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Ischemic stroke is a leading cause of death and disability worldwide. Currently, only a
limited number of drugs are available for treating ischemic stroke. Hence, studies aiming to
explore and develop other potential strategies and agents for preventing and treating
ischemic stroke are urgently needed. Ginseng Rb1 (GRb1), a saponin from natural active
ingredients derived from traditional Chinese medicine (TCM), exerts neuroprotective
effects on the central nervous system (CNS). We conducted this review to explore and
summarize the protective effects and mechanisms of GRb1 on cerebral ischemic injury,
providing a valuable reference and insights for developing new agents to treat ischemic
stroke. Our summarized results indicate that GRb1 exerts significant neuroprotective
effects on cerebral ischemic injury both in vivo and in vitro, and these network actions and
underlying mechanisms are mediated by antioxidant, anti-inflammatory, and antiapoptotic
activities and involve the inhibition of excitotoxicity and Ca2+ influx, preservation of
blood–brain barrier (BBB) integrity, and maintenance of energy metabolism. These
findings indicate the potential of GRb1 as a candidate drug for treating ischemic
stroke. Further studies, in particular clinical trials, will be important to confirm its
therapeutic value in a clinical setting.
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INTRODUCTION

When the brain becomes blocked by a blood clot and blood is prevented from reaching the brain, an
ischemic stroke occurs. Ischemic stroke, approximately accounting for 85% of all diagnosed strokes,
has the characteristics of high morbidity, high mortality, high disability, and high recurrence rates
and is mainly caused by cerebral ischemia and reperfusion (I/R) injury (CIRI) (Turley et al., 2005;
Eltzschig and Eckle, 2011). I/R is a pathological condition characterized by an initial restriction of
blood supply to an organ followed by the subsequent restoration of perfusion and concomitant
reoxygenation (Turley et al., 2005; Eltzschig and Eckle, 2011), which is one of the leading causes of
death worldwide (Turley et al., 2005; Woodruff et al., 2011; Feigin et al., 2014). I/R injury mainly
includes ischemic stroke, acute kidney injury, and myocardial infarction. Due to the interrupted
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blood supply to the CNS, cerebral infarction causes ischemic
stroke and other forms of CNS injury. As these mechanisms often
involve complex combinations of necrosis, apoptosis,
necroptosis, and autophagy, ischemic stroke–related
pathogenesis is not totally clear (Turley et al., 2005; Eltzschig
and Eckle, 2011). Based on accumulating evidence, once an
ischemic stroke occurs, the insufficient blood supply directly
stimulates neurons, causes the accumulation of glutamate,
overactivates a plethora of downstream signaling pathways,
and increases the intracellular calcium concentration, which
triggers energy metabolism disorders (Bolaños et al., 2009),
oxidative stress (Chamorro et al., 2016), Ca2+ overload,
excitatory neurotransmitter release, the immune-mediated
inflammatory response following acute ischemic stroke, and its
related apoptosis and necrosis processes (Kamel and Iadecola,
2012; Chamorro et al., 2016), finally resulting in ischemic
infarction of the brain. Hence, the main aim of acute stroke
treatment is to salvage the ischemic penumbra or volume of
hypoperfused, nonfunctional, yet still viable tissue surrounding
the infarcted core.

Currently, tissue plasminogen activator (TPA) is regarded as
the main effective pharmacological therapy and drug for ischemic
stroke (Turley et al., 2005; Woodruff et al., 2011; Chamorro et al.,
2016). Scholars have conducted extensive studies and developed
some neuroprotective drugs and other interventions for treating
ischemic injury (Tuttolomondo et al., 2011; Woodruff et al.,
2011), ranging from pharmacologically blocking
neurotransmitter receptors to intercepting cell death pathways,
as well as the induction of hypothermia or hyperoxygenation.
However, most of these studies failed to show the efficacy of any
of these promising strategies. The current existing

neuroprotective drugs remain limited and insufficient for the
clinical treatment needs for ischemic stroke (Turley et al., 2005;
Woodruff et al., 2011; Chamorro et al., 2016). Therefore, the
development of novel therapeutic strategies and agents for
preventing and treating ischemic stroke is urgently needed.

Panax ginsengC. A.Mey and P. notoginseng (Burk) F. H. Chen
are commonly used as natural medicinal plants in TCM (Hui
et al., 2010; Bao-Ying et al., 2014; Yang et al., 2014; Xie et al.,
2018a; Xie et al., 2018b), the roots and medicinal ingredients of
which have been in use for several hundred years.
Pharmacological studies have shown that P. notoginseng, P.
ginseng, and their extracts have many functions (Mancuso and
Santangelo, 2017; Kim, 2018), such as anti-inflammatory activity
(Allison and Ditor, 2014; Zheng et al., 2014; Zhang et al., 2015;
Jeon and Kim, 2016), antioxidant activity, blood glucose
regulation (Xie et al., 2016; Zhang et al., 2016), insulin
resistance improvement (Zhang and Jiang, 2012; Zhai et al.,
2018), inhibition of neuronal apoptosis (Li et al., 2014; Hou
et al., 2017; Yang et al., 2017), and neuroprotection (Xie et al.,
2018a; Xie et al., 2018b; Wang et al., 2016; Berge and Riise, 2015).
Hence, one of the main tasks is to identify natural active
substances and compounds that can be utilized for the
prevention and treatment of ischemic stroke.

Ginseng Rb1 (GRb1) is a ginsenoside glycol (Liu et al., 2015; Ju
et al., 2019) and one of the main active ingredients of P.
notoginseng and P. ginseng (Figure 1). GRb1 has been proven
to exert significant protective effects on the CNS, cardiovascular
system (Xie et al., 2018a; Xie et al., 2018b), and immune system
and possesses antitumor activities (Zhou et al., 2018; Zhou et al.,
2019a; Zhou et al., 2019b). As shown in Figure 1, GRb1 possesses
various pharmacological activities, including neuroprotective

FIGURE 1 | Natural sources, chemical structure, and main pharmacological activities of ginsenoside Rb1 obtained from P. notoginseng and P. ginseng. GRb1
exerts significant neuroprotective effects, but its efficiency and action network must be further explored and analyzed. GRb1, ginsenoside Rb1; I/R, indicates ischemia
and reperfusion.
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(Yang et al., 2008; Liu et al., 2013; Huang et al., 2015; Huang et al.,
2015; Ye et al., 2019), acute renal injury-protective (Wang et al.,
2008; Sun et al., 2012; Chen et al., 2019), cardiovascular-
protective (Wang et al., 2008; Xia et al., 2011; Zheng et al.,
2017; Li et al., 2020), lung injury-protective (Wang et al.,
2013; Chen et al., 2014; Jiang et al., 2015; Li et al., 2015), and
antiaging (Dong et al., 2017; Zhou et al., 2019a) effects, in many
in vitro and in vivo models.

Currently, accumulated experiments and data suggest that
GRb1 exerts neuroprotective effects both in vivo and in vitro and
has a great potential as a novel candidate agent for ischemic
stroke. To date, researchers have not clearly determined whether
GRb1 can be used to treat ischemic stroke and cerebral I/R injury.
No systematic review or analysis has been conducted to assess the
protective effects and mechanisms by which GRb1 combats
ischemic stroke and I/R injury (Figure 1). Hence, we
conducted this analysis of preclinical studies of the effect of
GRb1 on ischemic stroke. We searched the PubMed and
China National Knowledge Infrastructure databases via using
“Ginsenoside Rb1” and “Ischemia” as search terms. The PubMed
database was comprehensively searched up to September 2020,
and it showed 66 literatures; we excluded some irrelevant ones
and then divided them into several aspects to further analyze the
pharmacological effects and mechanisms of GRb1 in pre-treating
and treating CIRI. Furthermore, we manually searched for other
potential and relevant references, and there were no limitations in
the language of all publications.

In this review, we found that GRb1 might alleviate cerebral/
neural ischemia injury via its antiapoptotic, antioxidant, and anti-
inflammatory activities, and effects on mitochondrial
homeostasis, promoting neurogenesis, and improving brain
functional connections and interactions, which provides more
evidence for basic studies and further promotes the development
of GRb1 as a candidate drug for the clinical treatment of ischemic
stroke.

ANTIAPOPTOTIC EFFECTS AND NEURONS

Recent reports have suggested that GRb1, a natural saponin
ingredient of TCM, exerts remarkable neuroprotective effects
on the CNS (Ahmed et al., 2016), prevents and alleviates cerebral
I/R injury via anti-inflammatory activity, antioxidant activity,
enhanced neuroproliferation and neurodifferentiation, and
improved energy metabolism (Chen et al., 2010; Zhu et al.,
2012; Huang et al., 2015), confirming that Rb1 exerts
antiapoptotic effects on neurons.

First, in vivo experiments showed that Rb1 significantly
inhibited CA1 neuronal death caused by a 2-vessel occlusion
(2-VO) model in rats (Luo et al., 2014) and delayed neuronal
death in gerbils (Lim et al., 1997); noticeably reduced the infarct
size and neuronal deficits, relieved pathological changes (Yuan
et al., 2007), and decreased the number of neural apoptotic cells
(Wen et al., 1996) in rats with middle cerebral artery occlusion
(MCAO) (Lim et al., 1997; Yuan et al., 2007; Yang et al., 2008);
and scavenged free radicals (Lim et al., 1997) and improved
hippocampal blood flow at 5 min after transient forebrain

ischemia (Lim et al., 1997). Rb1 significantly prolonged the
response latency of ischemic gerbils and rescued a significant
number of ischemic CA1 pyramidal neurons (Wen et al., 1996;
Lim et al., 1997). Under abnormal ischemic microenvironmental
conditions, Rb1 evidently decreased the concentrations of
glutamic acid and Ca2+ (Wang et al., 2017), noticeably
alleviated memory deficits in rats, and reduced pyramidal
cellular necrosis and apoptosis in the hippocampus induced by
glutamate (Glu) and Ca2+ (Wang et al., 2017; Guo et al., 2018).
Additionally, Rb1 suppressed the loss of BBB integrity by
suppressing the induction of neuroinflammation in a model of
ischemic stroke (Chen et al., 2015). Based on these results, Rb1, an
effective neuroprotective drug, plays key roles in cerebral I/R
injury.

Second, in vitro experiments (Table 1) suggested that Rb1
might increase cell viability, inhibit oxygen and glucose
deprivation (OGD)–induced neuronal death, and reduce
autophagic vacuoles in SH-SY5Y cells (Luo et al., 2014),
changes that were blocked by the inhibitor LY294002. GRb1
significantly decreased the levels of free radicals, protected
hippocampal neurons from lethal damage caused by the
hydroxyl radical–promoting agent FeSO4 in vitro (Lim et al.,
1997), and markedly suppressed the uptake of Glu and overload
of Ca2+ in OGD-induced SH-SY5Y cells (Wang et al., 2017; Guo
et al., 2018). GRb1 also significantly reduced the levels of lactate
dehydrogenase (LDH) (Park et al., 2005; Li et al., 2016), nitric
oxide (NO), and superoxide (O-) (Zhu et al., 2012; Huang et al.,
2014). Thus, Rb1 might be regarded as an antiapoptotic agent
with neuroprotective effects.

Furthermore, GRb1 significantly inhibited the expression of
the proapoptotic genes Bax, Bad, and caspase-3 (Yang et al., 2008;
Gao et al., 2010), upregulated Bcl-2 and the ratio of Bcl-2/Bax in
vivo and in vitro (Yuan et al., 2007; Yang et al., 2008), increased
the expression of glial-derived neurotrophic factor (GDNF) and
brain-derived neurotrophic factor (BDNF) (Yuan et al., 2007;
Gao et al., 2010), and thus prevented neuronal death induced by
cerebral ischemia. GRb1 significantly increased the levels of Akt
phosphorylated at Ser473 (P-Akt) and reduced the expression
levels of LC3II and Beclin1, indicating that GRb1 might prevent
ischemic neuronal death by modulating autophagy activation
(Luo et al., 2014); moreover, GRb1 increased the levels of P-Akt
and P-mTOR, reduced P-PTEN levels in vivo and in vitro, and
ameliorated the abnormal microenvironment by activating the
P-AKT/P-mTOR pathway and inhibiting P-PTEN (Guo et al.,
2018). In contrast, the LY294002 treatment reversed these
changes induced by GRb1. Furthermore, GRb1 inhibited the
expression of NMDAR, increased the expression of glial
glutamate transporter 1 (GLT-1), and downregulated the levels
of cytochrome C (Cyt-C) in response to neuronal mitochondrial
stress, which reduced the excessive Glu and Ca2+ levels (Wang
et al., 2017; Guo et al., 2018).

In general, evidence from recent studies suggests that GRb1
may exert its antiapoptotic effects by regulating the
phosphoinositide 3-kinase (PI3K)-protein kinase B (AKT)-
TOR signaling pathways, inhibiting autophagy, alleviating
mitochondrial stress and apoptosis pathways, modulating the
expression of N-methyl-D-aspartate-receptor (NMDAR) and
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GLT-1, and improving neurogenesis and BDNF levels.
Nonetheless, currently, the mechanisms by which GRb1
regulates ischemic neuronal apoptosis are not completely
elaborated and summarized and should be further explored in
the future.

REGULATION OF NEUROINFLAMMATION
AND MICROGLIA

Although CIRI is a complex pathology caused by the interaction
of numerous pathophysiological factors (Allison and Ditor, 2014;
Anderson et al., 2014), accumulating evidence indicates that acute
inflammation and subsequent apoptosis and necrosis are
involved in the progression of a cerebral ischemic insult
(Jianhua et al., 2008; Eltzschig and Eckle, 2011; Jiang et al.,
2014; Tao et al., 2015). Recently, GRb1 was reported to exert
beneficial effects on cerebral ischemic stroke and to inhibit
inflammatory cascades in the acute phases of cerebral ischemia
(Wang et al., 2008; Zhu et al., 2012; Jiang et al., 2015).

According to recent studies (Table 2), GRb1 noticeably
reduces the infarct volume, significantly alleviates neurological
deficits, decreases neurological severity scores (Zhu et al., 2012;
Liu et al., 2013; Liu et al., 2018; Chen et al., 2020), preserves the
neuronal morphology and structure (Ke et al., 2014), improves
pathological changes (Liu et al., 2018), and inhibits the activation
of microglia in MCAO/R model rats (Zhu et al., 2012) and N9
microglia in vitro (Ke et al., 2014). These neuroprotective effects

may be involved in microglia-mediated CNS inflammation and
related neuronal damage in the acute phases of cerebral ischemia/
hypoxia.

On the one hand, ginsenoside GRb1 notably decreased the
activation of microglia induced by I/R (Zhu et al., 2012) and a
hypoxic coculture system (Ke et al., 2014) and significantly
reduced the levels of the interleukin (IL)-1β (Zhu et al., 2012;
Liu et al., 2013; Chen et al., 2015; Chen et al., 2020), tumor
necrosis factor-α (TNF-α) (Zhu et al., 2012; Ke et al., 2014; Liu
et al., 2018; Chen et al., 2020), IL-6 (Zhu et al., 2012; Liu et al.,
2018; Chen et al., 2020), and high mobility group protein 1
(HMGB1) mRNAs and proteins in brain tissue and serum (Liu
et al., 2018); on the other hand, GRb1 significantly decreased the
levels of NO (Chen et al., 2015), superoxide (Ke et al., 2014; Liu
et al., 2018), and nitric oxide synthase (Liu et al., 2018) produced
by microglia in vitro (Ke et al., 2014) and in vivo (Zhu et al., 2012;
Liu et al., 2018), reduced neuronal apoptosis (Ke et al., 2014; Liu
et al., 2018), and reduced the levels of cleaved caspase-3 and
caspase-9 (Ke et al., 2014; Liu et al., 2018).

Further studies revealed that GRb1 inhibited nuclear factor
kappa B (NF-κB) signaling pathways by decreasing the levels of
phosphorylated NF-κB/p65 and IB-kinase complex (IKK) and
downregulating HMGB1 and its related local inflammation (Ke
et al., 2014; Liu et al., 2018), which stimulate NF-κB translocation
and mitogen-activated protein kinase (MAPK) phosphorylation
triggered by HMGB-1/TLR4 (Lu et al., 2011; Procaccio et al.,
2014; Sun and Nan, 2016; Xie et al., 2019). Moreover, GRb1
reduced the expression levels of proinflammatory factors,

TABLE 1 | Antiapoptotic effects of GRb1 on cerebral I/R injury based on current reports and results.

Type Animal and
dose

Model Effect Mechanism CF

TGI SD rat: 20–40 mg/kg
SH-SY5Y: 1–10 μM

2-VO model OGD/R ↑ Cellular viability ↓ LC3II and Beclin1 Luo et al. (2014)
↓ Neuronal death ↑ PI3K/phosphor-Akt
↓ Autophagic vacuoles LY294002 Verify

TCI SD rats: 40 mg/kg MCAO ↓ Pathological changes ↑ Bcl-2 Yang et al. (2008)
↓ Apoptotic neural cells ↓ Bax

TFI Gerbils: 0.09–90 fM
Hippocampal neurons

MCAO FeSO4 treatment ↓ Free radicals ↓ Oxidative damage Lim et al. (1997)
↑ response latency ↓ Apoptosis
↑ Hippocampal CA1 neurons

TCI SD rats: 40 mg/kg MCAO ↓ Infarct and neuronal deficit ↑ GDNF Yuan et al. (2007)
↓ Apoptotic cells ↑ Bcl-2

TCI Gerbils: 10–20 mg/kg MCAO ↑ response latency and synapses ↓ Apoptosis Wen et al. (1996)
↓ Pyramidal neurons

TCI SD rats: 40 mg/kg MCAO ↑ Neurological functions ↑ BDNF Gao et al. (2010)
↑ Nestin-positive cells ↓ Caspase-3

TGI ICR mice: 5–40 mg/kg MCAO ↓ Infarction and brain edema ↑ Arginase 1 and IL-10 Chen et al. (2015)
↓ EB extravasation ↓ NOX-4 and NOX
↑ BBB integrity ↓ Free radicals
↓ MMP-9, IL-1β, and NO synthase Neuroinflammation

IAM SD rats: 25–100 mg/kg
SH-SY5Y cells: 10 μM

OGD/R Microperfusion ↓ Memory deficit pyramidal ↑ P-Akt/P-mTOR Guo et al. (2018)
↓ Necrosis and apoptosis ↓ P-PTEN
↓ Glu and Ca2+ Akt/mTOR/PTEN

IAM SD rats: 40 mg/kg Microperfusion ↑ rCBF and GLT-1 ↓ NMDAR and Cyt-C Wang et al. (2017)
↑ Neuronal ultrastructure ↓ Neuronal mitochondrial damage
↓ Glu and overload of Ca2+

TGI, transient global ischemia; 2-VO, 2-vessel occlusion model; TCI, transient cerebral ischemia; TFI, transient forebrain ischemia; IAM, ischemic abnormal microenvironment; MCAO,
middle cerebral artery occlusion; OGD/R, oxygen–glucose deprivation/reperfusion; GDNF, glial-derived neurotrophic factor; NO, nitric oxide; Glu, glutamate; MMP-9,matrix metalloprotein
9; IL, interleukin; BBB, blood–brain barrier; BDNF, brain-derived neurotrophic factor; rCBF, regional cerebral blood flow; GLT-1, glial glutamate transporter1; Cyt-C, cytochrome C; SD,
Sprague–Dawley; NOX, NADPH oxidase; EB, Evans blue; PI3K, phosphoinositide 3-kinase; AKT, protein kinase B; NMDAR, N-methyl-D-aspartate-receptor; CF, cited references.
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attenuated the activity of MMP-9 (Chen et al., 2015), upregulated
the expression of γ-aminobutyric acid (GABA) receptors in I/R
rats (Chen et al., 2020), protected BBB integrity in ischemic stroke
by suppressing neuroinflammation, decreased the production of
MMP-9 and NOX4-derived free radicals (Chen et al., 2015), and
regulated the probiotic Lac.H and GABA receptor levels (Chen
et al., 2020). Overall, GRb1 may exert a neuroprotective effect on
I/R-induced injury by suppressing neuroinflammation and
microglia-mediated inflammatory reactions.

ANTIOXIDANT EFFECTS AND
MITOCHONDRIA

Oxidative stress plays an important role, and reactive oxygen
species (ROS) is implicated in the tissue damage that occurs in
cerebral ischemic pathogenesis, which results in the production of
toxic molecules that alter cellular proteins, lipids, and ribonucleic
acids, leading to cell dysfunction or death (Crack and Taylor,
2005; Chamorro et al., 2016). Excessive ROS severely impair
mitochondria and their related energetic metabolism functions.
GRb1 exhibits various pharmacological activities, including
antioxidant (Dong et al., 2017; Li et al., 2019; Xu et al., 2019;
Ye et al., 2019), antiapoptotic, and neuroprotective properties.

First, the results of in vivo experiments (Table 3) showed that
GRb1 protected hippocampal CA1 neurons (Lim et al., 1997),
reduced free radicals (Chen et al., 2015), and possessed potential
for treating brain injuries (Yang et al., 2008); meanwhile, GRb1
increased superoxide dismutase (SOD) activity, decreased
malondialdehyde (MDA) contents in the serum and spinal
cord tissue (Ye et al., 2019), and inhibited oxidative stress and
extracellular signal-regulated kinase (ERK) activation in aged
mice exposed to cerebral ischemia (Dong et al., 2017). All of

the antioxidant effects of GRb1 are beneficial for reducing
neuronal death, mitochondrial damage, and astrocyte injury
induced by I/R, indicating that GRb1 may reduce pathological
changes and decrease neural cell apoptosis (Yang et al., 2008;
Chen et al., 2015).

Second, in vitro experiments (Table 3) confirmed that GRb1
significantly improved cell viability, decreased intracellular ROS
production, and increased catalase (CAT) activity and the
mtDNA copy number in OGD/R-induced astrocytes, thus
inhibiting oxidative phosphorylation (OXPHOS) (Xu et al.,
2019). GRb1 exerted obvious protective effects on the
mitochondria by distinctly attenuating MMP depolarization,
improving the efficiency of mitochondrial OXPHOS,
increasing the activities of complexes I, II, III, and V, and
increasing the level of adenosine triphosphate (ATP) following
OGD/R induction (Xu et al., 2019).

Further studies (Table 3) revealed the antioxidant effects of
GRb1. On the one hand, GRb1 significantly downregulatedNOX-4
expression and NOX activities in ischemic rat brain tissues
(Chen et al., 2015; Dong et al., 2017), inhibited ischemia-
stimulated NADPH oxidase gene expression, including NOX-1,
2, and 4 (Dong et al., 2017), and prevented ERK activation in
aged mice (Dong et al., 2017). On the other hand, GRb1
significantly suppressed mitochondrial damage, increased
the mitochondrial membrane potential (MMP) in OGD/
R-induced astrocytes (Xu et al., 2019), and thus improved the
antioxidant activity (CAT and SOD). GRb1 remarkably
increased aquaporin (AQP) 4 levels (Li et al., 2019), decreased
Bax expression (Yang et al., 2008), and upregulated Bcl-2 (Yang
et al., 2008), nerve growth factor (NGF), and BDNT expression (Li
et al., 2019) in vivo and in vitro. Thus, GRb1 is potentially useful
for treating brain injury, due to its antioxidant effects and
mitochondrial protection.

TABLE 2 | Neuroprotective effects of GRb1 on cerebral ischemia injury are mediated by suppressing neuroinflammation and microglia-mediated inflammatory reactions,
based on current reports and results.

Type Animal and dose Model Effect Mechanism CF

In vivo TCI SD rats: 40 mg/kg MCAO ↓ TNF-α, IL-6 ↓ p-NF-κB/p65 Zhu et al. (2012)
↓ Activation of microglia ↓ NF-κB pathway

In vitro Cortical neurons
N9 microglia

Hypoxic co-culture ↑ Cell viability ↓ Neuronal apoptosis Ke et al. (2014)
↑ Neuronal morphology ↓ Caspase-3 and microglia
↓ NO, superoxide, and TNF-α ↓ Inflammatory reaction

In vivo TCI SD rats: 40 mg/kg MCAO ↓ Neurologic defect degree ↓ IL-1β Liu et al. (2013)
↓ Cerebral infarction volume ↓ Inflammatory damage

In vivo TCI SD rats: 50–100 mg/kg MCAO ↓ TNF-α and IL-6 ↓ NF-κB pathway Liu et al. (2018)
↓ Infarct volume ↓ Cleaved caspase-3
↓ Neuronal apoptosis ↓ Caspase-9 and HMGB1
↓ NO synthase and NO

In vivo TGI ICR mice: 5–40 mg/kg MCAO ↑ BBB integrity ↓ Free radicals Chen et al. (2015)
↓ EB extravasation ↑ Arginase 1 and IL-10
↓ Infarction and brain edema ↓ NOX-4 and NOX
↓ MMP-9, IL-1β, and NO synthase ↓ Neuroinflammation

In vivo TGI SD rats: 50 mg/kg Probiotic Pseudo germ-free, MCAO ↓ Infarct size ↑ GABA Chen et al. (2020)
↓ Neurological deficit score ↑ Probiotics Lac.H
↓ IL-1β, IL-6, and TNF-α ↑ GABA receptors

TGI, transient global ischemia; TCI, transient cerebral ischemia; IL, interleukin; SD, Sprague–Dawley; MCAO, middle cerebral artery occlusion; TNF-α, tumor necrosis factor α; NF-κB,
nuclear factor-κB; NO, nitric oxide; MMP-9, matrix metalloprotein 9; BBB, blood–brain barrier; NOX, NADPH oxidase; EB, Evans blue; HMGB1, high mobility group protein-1; CF, cited
references.
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INHIBITION OF OTHER TYPES OF NEURAL
ISCHEMIC INJURY

Related studies have shown that GRb1 significantly alleviates I/R
injury of the kidney (Wang et al., 2008; Sun et al., 2012; Sun et al.,
2013; Chen et al., 2019) and brain (Chen et al., 2010; Zhu et al., 2012;
Huang et al., 2015). However, few reports have assessed spinal cord
ischemia–reperfusion injury (SCII). According to recent studies,
GRb1 reduces cell apoptosis induced by SCII by inhibiting
oxidative stress (Ye et al., 2019). GRb1 noticeably improves
hindlimb locomotor dysfunction in rats (Zhao et al., 2018),
increases SOD activity, decreases the MDA content in serum and
spinal cord tissue (Ye et al., 2019), and inhibits neuronal apoptosis.
The potential mechanisms may be tightly associated with promoting
the expression of survivin (Ye et al., 2019), downregulating the levels
of caspase-3 and phosphorylatedAsk-1 (p-Ask-1), and improving the
Bcl-2/Bax ratio (Zhao et al., 2018) in SCII rats. After the exposure of
spiral ganglion cells (SGCs)to transient cochlear ischemia, GRb1
significantly reduced the percentage of the auditory brainstem
response threshold shift and prevented hearing loss caused by
ischemic injury to SGCs in Mongolian gerbils (Fujita et al., 2007),
indicating that GRb1 might protect SGCs from ischemic injury.

In addition, GRb1 clearly increased the expression of NGF in
OGD/R-stimulated astrocytes (Li et al., 2019), upregulated BDNF
expression, and downregulated caspase-3 expression inMCAO/R

model rats (Yuan et al., 2007; Gao et al., 2010). Therefore, GRb1
may exert neuroprotective effects by promoting neurogenesis.

ANALYSIS OF SAFETY AND THERAPEUTIC
EFFECTIVENESS

Based on the above summarized findings (Tables 1–3), Rb1 has a
potential therapeutic value for ischemic stroke via
immunological, antioxidant, and neuroprotective effects.
However, the efficacy and safety of Rb1 for ischemic stroke in
human have not been tested, and its effective dose is not known.
Nevertheless, there is evidence that red ginseng extract, which
contains 20–30% of GRb1, at 23, 25, 50, and 100 mg with repeated
oral administration for 1–2 weeks, is safe and well tolerant in
healthy subjects (Kim, 2013; Jin et al., 2019; Choi et al., 2020). In
addition, randomized controlled studies showed that 200–400 mg
of ginsenosides or its preparations significantly ameliorated
neurological deficit (He et al., 2011) and improved working
memory and daily activities of patients with ischemic stroke
(Reay et al., 2010; He et al., 2011), indicating that a daily dose
of 40–120 mg of GRb1 may be safe and effective for treating
ischemic stroke. The effective dose of Rb1 tested in animal studies
with notably attenuated ischemia-induced cerebral I/R injury
ranges from 10 to 40 mg/kg (Tables 1–3), which is equivalent

TABLE 3 | Antioxidant effects of GRb1 on I/R neuronal injury mediated by the inhibition of oxidative stress and mitochondrial injury, increases in energy metabolism and
protection of the BBB, based on recent reports and results.

Type Animal and
dose

Model Effect Mechanism CF

In vitro I/R SD rats Astrocyte:
6.71–32.00 mg/ml

OGD/R ↓ Spinal cord edema ↑ AQP Li et al. (2019)
↑ Neurological function ↑ NGF
↓ Cellular membrane
permeability

↑ BDNF

In vivo TCI SD rats: 40 mg/kg MCAO ↑ Nestin-positive cells ↑ BDNF Gao et al. (2010)
↑ Neurological functions ↓ Caspase-3
Histological feature ↑ Promotion of neurogenesis

In vitro I/R C57BL/6J Mice Astrocytes: 10 μM OGD/R ↓ Intracellular ROS ↑ Efficiency of mitochondrial oxidative
phosphorylation

Xu et al. (2019)
↑ Cell viability, CAT, and ATP
↑ mtDNA copy number
and MMP
↑ Complexes I, II, III, and V

In vivo TCI C57 Mice: 0.5–10 mg/kg MCAO ↓ Brain trauma ↓ ERK activation Dong et al.
(2017)↓ NOX-1, -2, and -4 ↓ Oxidative stress

↓ NADPH oxidase gen
In vivo TGI ICR mice: 5–40 mg/kg MCAO ↑ BBB integrity ↓ Free radicals Chen et al.

(2015)↓ EB extravasation ↑ Arginase 1 and IL-10
↓ Infarction and brain edema ↓ NOX-4 and NOX
↓ MMP-9, IL-1β, and NO
synthase

↓ Neuroinflammation

In vivo SCII SD rats: 20–80 mg/kg SCII ↑ SOD; ↓ MDA ↓ Apoptosis Ye et al. (2019)
↑ Neurological function ↑ Survivin protein

In vivo SCII SD rats: 15 mg/kg SCII ↓ Spinal cord apoptosis ↑ Bcl-2/Bax ratio Zhao et al.
(2018)↑ Hindlimb locomotor function ↑ Caspase-3 and p-Ask-1

In vivo
TCHI

Mongolian gerbils: 250 μg/ml Occluding
BVA

↓ Hearing loss ↓ Neural cell apoptosis Fujita et al.
(2007)↓ Auditory brainstem response

SCII, spinal cord I/R injury; TGI, transient global ischemia; TCI, transient cerebral ischemia; TCHI, transient cochlear ischemia; SD, Sprague–Dawley; NO, nitric oxide; MMP-9, matrix
metalloprotein 9; BBB, blood–brain barrier; NOX, NADPH oxidase; EB, Evans blue; OGD/R, oxygen–glucose deprivation/reperfusion; MCAO, middle cerebral artery occlusion; AQP,
aquaporin; NGF, nerve growth factor; BNDF, brain-derived neurotrophic factor; ROS, reactive oxygen species; CAT, catalase; ATP, adenosine triphosphate; MMP, mitochondrial
membrane potential; mtDNA, mitochondrial DNA; ERK, extracellular signal-regulated kinase; SOD, superoxide dismutase; MDA, malondialdehyde; BVA, bilateral vertebral arteries; CF,
cited references.
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to 0.8–3.2 mg/kg in human (calculated from dose in mice) or
48–192 mg Rb1 for a 60 kg person. Thus, an effective
concentration of Rb1 may be achievable in human.

CONCLUSION AND REMARKS

GRb1, a natural active ingredient, exerts neurotrophic and
neuroprotective effects on the CNS. In the present review
(Figure 2), we summarized the available reports on the therapeutic
effects and the molecular mechanisms of GRb1 in cerebral I/R injury.
The currently available data and our summarized results suggest that
GRb1 may alleviate cerebral/neural ischemic injury via multiple
pharmacological activities, such as its antiapoptotic, antioxidant,

and anti-inflammatory properties, preservation of mitochondrial
homeostasis, promotion of neurogenesis, and maintenance of the
probiotic balance. Based on these results, GRb1, a special natural
compound, has bright prospects for the prevention and treatment for
ischemic stroke with a pharmacological network of multiple effects,
targets, and molecular pathways.

Cerebral I/R injury is a complicated pathological process
(Turley et al., 2005; Eltzschig and Eckle, 2011; Chamorro
et al., 2016) that includes various types of I/R damage to the
neurovascular unit (NVU), which is composed of nerve cells,
BBB, microglia, and extracellular matrix (Lok et al., 2007; Guo
and Lo, 2009; Lo, 2017). For many decades, neuronal injury has
been considered the main cause of functional deficits after brain
injury. Accordingly, almost all therapeutic strategies were

FIGURE 2 | Summarized effects and molecular network analysis of GRb1 in cerebral ischemic injury. Rb1 exerts significant neuroprotective effects on the
neurovascular unit (NVU) and other neural cells via the network actions of its antiapoptotic, antioxidant, and anti-inflammatory activities; mitochondrial homeostasis;
neurogenesis promotion; and regulation of the probiotic balance. The molecular mechanisms involve multiple effects, multiple targets, and multiple pathways. NVU,
neurovascular unit; CMVE, cerebral microvascular endothelium. GRb1, ginsenoside Rb1; I/R, indicates ischemia and reperfusion. CC, cleaved caspase.
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targeted at rescuing neurons and repairing neuronal damage.
However, emerging data from both experimental models and
patients now clearly show that, in patients with stroke, saving
neurons alone may also be insufficient for treating brain infarcts
(Lok et al., 2015) as brain functional connections and interactions
among the different components in the NVU are also important
(Cai et al., 2017; Jiang et al., 2018). Coincidentally, as shown in
Figure 2, GRb1 exerts significant antiapoptotic effects on neurons
exposed to cerebral ischemia stroke, suppresses
neuroinflammation and microglia-mediated inflammatory
stress in the acute phase of I/R, and protects ischemia-exposed
astrocyte cells. Meanwhile, GRb1 inhibits oxidative stress and
mitochondrial damage in cells exposed to I/R, preserves the BBB
integrity, improves energy metabolism, and promotes
neurogenesis. Moreover, GRb1 may alleviate spinal cord
ischemia–reperfusion injury (SCII) and regulate the probiotic
balance (Figure 2). Hence, GRb1 obviously plays a vital role not
only in neural protection but also via the inhibition of NVU
damage caused by CIRI.

From the perspective of protecting the NVU, GRb1 prevents
I/R-induced cell apoptosis and death, suppresses excessive Ca2+,
glutamate, and RNS levels, alleviates mitochondrial stress,
improves neurogenesis, and reduces the cerebral infarct
volume in vitro and in vivo, indicating that GRb1 may exert
antiapoptotic effects and protect the NVU from CIRI (Figure 2).
Although the mechanisms have not been completely elaborated,
our summarized results (Table 1) further reveal the molecular
mechanisms and vital biomarkers of the effects of GRb1 on CIRI,
which may be related to the PI3K-AKT-mTOR, autophagy, and
mitochondrial apoptosis signaling pathways, NMDA receptor
and GLT-1 targets, and neurogenesis.

Neuroinflammation underlies the etiology of multiple
neurodegenerative diseases and stroke (Eldahshan et al., 2019). In
the acute phase of ischemic stroke, resident microglia and recruited
macrophages assume an M2 phenotype, and the immune-mediated
inflammatory response is activated, resulting in the secretion of a
number of inflammatory cytokines (IL-6, IL-1β, and TNF-α and the
proteolytic enzymes MMP 3 and 9) (Jiang et al., 2018).
Proinflammatory cytokines further trigger severe inflammatory
stress, aggravate BBB dysfunction (Jiang et al., 2018), and induce
NVU damage. All these events lead to the exacerbation of ischemic
injury. Based on the summarized results listed in Table 2, we found
that GRb1 inhibited the NF-KB, HMGB-1/TLR4, and HMGB1
signaling pathways, regulated the MAPK signaling pathway,
increased the expression of GABA receptors, and reduced the
levels of proinflammatory cytokines (IL-6, MMP-9, IL-1β, and
TNF-α). By regulating these pathways, GRb1 suppresses
neuroinflammation and microglia-mediated inflammatory
reactions, reduces the damage caused by inflammatory factors,
improves the integrity and normal functions of the BBB, and thus
inhibits necrosis and apoptosis associated with anti-inflammatory
activities at the early stages after stroke, which plays a fundamental

role in themaintenance of CNS homeostasis, BBB structural integrity,
and normal functions of the NVU.

The neutralization of oxidative and nitrosative stresses is a
potential therapeutic strategy because the ischemic brain is
highly susceptible to oxidative damage (Crack and Taylor, 2005;
Xie et al., 2020). After CI/RI, the production of ROS increases,
leading to lipid peroxidation, mitochondrial and DNA damage,
protein nitration, and mitochondrial injury that evokes the
mitochondrial release of apoptosis inducers (Bolaños et al., 2009;
Chamorro et al., 2016). According to recent studies (Table 3), GRb1
decreases the production of ROS, MDA, and NO, improves
antioxidant defenses (CAT, SOD, and GSH-px), and inhibits
I/R-induced mitochondrial injury in vivo and in vitro. Moreover,
it remarkably increases AQP4 levels (Li et al., 2019), decreases Bax
expression (Yang et al., 2008), upregulates the expression of Bcl-2
(Yang et al., 2008), downregulates NOX-4 expression and NOX
activities, and inhibits the cascade reactions of caspase-3 and
caspase-9. Thus, GRb1 exerts significant neuroprotective effects
due to its antioxidant activity and protects the mitochondria in the
treatment of cerebral ischemic injury.

In summary, this review addresses the effects and efficacy of
GRb1 by discussing research results obtained using cellular and
animal models; the summarized results and analysis indicate that
GRb1, a new candidate agent, has bright prospects for preventing
and treating ischemic stroke.

However, unrecognized actions and limitations of GRb1 still
exist. 1) Researchers have not clearly determined whether GRb1
alleviates ischemic injury of the cerebral microvascular endothelium
(CMVE) of the NVU. 2) Because of the lack of clinical testing and
validation of preclinical data, the use of GRb1 as a new drug for
treating ischemic stroke remains a challenge. 3) The existing research
and data only showed the effects of GRb1 on I/R in the early stages
and acute phases. Therefore, currently available clinical trials and
data collection are urgently needed, and future studies should focus
on the effects and molecular mechanisms of GRb1 on the NVU
system and the recovery phase of ischemic stroke.
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