type and ncx1h mutant cardiomyocytes

at 30 hpf (Figure 1A), suggesting that sarcomere assembly is initiated properly in the absence of

NCX1 activity. Interestingly, the sarcomeres degenerate in ncx1h mutant cardiomyocytes a day later
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resulting in a sporadic distribution of a-actinin (Figure 1A). Zebrafish myocardial cells of the outer

curvature normally assume an elongated, flat shape by two days of development (Auman et al.,

2007; Cavanaugh et al., 2015). However, ncx1h mutant cardiomyocytes fail to elongate (Figure 1B)

and both atrial and ventricular chambers become dysmorphic (Figure 1C), indicating a requirement

for NCX1 activity in the maintenance of myofibril integrity and cardiac chamber morphology.

Elevated MuRF1 expression in ncx1h-deficient hearts
To explore molecular pathways by which NCX1 influences myofibril integrity, we isolated hearts

from wild type and ncx1h mutant embryos and compared their gene expression profiles. We found

that the expression of Muscle Ring-finger protein-1 (MuRF1, also known as TRIM63) is significantly

elevated in ncx1h mutant hearts. There are two highly homologous murf1 genes in zebrafish

(murf1a/trim63a and murf1b/trim63b) (Macqueen et al., 2014). Phylogenetic analysis showed that

zebrafish murf1a and murf1b cluster with other vertebrate murf1 genes (Figure 2A). Both genes

span a single exon encoding peptides highly homologous to each other and to their mammalian

orthologs (Figure 2B) (Postlethwait, 2007) and are expressed in striated muscles (Figure 2C)

(Willis and Patterson, 2006). In situ hybridization and quantitative RT-PCR analyses further con-

firmed that both murf1a and 1b are upregulated in ncx1 mutant hearts (Figure 3).

Figure 1. Disorganized myofibril structure in tre/ncx1h cardiomyocytes. Wild type (WT) and tre/ncx1h (tre) mutant hearts at 30, 48 and 72 hpf. (A)

Zebrafish hearts stained for a-actinin to visualize Z-lines. At 30 hpf, periodic a-actitin staining was observed in wild type and tre hearts (arrowheads). By

48 hpf, sarcomeres are disassembled in tre hearts. Scale bar, 10 mm. (B) The cell shape of cardiomyocytes was visualized by Zn8 staining. Scale bar, 10

mm. (C) Embryonic fish hearts were visualized by GFP expression in the myl7:EGFP transgenic background. Note that tre hearts become dysmorphic

after two days of development. Scale bar, 50 mm.

DOI: https://doi.org/10.7554/eLife.27955.002
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MuRF1 regulates myofibril integrity in cardiomyocytes
Elevated murf1 expression is associated with muscle atrophy and can induce the breakdown of myo-

fibrils in cultured cardiomyocytes (Kedar et al., 2004). We thus asked whether MuRF1 overexpres-

sion in the heart is sufficient to induce cardiomyopathy. To this end, we generated a transgenic fish,

myl7:MuRF1a-IRES-GFP, in which MuRF1 and a GFP reporter are expressed under the control of the

cardiac-specific myl7 promoter (Figure 4A). As shown in Figure 4B, murf1a expression is upregu-

lated in myl7:MuRF1a-IRES-GFP transgenic hearts. Interestingly, a-actinin failed to maintain a stri-

ated pattern in cardiomyocytes of myl7:MuRF1a-IRES-GFP embryos (Figure 4C), demonstrating that

overexpression of MuRF1 leads to sarcomere disassembly in the heart. Consequently, MuRF1-over-

expressing hearts become dilated (Figure 4D) and their cardiac function is compromised (Videos 1

and 2). The atrial fractional shortening of myl7:MuRF1a-IRES-GFP hearts was reduced by approxi-

mately 10% and ventricular fractional shortening by ~15% compared to non-transgenic siblings and

Figure 2. Zebrafish murf1 genes. (A) Phylogenetic tree of vertebrate murf1, 2, 3 and 4 (also known as trim63, 55, 54 and 101, respectively). The tree was

constructed using ClustalX with the neighbor-joining method. Zebrafish (z), Human (h), mouse (m), rat (r), chick (g), frog (x). (B) Alignment of murf1

genes from human, mouse and zebrafish. Blue boxes highlight identical amino acids and grey boxes indicate similar residues. (C) Whole-mount in situ

hybridization demonstrating the expression patterns of murf1a and murf1b in the zebrafish embryo.

DOI: https://doi.org/10.7554/eLife.27955.003

Shimizu et al. eLife 2017;6:e27955. DOI: https://doi.org/10.7554/eLife.27955 4 of 19

Research article Cell Biology Developmental Biology and Stem Cells

https://doi.org/10.7554/eLife.27955.003
https://doi.org/10.7554/eLife.27955


the heart rate was also reduced by 10% (Figure 4E). Together, these findings demonstrate that

overexpression of MuRF1 is sufficient to disrupt myofibril structure and impair cardiac function in

vivo.

Figure 3. Upregulation of MuRF1 in tre/ncx1h deficient hearts. (A) In situ hybridization analysis shows a significant

increase of murf1a and murf1b expression in tre hearts. Arrowheads point to the heart. (B) Quantitative RT-PCR

analysis shows an upregulation of murf1a and murf1b in tre hearts. * p<0.05; ** p<0.01.

DOI: https://doi.org/10.7554/eLife.27955.004

Figure 4. Upregulation of MuRF1a leads to myofibril disarray. (A) Schematic representation of the construct that

drives cardiac-specific MuRF1a expression. (B) Murf1a expression is upregulated in the 2-day-old myl7:MuRF1a-

IRES-GFP heart (right panel) compared to the wild type heart (left panel). (C) a-actinin staining in 3-day-old wild

type (left panel) and transgenic (right panel) cardiomyocytes. Note that sarcomeres are disassembled in myl7:

MuRF1a-IRES-GFP cardiomyocytes. (D) Live images of wild type and Tg(myl7:MuRF1a-IRES-GFP) fish at 72 hpf (left

panels). Transgenic hearts are GFP positive and become dilated (inset). (E) Heart rate (HR) and atrial fractional

shortening (FS) in wild type and myl7:MuRF1a-IRES-GFP embryos at 72 hpf. *p<0.05; ***p<0.001.

DOI: https://doi.org/10.7554/eLife.27955.005
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Blocking MuRF1-induced protein
degradation preserves myofibril
integrity in ncx1h mutant hearts
MuRF1’s upregulation upon loss of ncx1h activity, along with its established function as a muscle-

specific E3 ubiquitin protein ligase that targets sarcomeric proteins for proteasome degradation,

make it a good candidate for the cause of the myofibril disarray present in ncx1h deficient hearts. If

MuRF1 upregulation indeed causes sarcomere disassembly, one would predict that blocking MuRF1

activity or its downstream protein degradation pathway might ameliorate the myofibril defects in

ncx1 mutant hearts. Since both murf1a and murf1b are upregulated in ncx1h deficient hearts, we

knocked down these genes simultaneously. Western blot analysis showed that murf1a/murf1b mor-

pholino knockdown reduced overall MuRF1 protein levels by 27% (Figure 5C). Interestingly, even

this modest level of reduction in MuRF1 expression improved sarcomere integrity in ncx1h deficient

hearts; ~80% of ncx1h/murf1a/murf1b triple-deficient embryos had intact sarcomeres (n = 24), a sig-

nificant increase compared to ncx1h mutant hearts (~35%, n = 21; p<0.001) (Figure 5A,B). Similarly,

treatment with the proteasome inhibitor MG132 suppressed the myofibril disarray caused by NCX1

deficiency. Approximately 72% of MG132-treated ncx1h mutants had a striated a-actinin pattern,

indicating the presence of intact sarcomeres (n = 18; p<0.001) (Figure 5A,B), suggesting that upre-

gulation of MuRF1 induces myofibril degradation via a proteasome-dependent mechanism in ncx1h-

deficient cardiomyocytes. Prior studies have implied a connection between cardiac contraction and

myofibril integrity (Berdougo et al., 2003; Auman et al., 2007; Nishii et al., 2008; Yang et al.,

2014). Interestingly, ncx1h/murf1a/murf1b triple-deficient hearts never establish coordinated con-

tractions (Video 3), demonstrating that sarcomere integrity can be uncoupled from the loss of car-

diac contractions in the context of aberrant Ca2+ handling-induced heart failure.

Ca2+ induces MuRF1a expression
Our study showed that while ncx1h mutant hearts suffer from Ca2+ handling defects and never

establish normal Ca2+ cycles or heartbeats, the initial assembly of sarcomeres proceeds properly.

Since the Ca2+ handling defects precede the breakdown of sarcomeres, we hypothesized that Ca2+

overload induces murf1 expression in cardiomyocytes and thereby leads to sarcomere disassembly

and cardiomyopathy. To examine this hypothesis, we isolated a 6.9 kb genomic fragment upstream

of murf1a, MuRF1a (�6906). Transgenic analysis showed that this genomic fragment was sufficient

to drive GFP expression in cardiac and skeletal muscles (Figure 6A and B), a pattern resembling the

endogenous murf1a expression pattern (Figure 2C), indicating that critical regulatory elements are

present in this genomic fragment. We then created a MuRF1a (�6906) Luciferase reporter construct

to test whether this murf1 upstream regulatory element is responsive to Ca2+ signaling. We trans-

fected the MuRF1a (�6906) Luciferase reporter into HEK293T cells and induced Ca2+ flux by treat-

ment with the Ca2+ ionophore A23187. Interestingly, the luciferase activity was significantly

Video 1. Three-day-old myl7:EGFP transgenic heart.

DOI: https://doi.org/10.7554/eLife.27955.006

Video 2. Three-day-old myl7:MuRF1a-IRES-GFP

transgenic heart.

DOI: https://doi.org/10.7554/eLife.27955.007
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Figure 5. Blocking MuRF1-mediated proteasome degradation preserves myofibril integrity in tre/ncx1 deficient

hearts. (A) Z-lines were visualized by a-actinin staining. By 72 hpf, sarcomeres are disassembled in hearts of

uninjected (tre) and control morpholino-injected (tre +ctlMO) tremblor embryos. Murf1a/murf1 b knockdown does

not affect sarcomere integrity in wild type embryos (WT +MO), but prevents sarcomere degradation in tre

(tre +MO). Similarly, treatment with a proteasome inhibitor, MG132, preserves myofibril integrity in tre

cardiomyocytes (tre +MG132). Scale bar, 10 mm. (B) Graph shows % of embryos with periodic a-actinin staining at

72 hpf. (C) Western blot detecting MuRF1 and b-actin proteins in uninjected control (WT control) and murf1a/

murf1 b knockdown (MuRF1 MO) embryos. Chi-squared test, *p<0.05; **p<0.01; ***p<0.001.

DOI: https://doi.org/10.7554/eLife.27955.008
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enhanced by A23187 induction (Figure 6C), dem-

onstrating that murf1 transcription is sensitive to

intracellular Ca2+ levels.

We next tested the expression patterns of a

series of deletion constructs of MuRF1a (�6906)

and found that the 638 bp region immediately

upstream of the transcription initiation site,

MuRF1a (�638), was sufficient to drive reporter

gene expression in cardiac and skeletal muscles

(Figure 6A). MuRF1a (�638)-Luc also displayed

enhanced luciferase activity upon A23187 induc-

tion at levels comparable to MuRF1a (�6906)-Luc

(Figure 6D), indicating that the 638 bp murf1a

proximal region is sufficient to direct Ca2+-medi-

ated murf1 transcription.

Ca2+ regulates MuRF1 expression
via the Calcineurin-FoxO signaling
pathway
Calmodulin-dependent protein kinase II (CaMKII)

and the calmodulin-dependent protein phospha-

tase calcineurin (Cn) are two major transducers of Ca2+ signals in cardiomyocytes (Heineke and Mol-

kentin, 2006; Maillet et al., 2013). We asked whether either of these pathways is involved in the

regulation of murf1 gene expression. We treated MuRF1a (�638)-Luc-transfected HEK293T cells

with either KN62, a chemical inhibitor of CaMKII, or FK506, an inhibitor of Cn. KN62 treatment did

not have a significant impact on MuRF1a (�638)-driven expression, but FK506 treatment potently

attenuated the A23187-induced increase of MuRF1a (�638)-Luc reporter activity (Figure 7A), sug-

gesting that MuRF1 expression is regulated by a Cn-mediated mechanism. This interpretation is fur-

ther supported by the observations that Cn overexpression enhances A23187-induced murf1

reporter activity and that the A23187-induced MuRF1 expression is blunted by overexpression of a

dominant negative form of Cn (DN-Cn) (Figure 7B) (Kahl and Means, 2004).

We next explored the potential molecular mechanisms by which Cn influences MuRF1 expression.

We found multiple putative FoxO binding sites located the minimal regulatory regions of zebrafish

murf1a/b and within the 1 kb region immediately upstream of the transcription initiation sites of the

frog, mouse and human murf1 genes (Figure 7C). Since FoxO is a downstream mediator of Cn sig-

naling (Hudson and Price, 2013) and is involved in the regulation of MuRF1 in skeletal muscles

(Stitt et al., 2004; Waddell et al., 2008), we examined the possibility that FoxO mediates Cn’s reg-

ulation of MuRF1 expression in cardiomyocytes. There are seven foxo genes in zebrafish

(Wang et al., 2009), all of which are expressed in the developing heart (Figure 7D and Figure 8).

When co-transfected with the MuRF1a(�638)-Luc reporter, all zebrafish foxo genes tested were

capable of enhancing the A23187-induced increase in MuRF1a(�638) luciferase activity (Figure 9).

FoxO3a promoted strong murf1a promoter activity (Figure 9) and was used for the remainder of our

analyses. We found that FoxO3a enhanced MuRF1a(�638)-Luc reporter activity in a dose-dependent

manner (Figure 7E) whereas overexpression of a dominant-negative form of FoxO (DN-foxO), which

lacks the transactivation domain but harbors an intact DNA binding domain (Medema et al., 2000;

van den Heuvel et al., 2005), abrogated the A23187-induced MuRF1a(�638)-Luc activity

(Figure 7F). We next asked whether FoxO mediates Cn signaling to control MuRF1 expression. We

found that cotransfection of Cn and FoxO3a enhances murf1a promoter activity (Figure 7B,E) and

that FoxO could no longer induce MuRF1a expression in the presence of a dominant negative form

of Cn (Figure 7B,E), demonstrating that Ca2+ influences MuRF1 expression via the Cn-FoxO signal-

ing axis.

Cn and FoxO regulate MuRF1 expression in the heart
Based on our finding that a Cn-FoxO-MuRF1 regulatory pathway is activated in response to elevated

intracellular Ca2+ levels in cultured cells, we explored the significance of the Cn-FoxO-MuRF1

Video 3. Two-day-old ncx1h/murf1a/murf1b triple

deficient heart.

DOI: https://doi.org/10.7554/eLife.27955.009
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pathway in the regulation of myofibril integrity in myocardial cells in vivo. The subcellular localization

of FoxO is controlled by its phosphorylation status (Huang and Tindall, 2007). We reasoned that

the Ca2+ extrusion defect in ncx1h mutant hearts could activate Cn resulting in the dephosphoryla-

tion and nuclear translocation of FoxO. To assess the subcellular localization of FoxO in cardiomyo-

cytes, we injected the myl7:FLAG-foxo3a-IRES-EGFP plasmid into zebrafish embryos and used the

FLAG-epitope as a proxy to assess the localization of FoxO. Indeed, while FoxO was primarily

sequestered in the cytoplasm of cardiomyocytes in wild type zebrafish hearts, FoxO protein was

enriched in the nuclei of ncx1h mutant cardiomyocytes (Figure 10A). This nuclear accumulation of

FoxO correlated with the increased MuRF1 expression in ncx1h mutant hearts (Figure 3). In addition,

we found that MuRF1 expression could also be induced in the heart by overexpression of FoxO3a or

a constitutively active form of FoxO3a in which three phosphorylation sites were replaced by with

alanines (CA-FoxO3a: T29A, S236A, S299A) (Figure 10B) (Brunet et al., 1999). Conversely,

Figure 6. Identification of a MuRF1a regulatory element. (A) Schematic representation of murf1a reporter

constructs. + denotes the presence of GFP expression in the heart and somites. (B) A MuRF1a (�6906)-GFP

transgenic embryo exhibits GFP expression in the heart and the somites (inset shows higher magnification image

of the somites). The right panel shows a higher magnification image of the heart. The asterisk denotes auto-

fluorescence from the yolk. (C) A23187 treatment induces luciferase activity driven by the MuRF1a (�6906)

promoter. Values on the y-axis represent the luciferase activity relative to cells treated with DMSO for 12 hr. (D)

Comparison of Ca2+ responsiveness between the MuRF1a (�638) and MuRF1a (�6906) promoters. Values on the

y-axis represent the fold increase in luciferase activity in response to A23187 treatment compared to DMSO-

treated cells at each time point. ***p<0.001; NS, not significant.

DOI: https://doi.org/10.7554/eLife.27955.010
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pharmacological inhibition of Cn activity by treatment with FK506 or overexpression of DN-FoxO

blunted MuRF1 expression in ncx1h mutant embryos (Figure 10B). Finally, we used a-actinin as a

proxy to examine whether the correlation between FoxO and MuRF1 expression translates to the

preservation of sarcomere structure. We found that overexpression of CA-FoxO3a in wild type

embryos resulted in a sporadic a-actinin distribution in cardiomyocytes that resembled the

Figure 7. A Ca2+-Cn-FoxO signaling pathway regulates MuRF1 expression. (A) HEK293T cells were transiently transfected with the MuRF1a (�638)

luciferase reporter construct. Cells were incubated with FK506 or KN62 before DMSO or A23187 treatment. (B) Luciferase assay of the MuRF1a (�638)

reporter cotransfected with foxo3a, wild type calcineurin (WT-Cn) or dominant-negative calcineurin (DN-Cn). (C) Diagram of the MuRF1a (�638) reporter

serial deletion constructs generated for this study. The bar graph (right) shows the luciferase activity of each reporter construct relative to that of the

empty expression plasmid. The red dotted box indicates the minimal cis-regulatory element of MuRF1a. The lower diagrams represent an alignment of

the zebrafish, Xenopus, mouse and human MuRF1 promoters. Blue circles indicate putative FoxO binding sites (D) Whole-mount in situ hybridization

detects foxo3a expression in the zebrafish heart. White arrowheads point to the heart. (E) HEK293T cells were transfected with the MuRF1a (�638)

luciferase reporter and foxo3a expression plasmid. (F) HEK293T cells were transfected with the MuRF1a (�638) reporter plasmid and either a wild type

or dominant negative foxo3a expression plasmid. Values on the y-axis are expressed relative to the luciferase activity of DMSO treated cells. **p<0.01;

***p<0.001; NS, not significant.

DOI: https://doi.org/10.7554/eLife.27955.011
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phenotype observed in ncx1h mutant hearts whereas overexpression of DN-FoxO restored a striated

a-actinin pattern in ncx1h mutant hearts (Figure 10C).

Conclusion
Compromised Ca2+ homeostasis and damaged cardiac muscle fibers are often observed in deterio-

rating diseased hearts, but a causative relationship between these outcomes has not previously

been demonstrated. In this study, we used the zebrafish ncx1h mutant as an animal model to

explore the molecular link between Ca2+ signaling and myofibril integrity in the heart. We showed

that NCX1 activity is dispensable for the initial assembly of sarcomeres, but the maintenance of myo-

fibril structure in myocardial cells requires tightly controlled Ca2+ homeostasis and MuRF1

expression.

Our molecular analyses using cultured cells and in vivo studies in zebrafish reveal a FoxO-MuRF1

signaling axis that is critically involved in the Ca2+-dependent regulation of myofibril integrity in the

heart. We propose that under normal physiological conditions where the cytosolic diastolic Ca2+

Figure 8. Expression patterns of zebrafish foxo genes. Whole-mount in situ hybridization analysis showing foxo

expression in zebrafish embryos. While foxo6a expression is diminished by 48 hpf, all the other foxo genes

examined (foxo1a, 1b, 3b, 4, 6a and 6b) are persistently expressed in the heart. Arrowheads point to the heart.

DOI: https://doi.org/10.7554/eLife.27955.012
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level is low, FoxO is sequestered in the cytoplasm and MuRF1 expression is maintained at a basal

level to support the normal turnover of sarcomeric proteins. Under pathological conditions, when

diastolic Ca2+ is elevated, the activation of Cn dephosphorylates FoxO and allows its nuclear translo-

cation, leading to upregulation of MuRF1 and the degradation of myofibrils (Figure 10D). Interfering

with the Cn-FoxO-MuRF1-proteosome pathway by pharmacological or genetic means can protect

the sarcomeric integrity of cardiomyocytes suffering from Ca2+ dysregulation, indicating that the

FoxO-MuRF1 signaling axis is a central regulator of the Ca2+-dependent growth and degradation of

striated muscles. The activity of the Cn-FoxO-MuRF1 signaling pathway identified in this study is

consistent with the roles of the FoxO-MuRF1 pathway in hypertrophy and atrophy responses in skel-

etal muscles (Sacheck et al., 2004; Stitt et al., 2004; Waddell et al., 2008) and suggests that

FoxO-MuRF1 signaling is critical to the maintenance of tissue homeostasis and the response of myo-

cytes to pathological stimuli. Furthermore, cardiac-specific overexpression of MuRF1 results in phe-

notypes resembling those observed in cardiomyopathy, including the breakdown of sarcomeres and

a dilated heart with reduced heart rate and decreased contractility, raising the possibility that misre-

gulation of MuRF1 contributes to the pathological progression of cardiovascular diseases. Interest-

ingly, cardiac patients carrying specific murf1 gene variants have a poor prognosis (Chen et al.,

2012; Su et al., 2014), suggesting that MuRF1 has a conserved role in the regulation of cardiac

structure and function from lower vertebrates to humans and raising an intriguing possibility that the

Cn-FoxO-MuRF1-proteosome pathway may be an attractive point of therapeutic intervention for car-

diomyopathies. The complete loss of ncx1h activity in tremblor mutant cardiomyocytes eliminates

Ca2+ cycling and causes embryonic lethality, an extreme condition that is more severe than what is

observed in patients with chronic heart disease (Ebert et al., 2005; Langenbacher et al., 2005).

Future studies using clinically relevant mammalian models will further illuminate the therapeutic

potential of targeting the Cn-FoxO-MuRF1-proteosome pathway in the context of cardiovascular

disease.

Figure 9. FoxO induces MuRF1 expression. Luciferase activity of the MuRF1a (�638) reporter cotransfected with

different foxo genes. Values on the y-axis are expressed relative to the luciferase activity of DMSO treated cells.

***p<0.001.
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Materials and methods

Zebrafish husbandry, chemical treatment and morpholino knockdown
Zebrafish tremblor tc318 heterozygotes were bred in the Tg(myl7:EGFP) background and raised as

previously described (Westerfield, 2000). Embryos were raised at 28.5˚C and staged as previously

described (Kimmel et al., 1995). For Cn or proteasome inhibition, embryos were treated with 10

mM FK506 (Sigma-Aldrich, St. Louis, MO) or 50 mM MG132 (Sigma-Aldrich) at 24 hpf. The morpho-

lino-modified antisense oligonucleotides targeting the translation initiation sites of murf1a and

murf1b (Table 1, Gene Tools) were microinjected at the 1- to 2 cell stage (8 ng each). This study was

performed in strict accordance with the recommendations in the Guide for the Care and Use of Lab-

oratory Animals of the National Institutes of Health. All of the animals were handled according to

approved institutional animal care and use committee (IACUC) protocols of the University of

Figure 10. FoxO3a regulates MuRF1 expression in the heart. (A) FoxO3a is predominantly localized in the

cytoplasm of 2-day-old wild type cardiomyocytes, but is concentrated in the nuclei of tre cardiomyocytes. FoxO3a

is pseudo colored in red and nuclei are labeled by DAPI in blue. Scale bar: 10 mm. (B) In situ hybridization showing

stronger MuRF1 signals in tre mutant and CA-foxo3a injected two dpf hearts compared to wild type siblings.

Murf1a expression in tre hearts is suppressed by DN-foxo overexpression or FK506 treatment. (C) Immunostaining

of a-actinin in three dpf hearts. Intact sarcomeres were detected in control (uninjected) and DN-foxo3a injected

tre hearts whereas disassembled sarcomeres were observed in tre and CA-foxo3a injected hearts. Scale bar: 5 mm.

(D) Model for Ca2+ overload-induced myofibril disarray. Calcineurin dephosphorylates FoxO leading to FoxO

nuclear translocation, MuRF1 expression and sarcomere disassembly.

DOI: https://doi.org/10.7554/eLife.27955.014
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California, Los Angeles. The protocol was approved by the Chancellor’s Animal Research Committee

of the University of California, Los Angeles.

Zebrafish transgenesis
Transgenic constructs, myl7:MuRF1a-IRES-EGFP and myl7:FLAG-foxo3a-IRES-EGFP, were generated

using the Tol2kit (Kwan et al., 2007). Wild type embryos were injected at the 1 cell stage with 10–

20 pg of the transgene plasmid and 20 pg of mRNA encoding Tol2 transposase. Embryos with car-

diac-specific EGFP expression were raised as founders.

Microarray and quantitative PCR
Wild type and tre mutant hearts were isolated at 48 hpf as previously described (Geoffrey Burns

and MacRae, 2006). Total RNA was purified using the RNeasy micro kit (Qiagen, Valencia, CA).

Microarray hybridization was performed in triplicate using the Affymetrix Zebrafish GeneChip con-

taining 15,617 genes. Data were analyzed using scripts written in the statistical programming lan-

guage R (R Development Core Team, 2014). Differentially expressed genes were identified using

linear models and multiple testing correction implemented in the Limma package (Smyth, 2004).

The relative expression levels of murf1a and murf1b in the wild type and tre hearts were determined

by quantitative PCR using the LightCycler 480 System (Roche Applied Science). GAPDH served as

the internal control for normalization. Primer sequences used in this study are listed in Table 1.

Table 1. Primers and morpholinos used in this manuscript

Experiment Target gene Sequence

Quantitative
RT-PCR

murf1a F: 5’- GGAAGAAAACTGCCAGGCACAG �3’
R: 5’- CTGGGTGATCTGCTCCAGAAGATG �3’

murf1b F: 5’- CAGGACAATGCTCAACGTGCC �3’
R: 5’- CTTGCTCTTTGCCAATACGCTCTAAGAG �3’

Molecular cloning* murf1a F: 5’- CTGAGGTACCAAGCAGTGAAGGTTA �3’
R: 5’- GCTAGGTACCAGTCTCTCATTGCTT �3’

murf1b F: 5’- CTATGGATCCCTGCAGGGAATCATTTAC �3’
R: 5’- GTTACTCGAGCATTTGTCAATGACCTTG �3’

foxo1a F: 5’- GTCTGAATTCCAGTATTGCTGGTACCATG �3’
R: 5’- CATTGCTAGCACTACCCAGACACCCAG �3’

foxo1b F: 5’- GTATGGATCCTTGGTGATGGCAGAACC �3’
R: 5’- GTATCTCGAGCAGCAGATGACATGTCTATC �3’

foxo3a F: 5’- GTATGGATCCGGAGTCGAGGAAATATGG �3’
R: 5’- GTATCTCGAGCAGTTGCTTTACAGTGGAC �3’

foxo3b F: 5’- GTATGGATCCCGACCAAGACAGTAAAGAG �3’
R: 5’- GTATCTCGAGCTGAGCAATTCCCATCAG �3’

foxo4 F: 5’- GTCTGAATTCCATCGCACAATGGAGG �3’
R: 5’- CATTGCTAGCCAACAGTGGAGTTAGCT �3’

foxo6a F: 5’- ATGAGGATCCAACTCCATTAGACACAACC �3’
R: 5’- GCTAGAATTCGTGTGATTGTTGAGGTCC �3’

foxo6b F: 5’- ATGAGGATCCCGGTTTCTTAAGCACAGAAG- 3’
R: 5’- ATGAGAATTCGACATTTATCCAGGCACC- 3’

MuRF1a(�6906)
MuRF1a(�639)
MuRF1a(�582)
MuRF1a(�460)
MuRF1a(�38)
Common Reverse primer for MuRF1

F: 5’- GTTAGCTAGCCGACTTACTCACTCC �3’
F: 5’- GTACTTGGAGCGGCCGCAATAA �3’
F: 5’- GTCAGCTAGCCCAACCCAGACAATATATTACT �3’
F: 5’- GTCGGCTAGCGGGAAATAATAATATTGTGATTG �3’
F: 5’- GACTGCTAGCCGGCTGGTATATAAGAC �3’
R: 5’- GAATCTCGAGTGCTGAGGTAGAGTC �3’

Morpholino Control
murf1a
murf1b

5’-CCTCTTACCTCAGTTACAATTTATA-3’
5’-TTTGACCCGTTTGGATGTCCATTGC-3
5’-AAGAGGCAGTTCGCTGAATGTCCAT-3’

*Restriction enzyme sites are underlined.

DOI: https://doi.org/10.7554/eLife.27955.015
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In vivo GFP reporter assay
An approximately 7.0 kb genomic fragment upstream of the zebrafish murf1a gene (ranging from –

6906 to +80 bp) was amplified from genomic DNA (Table 1). A deletion series of MuRF1a-EGFP

construct was generated using the ERASE-A-BASE system (Promega, Madison, WI). For transient

expression analysis, each deletion construct was digested with NheI and SalI to release the MuRF1a-

EGFP reporter and microinjected into 1 cell stage embryos. A minimum of 20 EGFP-positive

embryos of each group were examined at 1 and 2 days post fertilization using a Zeiss SV-11 epifluor-

escence microscope.

Whole-mount in situ hybridization, immunostaining and Western
analysis
Whole mount in situ hybridization, immunostaining and Western analysis were performed as previ-

ously described (Langenbacher et al., 2011; Cavanaugh et al., 2015). The antisense RNA probes

were synthesized from pCS2 +expression constructs containing a partial genomic fragment (foxo5a)

or full-length cDNA fragments (murf1a, murf1b, foxo1a, foxo1b, foxo3a, foxo3b, foxo4, and foxo5b)

(Table 1). Goat anti-MuRF1 (1:500 dilution, R and D Systems, AF5366) and rabbit anti-goat-HRP

(1:15,000 dilution, Thermo Fisher Scientific, 81–1620) were used for Western analysis. Phalloidin

(1:50, Sigma-Aldrich), anti-sarcomeric a-actinin (1:1000, clone EA53, Sigma-Aldrich), a-FLAG (1:100,

clone M2, Sigma-Aldrich) and Zn8 (1:100, Developmental Studies Hybridoma Bank, Iowa City, IA)

were used for immunostaining. Fluorescence images were acquired using an LSM 510 confocal

microscope (Zeiss, Germany) with a 40x water objective. Embryos were classified as having intact

sarcomeres if they exhibited at least five adjacent, clearly defined Z-lines marked by a-actinin in any

area of the ventricle.

Cardiac imaging and analysis
Videos of Tg(myl7:MuRF1-IRES-EGFP) and Tg(myl7:EGFP) hearts were taken at 30 frames per sec-

ond. Cardiac parameters were assessed by line-scan analysis as previously described (Shimizu et al.,

2015).

Cell-based luciferase assay
HEK293T cells (ATCC, Manassas, VA) were plated into 96-well plates at a density of 32000 cells per

well and transfected with 200 ng of the MuRF1a (�6906)- or MuRF1a (�638)-luciferase reporter con-

struct, 50 ng of the SV40-Renilla luciferase reporter construct and expression vectors (Cn, DN-Cn,

foxo3a, CA-foxo3a or DN-foxo3a). Cells were treated with 5 mM A23187 (Sigma-Aldrich), 0.5 mM

FK506 (Sigma-Aldrich) or 0.5 mM KN62 (Sigma-Aldrich). Luciferase activities were determined with

the Dual-Glo Luciferase Assay System (Promega) in triplicate at least three times, and the activity of

firefly luciferase was normalized to that of Renilla luciferase for transfection efficiency and cell viabil-

ity. The identity of the HEK293T cell line has been authenticated by STR profiling using the Promega

PowerPlexX16 System recommended by the American Type Culture Collection (Laragen, Inc., Culver

City, CA). No mycoplasma contamination was detected (Laragen, Inc.).

Statistics
Sample sizes with adequate statistical power were empirically determined based on previous experi-

ments. Samples were randomly allocated into control and experimental groups. Experiments of each

condition were performed at least three times on independent biological replicates. Results are pre-

sented as the mean ±S.E. p-values associated with all comparisons are based on unpaired two-sided

Student’s t-tests (n � 3) unless otherwise stated. All data values were included in the analysis.
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