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MOTIVATION Recent technological advancements have enabled genome-wide quantification of DNAme in
large human populations. However, in diseases like cancer, abnormal DNA methylation patterns may only
be present in specific subsets of a patient cohort. We aim to develop a statistical approach that models the
distribution of DNAme in large patient cohorts and to characterize patient subsets with distinct DNAme pro-
files. This epigenetic subtyping can be essential in improving personalized diagnosis, treatment, and drug
discovery.
SUMMARY
DNAmethylation (DNAme) is amajor epigenetic factor influencing gene expression with alterations leading to
cancer and immunological and cardiovascular diseases. Recent technological advances have enabled
genome-wide profiling of DNAme in large human cohorts. There is a need for analytical methods that can
more sensitively detect differential methylation profiles present in subsets of individuals from these hetero-
geneous, population-level datasets. We developed an end-to-end analytical framework named ‘‘EpiMix’’ for
population-level analysis of DNAme and gene expression. Compared with existing methods, EpiMix showed
higher sensitivity in detecting abnormal DNAme that was present in only small patient subsets. We extended
the model-based analyses of EpiMix to cis-regulatory elements within protein-coding genes, distal en-
hancers, and genes encoding microRNAs and long non-coding RNAs (lncRNAs). Using cell-type-specific
data from two separate studies, we discover epigenetic mechanisms underlying childhood food allergy
and survival-associated, methylation-driven ncRNAs in non-small cell lung cancer.
INTRODUCTION

DNA methylation (DNAme) is one of the major epigenetic modifi-

cations that occurs primarily at the cytosine of cytosine-guanine

dinucleotide (CpG) sequences in humans. This process involves

the addition of a methyl (CH3) group to DNA, and it plays a critical

role in regulating gene expression and various biological pro-

cesses. Aberrant DNAme has been associated with the develop-

ment and progression of numerous human diseases.1–3 Recent

advances in microarray and next-generation sequencing tech-

nologies have enabled genome-wide quantification of DNAme

at single-nucleotide resolution. Due to its quantitative and cost-

effective nature, microarray-based technology has emerged as

themethodof choice for profilingDNAme in large human cohorts.

Notably, The Cancer Genome Atlas (TCGA) project has utilized

microarrays to generate DNAme profiles for over 10,000 speci-

mens representing 33 cancer types. Several other public reposi-

tories, such as the Gene Expression Omnibus (GEO) database,

also host DNAme data across a wide range of complex diseases.
Cell
This is an open access article under the CC BY-N
Over the last decade, a number of computational approaches

have been developed to identify genes that are abnormallymeth-

ylated in human diseases. Some methods are tailored to the

analysis of DNAme data from bisulfite sequencing,4–7 while

others are designed for array-based data or can be adapted to

both platforms.8–12 Many existing methods identify differentially

methylated loci by comparing all samples from an experimental

group with those from a control group. This type of comparison

works well when the experimental population is assumed to be

homogeneous. However, when the study population is large,

abnormal DNAme may be present in only a subset of the pa-

tients, and this intra-population variation has been observed in

cancers and many other diseases.13–15 In addition, results from

epigenetic screening of normal tissues showed that infrequent

alterations in DNAme are associated with an increased risk of

neoplastic transformation.16–18 Detecting such infrequent

DNAme changes may improve the identification of early carcino-

genetic events and individuals at risk for developing cancers. In

caseswhere abnormal DNAme occurred in only a small subset of
Reports Methods 3, 100515, July 24, 2023 ª 2023 The Author(s). 1
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the patients, existing methods are not capable of capturing the

signals of differential methylation. Therefore, there is a critical

need to use a statistical approach to model the distribution of

DNAme in large patient cohorts and to identify patient subsets

with differential DNAme profiles. This epigenetic subtyping can

be essential in improving personalized diagnosis, treatment,

and drug discovery.

Furthermore, gene expression in mammalian cells is a result of

acomplexprocesscoordinatedbyabroad rangeof genomic reg-

ulatory elements.19,20 In many studies, CpG sites were mapped

to genes based on linear genomic proximity. This mapping logic

assumes that DNAme impacts transcriptional activity only when

the genes are overlapped or close to the differentially methylated

sites. However, emerging evidence has shown that distal en-

hancers, which may locate at a great linear genomic distance

from their target genes, play a critical role in orchestrating spatio-

temporal gene expression programs.21 Abnormal DNAme at en-

hancers was frequently reported in cancers and many other dis-

eases.22,23 Therefore, the analysis of enhancer methylation can

improve our understanding of how gene expression is regulated

across physiological and pathological conditions.

Existing computational tools focus on the DNAme analysis of

protein-codinggenes.However, non-codingRNAs, suchasmicro-

RNAs (miRNAs) and longnon-codingRNAs (lncRNAs), also play an

important role in regulating cellular processes.24,25 Recent studies

have shown that DNAme is a major epigenetic mechanism regu-

lating ncRNA expression.26,27 With existing methods, it is chal-

lenging todecipherhowDNAmeaffects theexpressionofncRNAs.

Here, we present EpiMix, a comprehensive analytical frame-

work for the population-level analysis of DNAme and gene

expression. Using a model-based computational approach,

EpiMix is developed to identify abnormal DNAme at diverse

genomic elements, including cis-regulatory elements within or

surrounding protein-coding genes, distal enhancers, and genes

encoding miRNAs and lncRNAs. In two separate studies, we

showed that EpiMix identified methylation-driven pathways in

T cells from childhood food allergy and methylation-driven

ncRNAs in patients with non-small cell lung cancer. To improve

usability, we disseminated EpiMix’s algorithms in Bio-

conductor,28 enabling end-to-end DNAme analysis. Further-

more, we developed a web tool for interactive exploration and

visualization of EpiMix’s results (https://epimix.stanford.edu).

Overall, EpiMix offers an approach for discovering epigenetic

biomarkers for disease subtypes and therapeutic targets for

personalized medicine.

RESULTS

Overview of EpiMix workflow
EpiMix is an end-to-end analytical framework for modeling

DNAme in heterogeneous patient cohorts and identifying differ-
Figure 1. The EpiMix workflow

EpiMix framework includes four functional modules: downloading, preprocessing

custom datasets or can automatically download and preprocess data from pu

analytic modes: regular, enhancer, miRNA, and lncRNA. Eachmode uses a custom

output from the DNAme modeling is a matrix of functional CpG-gene pairs, illustra

with gene expression. With the functional analysis module, users can perform di
ential DNAme associated with gene expression. The EpiMix

framework consists of four functional modules: (1) data down-

loading, (2) preprocessing, (3) DNAme modeling, and (4) func-

tional analysis (Figure 1). To analyze DNAme at functionally

diverse genomic elements, we implemented four alternative an-

alytic modes: ‘‘regular,’’ ‘‘enhancer,’’ ‘‘miRNA,’’ and ‘‘lncRNA.’’

The regular and enhancer modes aim to detect differential

DNAme associated with the expression of protein-coding genes.

Specifically, the regular mode analyzes DNAme sites within or

immediately surrounding the genes, while the enhancer mode

focuses on distal enhancers. The miRNA and lncRNA modes

were built for the detection of DNAme affecting the expression

of miRNAs and lncRNAs, respectively. With the functional anal-

ysis module, users can perform comprehensive exploratory an-

alyses of the methylation-driven genes. This module integrates

both in-house-developed and existing computational methods

to enable diverse functional analyses and visualization of the dif-

ferential DNAme.

Identifications of abnormal DNAme present in small
sample subsets
To assess the sensitivity of EpiMix in detecting differential

DNAme, we performed simulation experiments using a dataset

containing DNAme measurement of quiescent CD4+ T cells

and antigen-activated T cells from 103 human subjects.29 The

dataset was generated using the InfiniumMethylationEPIC array.

We aimed to generate synthetic populations with differential

DNAme that occurred only in specific subsets of the samples.

First, we randomly selected a subset of CpGs (n = 300) from

the quiescent group as baselines, such that the average beta

values of the baseline CpGs ranged from 0.1 to 0.9. Next, we

randomly selected a subset of samples from the activation group

and combined themwith the baseline group, while we controlled

the number of samples and themean difference in DNAme levels

between the two groups. The final proportions of samples from

the activation group in the combined dataset ranged from 3%

to 50%, and the mean differences in beta values ranged from

0.1 to 0.7 (Figure 2A; STAR Methods). Finally, we compared

the DNAme of the synthetic population with the baseline popula-

tion (Figure 2A).

Our simulation experiments showed that the sensitivity of

EpiMix was determined by the magnitude of differences in

DNAme between the quiescent and the activated subjects.

With a delta beta of 0.1, EpiMix was able to detect differential

DNAme that was present in 3%–25%of the synthetic population,

with a mean minimum detection threshold of 11%, correspond-

ing to absolute sample count of 13 (Figures 2B and 2C). When

the delta beta was 0.2 or higher, the minimum detection

threshold ranged from 3% to 10%, with a mean threshold of

3.4% (absolute sample count = 4) (Figures 2B and 2D). These re-

sults indicated that EpiMix was able to detect abnormal DNAme
, methylation modeling, and functional analysis. EpiMix accepts user-provided

blic repositories. The methylation modeling module provides four alternative

algorithm to analyze DNAme at a specific type of genomic element. Onemajor

ting the differentially methylated CpGs whose DNAme states were associated

verse analytical tasks for the differentially methylated genes.
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Figure 2. Evaluation of EpiMix performance using simulated data

(A) Design of the simulation study.

(B) Correlation between the delta beta values and the minimum detection threshold for the prevalence (left axis) and actual count (right axis) of the activated

samples in the experimental group. The simulation was repeated 300 times using a different CpG site at each time, and the mean detection threshold is shown.

(legend continued on next page)
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present in only small subsets of the tested population, and its

sensitivity increased with larger differences in DNAme levels.

Next, we compared the performance of EpiMix with other sta-

tistical methods for identifications of differential DNAme,

including the F-test used in Minfi,10 the hierarchical linear model

(HLM) used in RnBeads,12,30 and the t test used in iEVORA.17

Notably, the primary purpose of iEVORA was to identify CpGs

with differential variances in preneoplastic tissues, and the differ-

ential methylation test was used only as an optional step for

ranking the differentially variable features.16–18 When the differ-

ential DNAme was present in 3% of the population, EpiMix de-

tected the differential methylation signals at 1,747 CpG sites,

whereas the other methods did not capture any differential

DNAme (Figure 2E). When the differential DNAme was present

in 5% of the population, EpiMix identified 3.1 times more differ-

entially methylated CpGs than iEVORA and 3.6 timesmore CpGs

thanMinfi and RnBeads.Minfi and RnBeads only detected CpGs

with high magnitude differences in DNAme (with an average

delta beta of 0.6). In contrast, EpiMix detected CpGs with delta

beta ranging from 0.1 to 0.7, with an average threshold of 0.3.

When the prevalence of differential DNAme was 15% or higher,

EpiMix detected a similar number of CpGs as the other three

methods. These results indicated that EpiMix had higher sensi-

tivity to detect differential DNAme, especially when the differen-

tial methylation was present in small sample subsets.

Modeling of DNAme at cis-regulatory elements within
protein-coding genes
To test the regular mode of EpiMix, we used the complete data-

set of antigen-activated T cells and quiescent T cells (n = 103

subjects per group).29 In the activated T cells, 1,090 CpGs

were differentially methylated compared with the quiescent cells

(Figure 3A). By integrating sample-matched RNA sequencing

(RNA-seq) data, we identified 748 protein-coding genes tran-

scriptionally associated with these CpGs (Table S1). Among

the differentially methylated CpGs, 746 (68.4%) CpGs associ-

ated with 504 genes were hypomethylated and 327 (30%)

CpGs associated with 238 genes were hypermethylated (Fig-

ure 3A). These findings indicated a widespread loss of DNAme

induced by antigens, consistent with the results from previous

reports.29 Gene Ontology (GO) analysis showed that the hypo-

methylated genes were associated with lymphocyte proliferation

(e.g., CCND2, CCND3, CDK6, CDK14), T cell activation (e.g.,

BCL2, CCL5, HLA-DPA1, HLA-DRB1 [human leukocyte antigen

DRB1]), glycoprotein biosynthesis (e.g., AGO2, ALG9, B3GNT5,

B4GALT5), and cytokine receptor activity (IL1R1, IL1R2, IL21R,

IL23R) (Table S2). This result confirmed that EpiMix identified dif-

ferential DNAme associated with T cell activation.

The differential methylation of many CpGs was observed only

in a subset of patients. For instance, the HLA-DRB1 gene was

found to be hypomethylated in the antigen-activated T cells of
(C) Density plots showing the mixture models when delta beta was 0.1 and the

group.

(D) Density plots showing the mixture models when delta beta was 0.3 and the

group.

(E) Number of differentially methylated CpGs detected by different methods when

For all methods, the same set of CpGs (n = 2, 700) was used.
only 25% of the subjects, while the majority (75%) had a normal

methylation state similar to the quiescent T cells (Figure 3B). As

expected, the gene expression levels of HLA-DRB1were signifi-

cantly increased in the hypomethylated subjects compared with

those with normal methylation levels (Figure 3C). Overall, the

prevalence of hypomethylation ranged from 5.9%–100%, with

a mean prevalence of 69.6% (Figure 3D). The prevalence of hy-

permethylation ranged from 5.8%–100%, with a mean preva-

lence of 47.3% (Figure 3E). These results indicated that the

response to antigen stimulation in T cells varied between

individuals.

We next investigated the genomic distribution of the differen-

tially methylated CpGs. 39% (39.5%of the CpGswere located at

the promoters, and 56.4% were located at introns (Figure S1A).

To determine the enrichment of abnormal DNAme at various

genomic regions, we analyzed publicly available chromatin

immunoprecipitation sequencing (ChIP-seq) data of human

naive CD4+ T cells. To correct the background genomic distribu-

tion of CpG probes within the DNAme array, we used Monte

Carlo-based permutation tests to calculate a ratio of observed

to expected overlap between the differentially methylated sites

and histone modification-enriched regions.31 Our analysis re-

vealed that the differentially methylated CpGs were significantly

enriched at active promoters marked by H3K4me3 and

H3K27ac, active enhancers marked by H3K4me1, and, to a

lesser extent, actively transcribed gene bodies marked by

H3K36me3 (Figure S1B). These results demonstrated that

EpiMix was able to identify aberrant DNAme at lineage-defining

cis-regulatory elements.

To allow users to explore the genomic locations and chromatin

states associatedwith differentially methylated sites, EpiMix fea-

tures genome browser-style visualization. We demonstrated this

functionality by showcasing two regions of the interleukin-recep-

tor gene IL21Rwhere hypomethylation occurred (Figure 3F). The

first region was located at the promoter, which overlapped with

DNase I hypersensitivity sites and activating histone modifica-

tions (i.e., H3K4me1, H3K4me3, and H3K27ac). The second re-

gion was located at the 30 untranslated region, enriched with his-

tone modifications marking for active enhancers (i.e., H3K4me1

and H3K27ac). Consistent with the observed DNA hypomethyla-

tion, IL21R expression levels were significantly increased

(Table S1; Wilcoxon rank-sum test, p < 3.19E�08).

Identification of functional DNAme at distal enhancers
in food allergy
To demonstrate the enhancer mode of EpiMix, we investigated

the impact of food allergy on DNAme in CD4+ T cells from 82

allergic patients and 21 non-allergic controls from a publicly

available dataset.29 We hypothesized that the differential

response of T cells to antigen-induced activation may be linked

to allergic status. To identify allergy-associated changes in
differential methylation was present in 3%, 5%, and 25% of the experimental

differential methylation was present in 3%, 5%, and 25% of the experimental

the differential methylation was present in from 3% to 25% of the population.

Cell Reports Methods 3, 100515, July 24, 2023 5



Figure 3. Identifications of differential

DNAme resulting from antigen-induced T cell

activation

(A) Proportions of the hypo-, hyper-, and dual-

methylated CpGs in antigen-activated T cells. The

dual-methylated CpGs refer to the CpGs that were

hypomethylated in some individuals and hyper-

methylated in some other individuals.

(B and C) Mixture model of a CpG associated with

the HLA-DRB1 gene (B) and HLA-DRB1 gene

expression levels in different mixtures (C). Red in-

dicates hypomethylation (n = 26), while blue in-

dicates normal methylation (n = 77). Gene expres-

sion levels were compared with Wilcoxon rank-sum

test.

(D and E) Density plots showing the prevalence

distribution of the (D) hypo- and (E) hypermethylated

CpGs.

(F) Genome-browser style visualization of the chro-

matin state, DM values, and transcript structure of

the IL21R gene. The hypomethylated CpGs are

labeled in red. The DM value represents the mean

difference in beta values between the hypomethy-

lated subjects vs. the normally methylated subjects.

DM = 0: normal methylation; DM < 0: hypo-

methylation.
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DNAme, we compared antigen-activated T cells from the allergic

patients with those from the non-allergic controls. Using a per-

mutation approach (Figure S2; STAR Methods), we found 107

differentially methylated enhancers that were functionally linked

to the expression of 119 genes (Figure 4A). The number of target

genes of each enhancer ranged from 1 to 3, resulting in 131 sig-

nificant enhancer-gene pairs (Table S3). This result is consistent

with previous studies showing that enhancers typically loop to

and are associated with the activation of 1–3 promoters.32,33

Of the functional enhancers, 21 out of 107 (19.6%) enhancers

associated with 24 genes were hypomethylated, while 82 out

of 107 (76.7%) enhancers associated with 92 genes were hyper-

methylated (Figure 4A). This result indicated that there was a

global gain of DNAme at enhancers in food allergy.

The genomic distance between enhancers and their target

genes ranged from 4.5 kb to 1.7 Mb, with a median distance of
6 Cell Reports Methods 3, 100515, July 24, 2023
148 kb (Figure 4B). In a previous study, Jin

et al. used the high-throughput chromo-

some conformation capture (Hi-C) assay

to investigate promoter-enhancer interac-

tions and showed that approximately 25%

of the enhancer-promoter pairs are within

a 50 kb range and approximately 57%

span 100 kb or greater genomic distance,

with amediandistance of 124kb.34 Another

study by Rao et al. showed that the dis-

tance between enhancers and promoters

spans from 40 kb to 3 MB, with a median

distance of 185 kb.35 Our data agree with

these experimentally generated results.

To further characterize the enhancer-

gene linkage, we investigated how often
the functional enhancers associated with the nearest gene pro-

moter. We ranked the 20 adjacent genes of each enhancer by

their genomic distance to the enhancer. As shown in Figure 4C,

only 6.1% of the times did the enhancer associate with the near-

est promoter, whereas the majority of the enhancers skipped

one or more intervening genes to associate with promoters

farther away. In line with his result, a previous study using the

chromosome 5C assay showed that only �7% of the time did

the distal elements loop to the promoter of the nearest gene,

whereas the majority of enhancers bypass the nearest promoter

and loop to promoters farther away.36 These results confirmed

that EpiMix identified true distal cis-regulatory events.

Genes linked to the differentially methylated enhancers were

related to the lipid metabolism (LDLR, CAT, LPIN2, SREBF1,

PIK3C2B) and T cell activation (CASP3, MALT, PRKCZ,

SMAD3). As shown in Figure 4D, the enhancer linked to the



Figure 4. Identifications of differentially methylated enhancers associated with food allergy

(A) Proportions of the hypo-, hyper-, and dual-methylated enhancers in children with food allergy.

(B) Distribution of the linear genomic distance between enhancers and their gene targets.

(C) For each functional enhancer, the 20 adjacent genes were ranked by genomic distance. Bars show the proportions of the functionally linked genes in each

rank.

(D) Mixture model of the LDLR gene (top panel) and LDLR gene expression levels in different mixtures (bottom panel). Red indicates normal methylation (n = 72),

while blue indicates hypermethylation (n = 10). Gene expression levels were compared by Wilcoxon rank-sum test.

(E) Integrative visualization of the chromatin states and the adjacent genes of the hypermethylated enhancer shown in (D). The genes in the functional CpG-gene

pairs are shown in red, while the others are shown in black.

(F) Enriched TF motifs and odds ratios for the differentially methylated enhancers. To find significantly enriched motifs, we used all the distal CpGs as the

background and the functional enhancers as the targets.
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LDLR gene was hypermethylated in 12.2% of the allergic pa-

tients, and the gene expression of LDLR was significantly

decreased in the hypermethylated patients. Integrative visualiza-

tion (Figure 4E) showed that the hypermethylated enhancer over-

lapped with the DNase I hypersensitivity site and was enriched

with histone modifications marking for active enhancers,

including H3K4me1 and H3K27ac and, to a lesser extent,

H3K4me3andH3K9ac. The LDLR gene encodes a low-density li-

poprotein receptor that transports cholesterol from the blood into

the cell, which plays a critical role in regulating T cell lipid meta-

bolism.37 Our results suggested that T cells from a small subset
of the allergic patientsmay have an abnormal lipidmetabolic pro-

file due to enhancer hypermethylation.

Enhancers are enriched for sequences bound by site-specific

transcription factors (TFs). Hypermethylation of enhancers can

suppress gene transcription by decreasing the binding affinity

of TFs.38,39 To investigate potential regulatory mechanisms

through which abnormal enhancer methylation impacted gene

expression and susceptibility to food allergy, we carried outmotif

enrichment analysis of the differentially methylated enhancers

identified byEpiMix. Our analysis revealed significant enrichment

of binding sites for several key TFs that play critical roles in
Cell Reports Methods 3, 100515, July 24, 2023 7
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regulating immune gene activation in T cells, including Jun-

related factors (JUN, JUND), Fos-related factors (FOS, FOSL1,

FOSL2, FOSB), BATF-related factors (BATF, BATF3), and inter-

feron-regulatory factors (IRF2, IRF5, IRF7) (Figure 4F; Table S4).

These findings are consistent with previous studies showing

that dysregulation of these TFs can lead to aberrant immune re-

sponses and contribute to the development of allergies.40,41

Our results demonstrated that the abnormal DNAme at en-

hancers affected the target gene response of these TFs and

increased the subsequent risk for developing food allergy.

Identification of methylation-driven miRNAs in human
lung cancer
To demonstrate the miRNA mode of EpiMix, we used a lung

adenocarcinoma dataset containing DNAmeandmiRNA expres-

sion profiles of 457 tumors and 32 adjacent normal tissues.42

Since both tumors and normal lung tissues are composed ofmul-

tiple cell types, including epithelial cells, fibroblasts, hematopoi-

etic cells, and endothelial cells, DNAme and gene expression

profiles collected at the tissue level (‘‘bulk’’) may not accurately

reflect alterationspresent in specificcell types.43,44Since thema-

jority of DNAme alterations in lung cancers have been found to

occur in epithelial cells,45,46we aimed at identifyingDNAmealter-

ations specific to the epithelial cell population. To resolve the

confounding effects of other cell types, we leveraged previously

validated computational methods to estimate the proportions of

epithelial cells and infer epithelial-specific methylomes and tran-

scriptomes (Figure S3; STARMethods).We then validated our re-

sults using an independent dataset of lung cancer epithelial

cells.46 Our results showed that the majority (86.6%–88.4%) of

the differentially methylated CpGs identified from the indepen-

dent dataset were also detected using our deconvoluted data

for epithelial cells (Figure S4). To further demonstrate the effec-

tiveness of the deconvolution procedures, we compared the

hypo- and hypermethylated CpGs identified using the bulk tissue

data with those identified from the deconvoluted data. While the

bulk data led to the discovery of a greater number of differentially

methylated CpGs, the overlap with the independent validation

dataset was found to be 32%–45% lower than that of the decon-

voluted data (Figures S4B and S4D). These results underscored

the effectiveness of the deconvolution procedure in removing

noise from the DNAme data, enabling us to obtain a more accu-

rate assessment of epithelial-specific DNAme alterations.

Using the deconvoluted data of epithelial cells, we identified

272 differentially methylated CpGs that were associated with

the expression of 92 miRNA genes (Figure 5A; Table S5). Among

these CpGs, 138 (50.8%) CpGs associated with 66 genes were

hypomethylated, and 55 (20.2%) CpGs associated with 37

genes were hypermethylated. 65% (63.6%) of the functional

CpGs were located at the miRNA promoters, and this proportion

was significantly higher than randomly selected CpGs (Fig-

ure S1C; Fisher’s exact test, p = 0.003). To further investigate

these findings, we analyzed publicly available ChIP-seq data of

lung and found that the differentially methylated regionswere en-

riched with histone modifications (i.e., H3K27ac, H3K4me1, and

H3K4me3) marking for actively transcribed promoters and en-

hancers (Figure S1D). The prevalence of hypomethylation

ranged from 1.1% to 66.7%, with a mean prevalence of 18%
8 Cell Reports Methods 3, 100515, July 24, 2023
(Figure 5B). Similarly, the prevalence of hypermethylation ranged

from 2.6% to 83.7%, with a mean prevalence of 24.9% (Fig-

ure 5C). These results indicated that the majority of differential

DNAme associated with miRNA genes occurred in less than

25% of the patient population.

miRNAs are essential regulators of gene expression, medi-

ating the destabilization and translational suppression of target

messenger RNAs.47 To gain systematic insight into the biological

functions of the methylation-driven miRNAs, we curated experi-

mentally validated miRNA targets from the literature,48 resulting

in a preliminary set of 10,374 protein-coding genes associated

with 78 miRNAs. To further refine this list in the context of lung

cancers, we compared messenger RNA expression levels of

each target gene between patients with abnormal states of the

miRNA regulator with those with normal methylation states

(STAR Methods). This led to the discovery of 4,430 protein-cod-

ing genes whose messenger RNA expression levels were signif-

icantly altered in the expected direction with their miRNA regula-

tors. Functional enrichment analysis of these miRNA targets

revealed their associations with the regulation of cell cycle

(e.g., CCNE1, CDK4), focal adhesion (e.g., COL4A2, VEGFA),

and PD-L1 expression and PD-1 checkpoint pathway (e.g.,

CD274,CD28) (Figures 5D–5F; Table S6). These results provided

mechanistic insights into how abnormal DNAme of miRNAs con-

tributes to the development and progression of lung cancer.

We next investigated whether the DNAme of miRNAs was

associated with patient survival.49 Among the 92 methylation-

driven miRNAs, we identified 22 miRNAs whose methylation

states were significantly correlated with patient survival

(Table S7; log rank test, p < 0.05). Half (11/22, 50%) of the miR-

NAswere hypomethylated, and the others (11/22, 50%) were hy-

permethylated. Some of the miRNAs were already known to be

associated with lung cancer survival, such as MIR29C,50

MIR34A,51 and MIR148A.52 However, we also identified many

new survival-associated miRNAs. We found thatMIR30A, which

was related to the PD-L1 checkpoint pathway, was hypermethy-

lated in 8.6% of the patients, and the hypermethylated patients

showed significantly worse survival than the normallymethylated

patients (Figures 5F and 5G; hazard ratio = 1.50, p = 0.001). Next,

MIR1292 was hypomethylated in 8.6% of the patients, and the

hypomethylated patients had significantly worse survival (Fig-

ure 5H; hazard ratio = 1.39, p = 0.0008). These results demon-

strated that EpiMix enabled us to identify miRNAs that were

differentially methylated in only small patient subsets yet had a

significant impact on patient prognosis. The data suggested

that targeting miRNA expression can be a therapeutic strategy

to inhibit tumor progression and improve patient survival.

Identification of methylation-driven lncRNAs in human
lung cancer
To demonstrate the lncRNA mode, we analyzed the same lung

adenocarcinoma dataset.42 Compared with protein-coding

genes, lncRNAs are shorter, lower expressed, less evolutionarily

conserved, and expressed in a more tissue-specific manner.53

To precisely quantify lncRNA expression from RNA-seq data,

we utilized our previously developed pipeline.54 We combined

the transcriptome annotations from GENCODE and NON-

CODE.55 Raw sequencing reads were aligned to the combined



Figure 5. Identifications of differentially methylated miRNA-coding genes in human lung cancers

(A) Proportions of the hypo-, hyper-, and dual-methylated CpGs of miRNAs in lung cancer.

(B‒C) Density plots showing the (B) prevalence distribution of the differentially methylated miRNAs in lung cancers (n = 457), (B) prevalence of hypomethylation,

and (C) prevalence of hypermethylation.

(D‒F) Network visualization of the methylation-driven miRNAs and their target genes related to the (D) cell cycle pathway, (E) focal adhesion, and (F) PD-L1

expression and PD-L1 checkpoint pathway. Blue squares: miRNAs, yellow circles: miRNA targets.

(G) Mixture model of the MIR30A gene (left panel) and Kaplan-Meier survival curves of patients in different mixtures (right panel). Red indicates normal

methylation, and blue indicates hypermethylation. Gene expression levels were compared by Wilcoxon rank-sum test.

(H) Mixture model of theMIR1292 gene (left panel) and Kaplan-Meier survival curves of patients in different mixtures (right panel). Red indicates hypomethylation,

and blue indicates normal methylation.
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transcriptome reference and quantified using the Kallisto-Sleuth

algorithm.56,57 This pipeline allowed us to detect the expression

of 2,475 lncRNAs, which was three times higher compared with

the lncRNAs detected by the traditional STAR-HTSeq pipeline.

We then computationally deconvoluted bulk DNAme and

lncRNA expression data of each sample to epithelial-specific

DNAme and lncRNA expression values, and we aimed at identi-

fying epithelial-specific DNAme alterations in cancers compared

with normal tissues (Figure S3; STAR Methods).
We found 397 CpGs functionally associated with the expres-

sion of 132 lncRNAs in epithelial cells (Figure 6A; Table S8). Of

these CpGs, 146 (36.8%) CpGs associated with 69 genes were

hypomethylated, and 187 (47.1%) CpGs associated with 73

genes were hypermethylated. 72% of the functional CpGs

were located at the promoters, and this proportion was signifi-

cantly higher than randomly selected CpGs (Figure S1E; Fisher’s

exact test, p < 0.0001). The differentially methylated regions

were enriched with histone modifications marking for actively
Cell Reports Methods 3, 100515, July 24, 2023 9



Figure 6. Identifications of differentially methylated lncRNA-coding genes in human lung cancers

(A) Proportions of the hypo-, hyper-, and dual-methylated CpGs of lncRNA genes in epithelial cells from lung cancers.

(B and C) Density plot showing the prevalence distribution of the (B) hypo- and (C) hypermethylated lncRNAs in the lung cancer cohort (n = 457).

(D) Mixture models of the LINC00881 gene at two different CpG sites. Red indicates normal methylation, and blue indicates hypermethylation.

(E) Integrative visualization of the transcript structure, DM values, and chromatin state associated with the LINC00881 gene. DM = 0: normal methylation; DM > 0:

hypermethylation.

(F) Kaplan-Meier survival curves of patients in the normally methylated and the hypermethylated mixtures. Red indicates normal methylation, and blue indicates

hypermethylation.

(G) Schematic representation of the DM valuematrix. The rows correspond to CpG sites, and the columns correspond to patients. DM values represent the mean

differences in DNAme levels between patients in each mixture component identified in the experimental group compared with the control group. At each CpG

site, patients in the same mixture component have the same DM values.

(H) Consensus matrix showing patient clusters based on the DM values of lncRNAs (n1 = 120, n2 = 74, n3 = 72, n4 = 50, n5 = 133).

(I) Kaplan-Meier survival curves of patients in different clusters.

(J) Proportions of PP, PI, and TRU subtypes in different patient clusters. Fisher’s exact test was used to compare subtype distributions (S2 vs. S5: p < 0.0001).

(K) Top 20 enriched GO terms of the methylation-driven lncRNAs in lung cancer. DM, differential methylation; PP, proximal proliferative; TRU, terminal respiratory

unit; PI, proximal inflammatory.
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transcribed promoters and enhancers, including H3K27ac,

H3K4me1, and H3K4me3 (Figure S1F).

The majority of differential methylation events were detected

in less than half of the patient cohort. The prevalence for hypo-

methylation ranged from 1.8% to 53%, with a mean value of

19.8% (Figure 6B), and the prevalence for hypermethylation

ranged from 0.6% to 68.2%, with a mean value of 18.9% (Fig-

ure 6C). For instance, LINC00881 was hypermethylated at

CG11931463 in 15.7% of the patients and CG00673344 in

7.9% of the patients (Figure 6D). Both CpGs were located at

the promoter (Figure 6E). Further analysis revealed that the hy-

permethylation of LINC00881 was associated with significantly

worse patient survival (Figure 6F; log rank test, p < 0.01). These

data demonstrated that many lncRNAs exhibit differential

methylation in only a small subset of patients with lung cancer,

and these events were associated with clinical outcomes.

One of the major outputs from EpiMix is a differential methyl-

ation (DM) value matrix, which reflects the homogeneous sub-

populations of samples with a particular methylation state (Fig-

ure 6G). An application of the DM value matrix is to identify

DNAme-associated subtypes, where patients are clustered

into robust and homogeneous groups based on their differential

DNAme profiles. Using unsupervised consensus clustering, we

discovered five DNAme subtypes (S1–S5) (Figure 6H). S5 had

a significantly higher proportion of females (89/133 = 66.9%)

compared with S1 (54/120 = 45.0%), S2 (36/74 = 48.6%), and

S4 (16/50 = 32%) (Figure S5A; Fisher’s exact test, p < 0.01).

Importantly, patients from S5 had significantly better survival

than those in S2 (Figure 6I; log rank test, p = 0.007). To assess

how our classifications of lung adenocarcinomawere associated

with published classifications, we compared our patient annota-

tions with those based on molecular and histopathological fea-

tures: (1) terminal respiratory unit (TRU), (2) proximal inflamma-

tory (PI), and (3) proximal proliferative (PP).42 We found that the

TRU was significantly enriched in cluster S5 compared with

S2, whereas S2 was enriched with the PI subtype (Figure 6J).

This result was consistent with previous studies showing that

the TRU has a favorable prognosis compared with the other sub-

types, while the PI subtype has the worst prognosis.42 In addi-

tion, S5 had a significantly lower number of patients with TP53

mutations compared with S2 (Figure S5A). However, the propor-

tions of patients with KRAS and BRAFmutations were not signif-

icantly different between patient groups.

To demonstrate the advantage of using the DM value matrix

for identifying clinically relevant patient subsets, we compared

the clustering results obtained from using the DM value matrix

to those obtained from using raw beta values of the differentially

methylated CpG sites (n = 397 sites). The patient subsets identi-

fied using raw beta values had low cluster consensus, and no

significant association was found between patient subsets and

survival outcome (Figures S5B and S5C). These results demon-

strated that the DNAme subtypes discovered by EpiMix had

prognostic values.

To investigate the biological functions of the differentially

methylated lncRNAs, we curated 4,552 protein-coding genes

transcriptionally associated with 76 lncRNAs.58 GO analysis

showed that the protein-coding genes were primarily associated

with the regulation of lymphocyte activation, immune response,
and DNA replication (Figure 6K; Table S9). These results indi-

cated how DM of lncRNAs was involved in the regulation of

lung cancer development and progression.

DISCUSSION

In this study, we present EpiMix, a comprehensive analytic

framework for population-level analysis of DNAme and gene

expression. We packaged the EpiMix algorithms in R, enabling

end-to-end DNAme analysis. To enhance the user experience,

we also implemented a web-based application (https://epimix.

stanford.edu) for interactive exploration and visualization of

EpiMix’s results (Figure 7). EpiMix offers a range of diverse func-

tionalities, including automated data downloading, preprocess-

ing,methylationmodeling, and functional analysis. The seamless

connection of EpiMix to data from TCGA program and the GEO

database enables DNAme analysis on a broad range of dis-

eases. Here, we showed that EpiMix identified methylation-

driven pathways in food allergy and lung cancer. However,

EpiMix is not limited to these disease areas and can be readily

applied to any other diseases.

EpiMix uses a beta mixture model to decompose the DNAme

profiles in large patient populations. It enabled us to resolve the

epigenetic subtypes within the patient population and pinpoint

the individuals carrying differential DNAmeprofiles.We identified

five DNAme subtypes in lung cancers using the DM values of

lncRNAs. Patients of subtype 2 had significantly worse survival

than patients of subtype 5, indicating that the DNAme subtypes

discovered by EpiMix had prognostic values. The biological

interpretation of DNAme subtypes requires the integration of

data from other modalities, such as genetic mutations, lifestyle

history, and other etiological features.

In addition, EpiMix was able to detect abnormal DNAme that

was present in only small subsets of a patient cohort. In our simu-

lation study, EpiMix detected more differentially methylated

CpGs compared with existing methods when the DM occurred

in only a small patient subset. Using the real lung cancer dataset,

we identified miRNAs that were differentially methylated in only

1.1%of the patient population and lncRNAs differentially methyl-

ated in 0.6% of the patient population. We showed that over half

of themiRNAs and lncRNAswere differentiallymethylated in only

less than 20% of the patients. This unique feature of EpiMix to

detect differential DNAme in small patient subsets enables us

to identify epigenetic mechanisms underlying disease pheno-

types. It can also be used to discover new epigenetic biomarkers

and drug targets for improving personalized treatment.

Another feature of EpiMix is its ability to model DNAme at func-

tionally diverse genomic elements. This includes cis-regulatory el-

ements within or surrounding protein-coding genes, distal en-

hancers, and genes encoding miRNAs and lncRNAs. To model

DNAme at distal enhancers, we selected the enhancers from the

ENCODE and ROADMAP consortiums, in which enhancers of

over a hundred human tissues and cell lines were identified using

the chromatin-state discovery (ChromHMM).59 Since enhancers

are cell-type specific, EpiMix allows the users to select enhancers

of specific cell types or tissues. In this study, we selected the en-

hancers of human blood and T cells, leading to the discovery of

40,311 CpGs of enhancers. In addition to enhancers, many other
Cell Reports Methods 3, 100515, July 24, 2023 11
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Figure 7. Screenshots of the EpiMix web application

(A) Interactive data filters and visualization of functional CpG-gene pair matrix.

(B) Visualization of the mixture model of the SLC16A4 gene in lung cancer.

(C) Genome-browser style visualization of the lncRNA gene LINC00881 in lung cancer.

(D) Kaplan-Meier survival curves of patients with different methylation states of the miRNA gene MIR34A in lung cancer.
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regulatory elementswere identified from theROADMAPstudies.59

These include active transcription start site proximal promoters,

zinc finger protein genes, bivalent regulatory elements, poly-

comb-repressed regions, and many others. By customizing the

‘‘chromatin state’’ parameter of EpiMix, users can target the

DNAme analysis to any of these regulatory modules.

Despite the critical biological functions of ncRNAs, there are

no existing tools that specifically analyze DNAme regulating their

transcription. To analyze DNAme of miRNA genes, we utilized

the miRNA annotation from miRBase, the largest and consis-

tently updated knowledge base of miRNAs.60 In addition, we

selected CpGs at miRNA promoters by using a recent database

that integrates the information of miRNA transcription start sites

(TSSs) from 14 genome-wide studies across different human cell

types and tissues.61 This led to the discovery of 17,192 CpGs

associated with 1,484 miRNAs in the HM450 array and 23,379

CpGs associated with 1,759 miRNAs in the EPIC array. With

miRNA-seq data provided, EpiMix can select differential DNAme

that was associated with miRNA expression. Different from

profiling protein-coding gene expression, measuring miRNA

expression requires special library preparation strategies that
12 Cell Reports Methods 3, 100515, July 24, 2023
capture small RNAs from total RNAs.62 Users are preferentially

needed to supply miRNA expression data obtained from proper

library preparation strategies.

Similarly, custom methods are needed to accurately quantify

lncRNAexpression fromRNA-seq.Weadopted the data process-

ing pipeline developed from our previous study.54 With this pipe-

line, we combined the transcriptome annotations fromGENCODE

and NONCODE. Raw sequencing reads were aligned to the com-

bined transcriptome reference and quantified using the Kallisto-

Sleuth algorithm.56,57 Using this pipeline, we detected the expres-

sion of over 2,400 lncRNA genes. In this study, we have used our

pipeline to generate lncRNA expression profiles for all the cancers

in TCGA database, and users can retrieve these data with EpiMix.

Note, if users plan to use EpiMix on non-TCGA datasets, they are

encouraged to use this pipeline to profile lncRNA expression.

Future work will aim to extend the use of EpiMix to whole-

genome bisulfite sequencing and to further improve the scalabil-

ity. Furthermore, the rapid development of single-cell technolo-

gies enables coassay of DNAme and gene expression in thou-

sands of cells. EpiMix can be used to identify differential

DNAme that was present in only small subsets of a cell
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population. Therefore, a joint analysis of single-cell methylome

and transcriptome holds great promise for substantiating our

goals, and the analytical framework presented here will be a

valuable component for future research and applications.

Limitations of the study
Since EpiMix is designed for the analysis of data from large pa-

tient cohorts and the microarray-based DNAme assays are

currently the most cost-effective approach for DNAme profiling,

we tailored EpiMix to the analysis of microarray-based data.

Future work is to extend the use of EpiMix to methylation

sequencing data (e.g., bisulfite sequencing) and to further

improve the scalability that would accommodate a broader

range of applications.
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ation Oncology, Charité - Universitätsmedizin Berlin), and Gautam Machiraju
for helpful comments and suggestions. Research reported here was further

supported by the National Cancer Institute (NCI) under awards R01

CA260271, U01 CA217851, and U01 CA199241. The content is solely the re-

sponsibility of the authors and does not necessarily represent the official views

of the National Institutes of Health.

AUTHOR CONTRIBUTIONS

Conceptualization, Y.Z., K.B., and O.G.; methodology, Y.Z. and O.G.; investi-

gation, Y.Z. and J.J.; writing – original draft, Y.Z.; writing – review & editing,

Y.Z., J.J., K.B., and O.G.; funding acquisition, resources, and supervision,

O.G.

DECLARATION OF INTERESTS

The authors declare no competing interests.

Received: January 3, 2023

Revised: April 12, 2023

Accepted: June 1, 2023

Published: June 22, 2023

REFERENCES

1. Li, J., Li, L., Wang, Y., Huang, G., Li, X., Xie, Z., and Zhou, Z. (2021). In-

sights into the role of DNA methylation in immune cell development and

autoimmune disease. Front. Cell Dev. Biol. 9, 757318. https://doi.org/10.

3389/fcell.2021.757318.

2. Si, J., Yang, S., Sun, D., Yu, C., Guo, Y., Lin, Y., Millwood, I.Y., Walters,

R.G., Yang, L., Chen, Y., et al. (2021). Epigenome-wide analysis of DNA

methylation and coronary heart disease: a nested case-control study. Elife

10, e68671. https://doi.org/10.7554/elife.68671.

3. Zheng, Y., Luo, L., Lambertz, I.U., Conti, C.J., and Fuchs-Young, R. (2022).

Early dietary exposures epigenetically programmammary cancer suscep-

tibility through Igf1-mediated expansion of the mammary stem cell

compartment. Cells 11, 2558. https://doi.org/10.3390/cells11162558.

4. Akalin, A., Kormaksson, M., Li, S., Garrett-Bakelman, F.E., Figueroa, M.E.,

Melnick, A., and Mason, C.E. (2012). methylKit: a comprehensive R pack-

age for the analysis of genome-wide DNA methylation profiles. Genome

Biol. 13, R87. https://doi.org/10.1186/gb-2012-13-10-r87.

5. Park, Y., and Wu, H. (2016). Differential methylation analysis for BS-seq

data under general experimental design. Bioinformatics 32, 1446–1453.

https://doi.org/10.1093/bioinformatics/btw026.

6. Korthauer, K., Chakraborty, S., Benjamini, Y., and Irizarry, R.A. (2019).

Detection and accurate false discovery rate control of differentially meth-

ylated regions from whole genome bisulfite sequencing. Biostatistics 20,

367–383. https://doi.org/10.1093/biostatistics/kxy007.

7. Wang, X., Hao, D., and Kadarmideen, H.N. (2021). GeneDMRs: an R pack-

age for gene-based differentially methylated regions analysis. J. Comput.

Biol. 28, 304–316. https://doi.org/10.1089/cmb.2020.0081.

8. Wang, D., Yan, L., Hu, Q., Sucheston, L.E., Higgins, M.J., Ambrosone,

C.B., Johnson, C.S., Smiraglia, D.J., and Liu, S. (2012). IMA: an R package

for high-throughput analysis of Illumina’s 450K Infinium methylation data.

Bioinformatics 28, 729–730. https://doi.org/10.1093/bioinformatics/

bts013.

9. Warden, C.D., Lee, H., Tompkins, J.D., Li, X., Wang, C., Riggs, A.D., Yu,

H., Jove, R., and Yuan, Y.-C. (2013). COHCAP: an integrative genomic

pipeline for single-nucleotide resolution DNAmethylation analysis. Nucleic

Acids Res. 41, e117. https://doi.org/10.1093/nar/gkt242.

10. Aryee, M.J., Jaffe, A.E., Corrada-Bravo, H., Ladd-Acosta, C., Feinberg,

A.P., Hansen, K.D., and Irizarry, R.A. (2014). Minfi: a flexible and compre-

hensive Bioconductor package for the analysis of Infinium DNA methyl-

ation microarrays. Bioinformatics 30, 1363–1369. https://doi.org/10.

1093/bioinformatics/btu049.
Cell Reports Methods 3, 100515, July 24, 2023 13

https://doi.org/10.1016/j.crmeth.2023.100515
https://doi.org/10.1016/j.crmeth.2023.100515
https://doi.org/10.3389/fcell.2021.757318
https://doi.org/10.3389/fcell.2021.757318
https://doi.org/10.7554/elife.68671
https://doi.org/10.3390/cells11162558
https://doi.org/10.1186/gb-2012-13-10-r87
https://doi.org/10.1093/bioinformatics/btw026
https://doi.org/10.1093/biostatistics/kxy007
https://doi.org/10.1089/cmb.2020.0081
https://doi.org/10.1093/bioinformatics/bts013
https://doi.org/10.1093/bioinformatics/bts013
https://doi.org/10.1093/nar/gkt242
https://doi.org/10.1093/bioinformatics/btu049
https://doi.org/10.1093/bioinformatics/btu049


Article
ll

OPEN ACCESS
11. Silva, T.C., Coetzee, S.G., Gull, N., Yao, L., Hazelett, D.J., Noushmehr, H.,

Lin, D.-C., and Berman, B.P. (2019). ELMER v.2: an R/Bioconductor pack-

age to reconstruct gene regulatory networks from DNA methylation and

transcriptome profiles. Bioinformatics 35, 1974–1977. https://doi.org/10.

1093/bioinformatics/bty902.

12. M€uller, F., Scherer, M., Assenov, Y., Lutsik, P., Walter, J., Lengauer, T., and

Bock, C. (2019). RnBeads 2.0: comprehensive analysis of DNA methylation

data. Genome Biol. 20, 55. https://doi.org/10.1186/s13059-019-1664-9.

13. Shaknovich, R., Geng, H., Johnson, N.A., Tsikitas, L., Cerchietti, L.,

Greally, J.M., Gascoyne, R.D., Elemento, O., and Melnick, A. (2010).

DNA methylation signatures define molecular subtypes of diffuse large

B-cell lymphoma. Blood 116, e81–e89. https://doi.org/10.1182/blood-

2010-05-285320.

14. Chen, X., Zhang, J., and Dai, X. (2019). DNAmethylation profiles capturing

breast cancer heterogeneity. BMC Genom. 20, 823. https://doi.org/10.

1186/s12864-019-6142-y.

15. Schenkel, L.C., Aref-Eshghi, E., Rooney, K., Kerkhof, J., Levy,M.A.,McCon-

key, H., Rogers, R.C., Phelan, K., Sarasua, S.M., Jain, L., et al. (2021). DNA

methylation epi-signature is associated with twomolecularly and phenotyp-

ically distinct clinical subtypes of Phelan-McDermid syndrome. Clin. Epige-

net. 13, 2. https://doi.org/10.1186/s13148-020-00990-7.

16. Teschendorff, A.E., Jones, A., Fiegl, H., Sargent, A., Zhuang, J.J., Kitch-

ener, H.C., and Widschwendter, M. (2012). Epigenetic variability in cells

of normal cytology is associated with the risk of future morphological

transformation. Genome Med. 4, 24. https://doi.org/10.1186/gm323.

17. Teschendorff, A.E., Gao, Y., Jones, A., Ruebner, M., Beckmann, M.W.,

Wachter, D.L., Fasching, P.A., andWidschwendter, M. (2016). DNAmethyl-

ation outliers in normal breast tissue identify field defects that are enriched in

cancer. Nat. Commun. 7, 10478. https://doi.org/10.1038/ncomms10478.

18. Teschendorff, A.E., and Relton, C.L. (2018). Statistical and integrative sys-

tem-level analysis of DNAmethylation data. Nat. Rev. Genet. 19, 129–147.

https://doi.org/10.1038/nrg.2017.86.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited Data

DNA methylation and RNA-seq data

of human CD4+ T cells

Gene Expression Omnibus - NCBI GSE114135

DNA methylation and RNA-seq data

of human lung cancer

Cancer Genome Atlas Research Network https://www.nature.com/articles/

nature13385

DNA methylation data of human

bronchial epithelial cells

Vaz et al. Cancer Cell, 2017 https://www.cell.com/cancer-cell/fulltext/

S1535-6108(17)30349-5

Survival data of human lung

adenocarcinoma

Broad GDAC Firehose http://firebrowse.org/?cohort=LUAD

Chromatin state discovery data Roadmap Epigenomics Consortium https://www.nature.com/articles/

nature14248

Software and Algorithms

EpiMix R package Bioconductor https://bioconductor.org/packages/

release/bioc/html/EpiMix.html

https://doi.org/10.5281/zenodo.7987093

CibersortX algorithm Newman et al. Nat Biotechnol, 2019 https://cibersortx.stanford.edu

Tensor Composition Analysis CRAN repository https://cran.r-project.org/web/packages/

TCA

miRTarBase 9.0 Huang et al., Nucleic Acids Res, 2022 https://mirtarbase.cuhk.edu.cn/

�miRTarBase/miRTarBase_2022/php/

index.php

ncFANs V2.0 server Zhang et al. Nucleic Acids Res, 2021 http://ncfans.gene.ac
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources should be directed to and will be fulfilled by the lead contact, Olivier Gevaert

(ogevaert@stanford.edu).

Materials availability
This study did not generate new unique reagents.

Data and code availability
d This paper analyzes existing, publicly available data. The accession numbers for the datasets are listed in the key resources

table.

d EpiMix is available as an R package on Bioconductor (https://bioconductor.org/packages/release/bioc/html/EpiMix.html). We

also deposited the code into a public GitHub repository (https://github.com/gevaertlab/EpiMix). Lastly, we developed an

R-shiny-based web application (https://epimix.stanford.edu) for users to interactively visualize and explore the results from

this study,

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
METHOD DETAILS

Data downloading
The downloading module enables automated data downloading from the GEO database and TCGA project. Users can also supply

their own datasets. To retrieve data from GEO, we utilized the GEOquery R package (version 2.62).63 In this study, we downloaded

DNAme data and gene expression data using GEO accession number GSE114135. The DNAme data were in the form of beta values

ranging from 0 to 1, indicating the proportion of themethylated signal to the total signal. The gene expression data were TMM values.
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To retrieve data from TCGA, we used the Broad Institute Firehose tool (Firehose).49 We downloaded level three DNAme data (beta

values) and gene expression data. The protein-coding genes were represented as log-transformed RSEM values, and the pri-miRNA

expression data were represented as RPKM values.

Preprocessing
EpiMix requires DNAme data in beta values as input. If users prefer to start from.idat files unloaded from the measuring platforms,

they can use other existing libraries10,12 to convert the data into beta values. Gene expression data can be represented in any for-

mats, such as RPKM, TPM and FPKM. EpiMix’s contribution to preprocessing includes imputing missing values, removing single-

nucleotide polymorphism (SNP) probes, aggregating nearby CpGswith similar DNAme values, and correcting batch effects (see sec-

tions below). With default settings, EpiMix removes all SNP probes that were explicitly labeled in the Illumina arrays (i.e., ‘rs’ probes).

However, users have an option to remove a larger set of probes that overlap with any SNPs with global minor allele frequency (MAF)

greater than 1%.64 In addition, we removed CpGs and samples with more than 20% missing values and imputed missing values on

the remaining dataset using the k-nearest neighbor (KNN) algorithm with K = 15. CpGs on sex chromosomes were also removed in

the current study.

Batch effect normalization
Data from large patient cohorts were typically collected in technical batches. Systematic variances between technical batches may

affect downstream data analysis and interpretation. EpiMix provides two options to correct for batch effects: (1) an anchor-based

data integration approach adapted from the Seurat package (version 4.0.1)65 and (2) an empirical Bayes regression approach, Com-

bat.66 The anchor-based approach identifies shared subpopulations, termed "anchors," across different datasets using canonical

correlation analysis andmutual nearest neighbors, and then integrates the data with a non-linear transformation. To identify anchors,

we used the ‘‘vst’’ method to select the top 10% variable feature, and effective batch effect removal was confirmed using the PCA-

based ANOVA analysis. Alternatively, the batch effect can be corrected using the Combat algorithm.58 We found that the anchor-

based approach was more time-efficient, completing batch correction in 2 h for the lung cancer dataset, while Combat took over

48 h. The evaluation was conducted using parallel computation with 10 CPU cores, each of which was an Intel(R) Xeon(R) CPU

E5-2697 v3 @ 2.60GHz processor.

CpG annotation and filtering
Regular mode

In the Regular mode, DNAme is modeled at cis-regulatory elements within or immediately surrounding protein-coding genes. We

paired each CpG site to the nearest genes based on the hg38 manifest generated from Zhou et al.64 Unique CpG-gene pairs

were identified, where a CpG was either within the gene body or in the surrounding region. Additionally, users have the option to

restrict the analysis to the promoters, defined as 2 kb upstream and 500 bp downstream (�2000bp � +500bp) of the transcription

start sites (TSSs). TSS information was retrieved using the biomaRt R package (version 2.50.1)67 from Ensembl.

Enhancer mode

The Enhancer mode is designed tomodel DNAme specifically at distal enhancers. We first selected the distal CpGs that were at least

2 kb away from any known TSSs. However, users can customize this distance based on their needs. To select the CpGs located

within enhancers, we used the enhancer database established by the ENCODE and ROADMAP consortia, in which enhancers of

over a hundred human tissues and cell lines were identified using the chromatin-state discovery (ChromHMM).59 We looked for

the DNA elements associated with the chromatin states of active enhancers (‘‘EnhA1’’ and ‘‘EnhA2’’) and genic enhancers

(‘‘EnhG1’’ and ‘‘EnhG2’’). Since enhancers are cell-type specific, EpiMix allows users to select enhancers of specific cell types or

tissue groups. In this study, we selected the enhancers of human blood and T cells, leading to the discovery of 40,311 CpGs of en-

hancers. For eachCpG,we retrieved 20 nearby genes as candidate genes targets. This gene numberwas determined by the previous

studies showing thatmany of the enhancers can regulate a genewithin a 10-gene distance.32,68,69 Genes that are positively regulated

by the enhancers should have a negative relationship between DNAme and gene expression.39,70,71 Therefore, we performed a one-

tailed Wilcoxon rank-sum test on each enhancer-gene pair to select the enhancers whose methylation states were inversely asso-

ciated with the gene expression. The raw p value from the Wilcoxon rank-sum test was adjusted using a permutation approach,72

where an empirical p value was determined by ranking the raw p value in a set of permutation p values from testing the expression

of a set of randomly selected 1,000 genes (Figure S2).

miRNA mode

MicroRNAs are commonly classified into ‘‘intergenic’’ or ‘‘intronic’’ based on their genomic locations. Intergenic miRNAs are found at

previously unannotated human genome and are transcribed from their own unique promoters as independent entities. In contrast,

intronic miRNAs are believed to share promoters with their host genes and co-transcribed from respective hosts. Recent evidence

shows that some intronic miRNAs can also be transcribed independently from their host genes, suggesting they have their own in-

dependent promoters.73 To select CpGs associated with miRNAs, we used a combined strategy. First, we obtained the most recent

annotation of miRNAs from miRBase (version 22.1).60 For each miRNA gene, we selected CpGs that were located within 5 kb up-

stream and 5 kb downstream. Second, we selected CpGs at miRNA promoters by using a recent database that integrates miRNA

TSS information from 14 genome-wide studies across different human cell types and tissues.61 We included CpGs located with
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miRNA promoters defined as 2000 bp upstream and 1000 bp downstream of the TSSs. This combined feature selection strategy

resulted in the discovery of 17,192 CpGs associated with 1,484 miRNAs in the HM450 array and 23,379 CpGs associated with

1,759 miRNAs in the EPIC array.

lncRNA mode

The mechanisms for transcriptional regulation of lncRNAs are similar to protein-coding genes. We first selected lncRNA-coding

genes using the GENCODE annotation (Version 36). We then selected CpGs associated with each lncRNA based on the hg38 man-

ifest generated from Zhou et al.64 Unique CpG-gene pairs were identified, where a CpGwas either located within the gene body or at

the immediately surrounding area. This resulted in the discovery of 98,320 CpGs associated with 11,280 lncRNAs in the HM450 array

and 184,816 CpGs associated with 15,392 lncRNAs in the EPIC array. Alternatively, users can select to focus the analysis at lncRNA

promoters, defined as 2 kb upstream and 500 bp downstream (�2000bp� +500bp) of the TSSs. The TSS information was retrieved

from Ensembl using the biomaRt R package (version 2.50.1).67

CpG site aggregation and smoothing
Aggregation

To avoid computational expenses and overfitting of DNAme data when identifying patient subsets, we developed a feature that

groups correlated CpG sites into clusters. This feature takes advantage of the strong correlation of DNAme values between adjacent

CpGs. We used the average linkage hierarchical clustering algorithm to group CpGs within a single gene based on their DNAme

values. and then we set a Pearson correlation threshold of 0.4 to define CpG clusters and single CpG sites that do not correlate

with other sites. For each CpG site cluster, we computed the mean DNAme levels of its CpGs to represent its DNAme value, resulting

in potentially multiple CpG site clusters representing a single gene. Users can then performDNAmemodeling at eachCpG site cluster

or single CpG sites.

Smoothing

Smoothing is a technique to reduce noise and enhance the statistical power in analyzing whole-genome bisulfite sequencing data.6 It

estimates the DNAme levels at local regions by incorporating the data from neighboring CpGs within a user-defined genomic win-

dow. EpiMix allows users to smooth the DNAme data using local likelihood smoothing.74 However, since the number of CpGs is typi-

cally lower in array-based data than in bisulfite sequencing data, caution should be exercised when applying smoothing on array-

based data.

Methylation modeling
After preprocessing, the methylation data are beta values bounded between 0 and 1, representing the proportion of the methylated

signal to the total signal. When the study population is large, the beta values can be assumed to come frommultiple underlying prob-

ability distributions, in our case, beta distributions. To model the DNAme, we fit a beta mixture model to the methylation values at

each CpG site. Let yi denote the beta value from subject i at a CpG site, where i˛ f1;.;ng, and n represents the total number of

subjects. Let k denote the class membership of subject i, where k˛ f1;.;Kg; and K represents the total number of components

in the mixture. Assume subject i belongs to component k with probability hk , we will have
PK

k = 1hk = 1. Subsequently, the likelihood

contribution from subject i is:

fðYi = yiÞ =
XK

k = 1

hk

yi
ak � 1ð1 � yiÞbk � 1

Bðak ; bkÞ

where Bðak ; bkÞ =
R 1
0 tak � 1ð1 � tÞbk � 1 dt is the beta function. Since the population contains n subjects, the log likelihood for the

complete dataset is

lða;b;hÞ =
Xn

i = 1

log ffðYi = yiÞg

The goal of our modeling is to estimate the a;b;h parameters of each component that best fit the methylation values. Let q =

fa1;b1; h1 .;ak; bk ;hkg be a vector of parameters that define the shape of each component in the mixture. We used the

expectation–maximization (EM) algorithm75 to iteratively maximize the log likelihood and update the conditional probability that yi
comes from the k th component.

To determine the best number of componentsK, we used The Bayesian Information Criterion (BIC) for model selection and to avoid

overfitting:

BIC = logðnÞð3KÞ � 23
Xn

i = 1

log ffðYi = yiÞg

This process involves iteratively adding a newmixture component if the BIC improves. Eachmixture component represents a sub-

set of samples for whom a particular DNAme state is observed.
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Identifications of differentially methylated CpGs
To determinewhether a CpG site is hypo- or hyper-methylated, we can compare itsmethylation levels in the experimental group to its

counterpart in the control group. We first performed beta mixture modeling to each CpG site using data from the experimental group

to identify the mixture components. Next, we compare the methylation levels of each mixture component to the mean methylation

levels of the control group. This methodology is based on the assumption that the DNAme profile is heterogeneous across patients in

the experimental (i.e., disease) group but homogeneous in the control group. For instance, the DNAme profile can always be different

across cancer patients with different driver mutations and subtypes, but in normal tissues the DNAme should be relatively homoge-

neous. In addition, the number of subjects in the experimental group is typically higher than the control group (e.g., TCGA projects).

To determine the significant difference between the experimental and the control group, we used a Wilcoxon rank-sum to calculate

the p-value, and multiple comparison was corrected with the false discovery rate (FDR). The Q-value threshold was set to 0.05. In

addition, we required a minimum difference of 0.10 based on the platform sensitivity reported previously.76

Identifications of differential DNAme that was associated with transcription
When sample-matched gene expression data are provided, EpiMix can select CpGs whose methylation states were significantly

associated with gene expression. In this study, we focused on the identification of DNAme that represses gene expression. However,

users have the option to identify DNAme that is positively correlated with gene expression. For each CpG-gene pair, we used a one-

tailed Wilcoxon rank-sum test to compare the mean levels of gene expression in patients showing an abnormal methylation state

(hypo- or hyper-methylation state) to those with a normal methylation state. If a CpG was hypomethylated, we examined that the

hypomethylated patients have higher gene expression levels compared to the normally methylated patients. Vice versa, if a CpG

was hypermethylated, we tested that the hypermethylated patients have lower gene expression levels compared to the normally

methylated patients. If a CpG was dual methylated (i.e., some samples were hypomethylated, while some others were hypermethy-

lated), we tested that the hypomethylated patients have higher gene expression levels compared to the hypermethylated patients.

Since a gene is typically paired with multiple CpGs, we adjusted the p-value using FDR to correct multiple comparisons. To select

functionally significant CpG-gene pairs, we set the maximum threshold of the adjusted p-value to 0.01.

Simulation study
The goal of simulation study was to assess the sensitivity of EpiMix in detecting differential DNAme present in only specific subsets of

the tested population. To achieve this goal, synthetic populations were created. First, CpGs exhibiting statistically similar DNAme

levels that conformed to a unimodal beta distribution were selected from the activation and quiescent groups, respectively. Next,

a subset of CpGs (n = 300) was randomly sampled from the quiescent group (n = 103 subjects) to serve as the baselines. The

mean DNAme levels (beta values) of the CpGs in the baseline group ranged from 0.1 to 0.9, with a mean value of 0.6. To generate

a synthetic population where the differential DNAme occurs only in specific subsets, we randomly selected a number of samples from

the activation group and combined them with the baseline group, such that the final proportion (P) of samples from the activation

group in the combined dataset ranged from 0.01 to 0.50, where P˛ f0:01; 0:02; 0:05; 0:08; 0:10; 0:15; 0:20; 0:25; 0:30; 0:35; 0:40;
0:45;0:50g, and the mean difference in beta values (Dbeta) between the two groups ranged from 0.1 to 0.7, where Dbeta˛ f0:10;
0:15;0:20;0:25;0:30;0:40;0:50;0:60;0:70g. This resulted in 2,700 synthetic CpGs. Finally, EpiMix was run on the synthetic population

at each CpG, and its ability to detect differentially methylated signals was evaluated.

Benchmark with existing methods
We benchmarked the performance of EpiMix with other existing methods, including Minfi,10 iEVORA17 and RnBeads.12,30

Minfi includes a differential methylation step based on an F-test. We first transformed beta values to M values, and the differential

methylation analysis was performed with the dmpFinder function. We set the significant p-value and Q-value thresholds to 0.05.

iEVORA is a two-step algorithm aimed at identifying infrequent alterations (outliers) in DNAme across a population.16–18 It can be

used to detect DNAm changes between normal cells at-risk versus those not-at-risk for neoplastic transformation. In the first step,

the algorithm identifies differentially variable CpGs using a Bartlett’s test. Once the differentially variable CpGs are identified, an

optional second step can be added to rank them using differential methylation. The differential methylation was tested by t-statistics

that compares the average levels of DNAme in the experimental group to the control group. In our study, we used the default param-

eters with a Q-value (FDR) threshold of 0.001 for testing differential variability and p-value threshold of 0.05 for testing differential

methylation means. Our simulation studies showed that iEVORA was able to identify differentially variable CpGs even when the

abnormal methylation was present in only a small sample subset. However, since the algorithm does not identify which subjects

were abnormally methylated, and the average DNAme levels of the entire experimental group was compared to the control group,

the differential methylation test could not generate statistically significant results.

RnBeads uses hierarchical linear models as implemented in the limma package to identify differential methylated CpGs.We set the

differential methylation p-value threshold to 0.05.

Imputation of cell-type-specific DNAme and gene expression values
DNAme and gene expression are known to be cell-type specific. When the DNAme were measured at the tissue (‘‘bulk’’) level, the

differential DNAme profiles between patient subjects may result from the differences in tissue compositions.43,44 From a clinical
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perspective, tissue composition is meaningful in classifications of tumor subtypes and predictions of treatment response. However,

from a biological perspective, users may be interested in identifying the differential DNAme present in only specific cell types. EpiMix

focuses on the identification of differential DNAme across patient individuals. To resolve the confounding effect from tissue hetero-

geneity, we used previously validated algorithms to infer cell-type proportions and cell-type specificmethylomes and transcriptomes

(Figure S3). The first step was to estimate cell-type proportions in each sample using the CIBERSORTx algorithm.77 This method

leveraged the gene expression signatures established from experimentally purified cells from lung cancers and adjacent normal tis-

sues, including epithelial cells, fibroblasts, hematopoietic cells and endothelial cells.77 The estimated cell-type proportions were then

used for sample-specific deconvolution of gene expression data, where the output was a three-dimensional tensor with shape

gene x cell type x sample (Figure S3), indicating the gene expression levels in each cell type and in each sample. To deconvolute

the DNAme data, we used Tensor Composition Analysis (TCA).78 TCA requires knowledge of the estimated cell-type proportions

for each sample. Since we restricted our analysis to samples with both DNAme data and gene expression data, we used the cell-

type fractions estimated from CIBERSORTx in the previous step. The output from TCA was also a three-dimensional tensor with

shape methylome x cell type x sample, indicating the DNAme levels in each cell type and in each sample. It is important to note

that users can also leverage other existing tools43,44,79–84 to adjust the effects from tissue compositions and then input the decon-

voluted data to EpiMix.

Validation of deconvolution results
To validate the deconvolution results, we leveraged an independent dataset of human lung epithelial cells.46 In this dataset, the

DNAme data were collected from the HM450 array. We compared the DNAme profiles in KRAS-transformed lung epithelial cells

(n = 4 replicates) to normal controls (n = 4 replicates). The hypomethylated CpGs were defined as those with a mean Db< � 0:2

and the hypermethylated CpGs were defined as those with a mean Db> 0:2. For TCGA-LUAD data, we used the CpGs that were

differentially methylated in at least 25% of the patients.

Genomic distribution of the differentially methylated CpGs
Genomic coordinates of the TSSs of the methylation-driven genes were retrieved from Ensembl using the biomaRt R package

(version 2.50).67 Exons and Introns of the protein-coding genes were retrieved from the TxDb object (TxDb.Hsapiens.UCSC.hg38.-

knownGene) (version 3.14).85 TheGenomicRanges R package (version 1.46)86 was used to identify the differentially methylatedCpGs

located within promoters, exons and introns.

Motif enrichment analysis
TF binding motifs were retrieved from HOCOMOCO, a comprehensive database for TF binding sites.87 HOMER (Hypergeometric

Optimization of Motif EnRichment) was used to find motif occurrences in a ±250bp region around each differentially methylated re-

gions (DMRs). We then combined all the DMRs to identify enrichedmotifs. Enrichments were quantified using Fisher’s exact test and

multiple comparisons were adjusted with the Benjamini-Hochberg procedure. To calculate the enrichment Odds Ratio, we used all

the distal CpGs as the background probes and the functional CpGs of enhancers as the target probes. We set the significant p value

cutoff to 0.05 and the smallest lower boundary of 95% confidence interval for Odds Ratio to 1.1. The enrichment analysis was per-

formed using the get.enriched.motif function from the ELMER library (version 3.14) in R.11

Enrichment analysis of chromatin modifications
Enrichment analysis of histone modifications at the DMRs was performed using the Genomic Hyperbrowser GSUITE of tools.31 A

suite of tracks representing different chromatin features for human naive T cells (Epigenome ID: E038) and lung (Epigenome ID:

E096) were retrieved from the ENCODE and ROADMAP consortiums.59 To determine which tracks in the suite exhibit the strongest

similarity by co-occurrence to the DMRs, the Forbes coefficient was used to obtain rankings of tracks, and Monte Carlo simulations

were used to define a statistical assessment of the robustness of the rankings using randomization of genomic regions covered by the

entire HM450 or EPIC array, and compute test statistics.

Functional enrichment analysis
Protein-coding genes

Gene sets were retrieved by curating the latest annotation databases of gene ontologies (GO) and KEGG pathways. Over-repre-

sented biological pathways in the methylation-driven genes were identified using hypergeometric testing.88 We set the significant

p value to 0.05 and Q value to 0.20. Highly similar GO terms were removed with a cutoff p value of 0.60 to retain the most represen-

tative terms. The enrichment analysis was implemented with the clusterProfiler R package (version 4.2.1),88 and enrichment results

can be visualized in both tabular and graphical formats.

miRNAs

MicroRNAs are known to mediate the destabilization and translational suppression of target messenger RNAs.47 We queried exper-

imentally validated miRNA targets from the miRTarBase.48 Of the 92 methylation-drive miRNAs, we obtained 10,374 protein-coding

genes targeted by 78 miRNAs. To further select miRNA targets, we compared the messenger RNA expression levels of each target

between the patients with abnormal methylation states to those with a normal methylation state. If the miRNAs were
Cell Reports Methods 3, 100515, July 24, 2023 e5
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hypermethylated, we tested whether their target genes were upregulated. Conversely, when the miRNAs were hypomethylated, the

target genes would be expected to be downregulated. We used a one-tailed Wilcoxon rank-sum test to compare the mean levels of

target gene expression between patient groups. A significant p value was set to 0.05 and FDR-corrected p value was set to 0.2.

KEGG pathway analysis was performed on the significant miRNA targets using hypergeometric testing.88

lncRNAs

To carry out functional annotation and pathway analysis of the differentially methylated lncRNAs, we used the ncFANs V2.0 server

(http://ncfans.gene.ac/).58 The genes in the significant CpG-gene pair matrix generated from EpiMix can be directly used as an input

to ncFANs. NcFANs assigns the functions of protein-coding genes to lncRNAs based on pre-built co-expression networks in various

normal tissues and cancers. We used the co-expression network built in the lung adenocarcinoma dataset from TCGA, and we set

the correlation coefficient between lncRNAs and proteins-genes to 0.4 and the cutoff of the topological overlap measure similarity

to 0.01.

Biomarker identification and survival analysis
Patient clinical data were retrieved from TCGA using the Firehose tool.49 Alternatively, users can provide EpiMix with survival data if

using their own datasets.We selected the CpGswith at least twomethylation states. For each CpG, we fit a Cox proportional hazards

regression model to assess the effect of methylation states on patient survival time. The log rank test was used to compare the sur-

vival curve and to calculate the significant p-value. p < 0.05 was considered as significant. The Kaplan-Meier survival plots were

generated with the survminer R package (version 0.4.9).

Genome browser-style visualization
EpiMix enables genome browser-style visualization of the genomic coordinates and chromatin states of the differentially methylated

genes and regions. We implemented two different forms of visualization. The gene-centric form shows the DM values of all the CpGs

associated with a specific gene (e.g., Figure 3F). The CpG-centric form shows a differentially methylated CpG and its upstream and

downstream genes (e.g., Figure 4E). Users can specify the number of nearby genes to display. Genes whose expression levels were

significantly associated with the DNAme levels of the CpG are shown in red.

DNase I sensitivity and histone modification levels were retrieved from the ENCODE and ROADMAP consortiums.59 By providing

the Epigenome ID, users can retrieve data corresponding to the investigated tissue or cell type. In this study, we extracted the chro-

matin features for human naive T cells (Epigenome ID: E038) and fetal lung (Epigenome ID: E088). The genomic coordinates (X axis)

were established on the hg19 genome built, and the enrichment signal (Y axis) represents negative log10 of the Poisson p-values.

Human transcript annotation was retrieved from the TxDb object (TxDb.Hsapiens.UCSC.hg19.knownGene) (version 3.2.2).89 The

genomic coordinates of the adjacent genes of the differentially methylated CpGs were retrieved from Ensembl using the biomaRt

R package (version 2.50.1).67 The visualization was implemented with the karyoploteR package (version 1.20.0).90

Identifications of DNAme subtypes
DNAme subtypes can be discovered by applying consensus clustering to the DM-value matrix, where patients were clustered into

robust and homogeneous groups (putative subtypes) based on their abnormal methylation profiles. Consensus clustering was per-

formedwith theConsensusClusterPlus R package (version 1.58.0).91We used 1,000 rounds of k-means clustering and amaximumof

K = 10 clusters. Selection of the best number of clusters was based on the visual inspection of ConsensusClusterPlus output plots.

QUANTIFICATION AND STATISTICAL ANALYSIS

All procedures involving statistical analysis were described in the ‘‘method details’’ section. The number of samples used in each

experiment were described in both the figure legend and ‘‘Results’’ sections.
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