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Proteins are diverse molecules that perform many different 
functions in cells, ranging from catalyzing chemical reactions 
to functioning as mere structural components.1-3 These func-
tions are generally described in terms of functional Gene 
Ontology (GO) annotations. GO annotations, also known as 
GO terms, are statements about the molecular function of the 
protein, cellular localization of the protein or the biological 
process it supports.4 This knowledge on protein function has 
come to play a central role in our daily lives, fueling the field of 
synthetic biology and thereby solving problems in medicine, 
manufacturing, and agriculture.5-7

To date, however, most GO annotations linked to proteins 
are shallow and incomplete.8,9 Additionally, as increasingly 
more protein sequences are characterized by high-throughput 
wet-lab experiments, they often remain without any functional 
annotation.10,11 Especially in certain taxonomic kingdoms such 
as the Plantae, Protozoa, and Chromista, very few species have 
been thoroughly studied and the quality of available annota-
tions is substandard.12

Extensive wet-lab experiments remain the most accurate 
tools to annotate proteins but are time-consuming, expensive 
and some proteins cannot be studied at all due to technical 
limitations.13 In response, there have been numerous attempts 
to functionally annotate proteins using automated, fast and 
scalable bioinformatics tools.14,15 Early approaches like BLAST 
often rely on homology relationships to identify conserved 

protein sequences, transferring the functional annotation 
between them, as conserved sequence implies conserved func-
tion.16,17 These kinds of approaches quickly drop in predictive 
power for divergent proteins and, therefore, new generation 
approaches often integrate numerous types of protein data 
with potent computational tools like neural networks. These 
types of protein data include sequence motifs, structural motifs, 
co-expression data and protein-protein interactions usually 
extracted from (the combination of ) amino acid sequences, 3D 
structures and high-throughput techniques.14,18,19 A prime 
example of such a method is GOLabeler,20 which uses a pow-
erful data integration algorithm to combine predictions from 
multiple sources, reliably outperforming all other methods in 
molecular function prediction in the CAFA3 challenge.21 
Whereas the new generation techniques usually outperform 
the established BLAST baseline method, they also require vast 
amounts of protein data which is not always comprehensive. 
Therefore, the most recent approaches often turn to automatic 
representation learning by which a complex model (often a 
neural network) learns some abstract features of a protein 
sequence that contains useful information for a consequent 
computational function prediction task.22-24

Recently, we demonstrated that features generated from the 
pre-trained protein language model Seqvec25 significantly out-
perform methods that learn sequence features in a supervised 
manner, even when coupled with a simple linear classifier.24 The 
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advantage of language models is that they are trained in an 
unsupervised fashion, by training to predict each amino acid in 
a protein sequence given its “context,” that is neighboring amino 
acids.25-29 This means that they can be trained on all available 
protein sequences and not only the annotated ones. By leverag-
ing this wealth of data, they can learn general properties of 
amino acids, such as polarity and secondary structure, that are 
very useful for downstream prediction tasks.25 Consequently, 
deep supervised methods can be build upon these learned 
embeddings so that their learning can be done with a relatively 
small number of proteins available for training.24

The SeqVec model, whose architecture is shown in Figure 
1a, produces a 1024-dimensional embedding for every amino 
acid in the protein sequence (Figure 1b). Protein-level embed-
dings are obtained by calculating the component-wise mean 
over the sequence of amino acid-level embeddings (Figure 1c). 
This results in a final 1024-dimensional protein-level embed-
ding independent of the protein sequence length.

In this paper, we build upon previous work24,25 and use the 
SeqVec embeddings to examine the reliability of predicting 

functions between proteins of evolutionary distant species. Till 
date, making predictions over large evolutionary distances is 
difficult as the function of a protein is determined by the con-
text of its species.15 If SeqVec can truly learn the underlying 
principles of protein sequences, we expect SeqVec-based pro-
tein function prediction to be much less sensitive to this limita-
tion as SeqVec then will produce universal embeddings 
independent of the context of species. If proven effective, this 
particular cross-species approach could be especially useful for 
understudied evolutionary kingdoms (eg, Plantae) to readily 
generalize knowledge on protein function.

The concept of cross-species prediction has been previously 
touched upon when Jensen et al30 showed that knowledge on 
protein “cellular roles,” which are much broader statements 
about protein functions than molecular functions, can be gen-
eralized from one eukaryotic species to another eukaryotic spe-
cies. They made their predictions using the ProtFun method 
that uses as input hand-crafted features, such as post-transla-
tional and localization aspects of the protein. We extend this 
work by (i) using the more powerful SeqVec model and (ii) 

Figure 1. (a) SeqVec model architecture holds 3 layers: an amino acid embedding layer (aaEM), the first bidirectional Long Short Term Memory (biLSTM 

1) and the second biLSTM (biLSTM 2). The aaEM maps the input amino acid onto a latent 1024-dimensional space. Both biLSTM’s have a separate 

forward and backward pass to incorporate information on the previous or following amino acids and map this information onto 512-dimensional spaces. 

Based on the biLSTM 2 embeddings, the model predicts the next or previous amino acid in the sequence. Weights between the forward and backward 

pass are shared, represented here as arrows with the same color. (b) During inference, the embeddings of both biLSTM layers are concatenated to 

1024-dimensional embeddings. Using the standard approach from Heinzinger et al,25 a final amino acid-level embedding is obtained by summing the 

1024-dimensional embeddings w w1 2
n n,  w3

n  resulting in a 1024-dimensional contextualized embedding wn  for every amino acid n  in the protein 

sequence. (c) Protein-level embeddings are obtained by calculating the component-wise arithmetic mean of the sequence of amino acid embeddings 
w w1, , n( )  resulting in 1024-dimensional protein-level embedding v W1 ( )  independent of protein length. (d) Overview of approaches taken in this study. 

The pre-trained SeqVec model is used to embed proteins in a 1024-dimensional space. In the cross-species experiments, we train a molecular function 

predictor on a “central’ species and evaluate its performance on proteins of other species. In our characterization experiments, we use the embeddings to 

get a deeper understanding of SeqVec-based molecular function prediction performance.
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predicting more specific molecular functions instead of broad 
cellular roles of proteins. We train a SeqVec-based molecular 
function prediction model on the annotated proteins from one 
training species (Mouse) and assess the performance of the 
trained model on the proteins of other, evolutionary related and 
distant species (Figure 1d). As proof of principle, we use the 
data from well-annotated eukaryotic species to aid perfor-
mance evaluation which typically relies on comparing pre-
dicted functions to the true functions of proteins.

In summary, we demonstrate the effectiveness and reliabil-
ity of this data-undemanding approach by successfully trans-
ferring knowledge on protein function between the training 
species and various other eukaryotic species. Thereby, we pre-
sent an innovative method for molecular function prediction in 
inadequately annotated species from understudied taxonomic 
kingdoms.

As language models are relatively novel in the field of pro-
tein function prediction, we also submit the performance of 
SeqVec-based molecular function prediction models to a 
detailed characterization, to advance the understanding of such 
models (Figure 1d). In doing so, we uncover a clear relationship 
between performance and the diversity of the proteins that 
perform a function in terms of domains and protein families.

Results Characterization
Evaluating SeqVec-based molecular function 
prediction performance

Previously we showed that SeqVec embeddings achieve com-
petitive performance when applied in the task of molecular 
function prediction.24 Here, we have used the same so-called 
SwissProt dataset (30% maximum-pairwise sequence similar-
ity, 3530 test proteins and 441 GO terms). Although our previ-
ous work revealed that a multilayer perceptron (MLP) trained 
on protein-level embeddings had the best performance, the 
MLP was also trained in a multilabel fashion. Hence, underly-
ing relations between GO annotations and their abundance in 

the training set might have influenced the MLP performance 
in ways we are unsure about. As a Logistic Regression (LR) can 
easily be trained independently for every GO term (and showed 
only slightly lower performance than the MLP in our previous 
work), we use the LR to characterize the performance. 
Throughout this study, we evaluated the performance in a 
term-centric (ROCAUC score) and protein-centric (F1 score) 
way as proposed and described in detail by Radivojac et al.15

First, we observed similar performance values as our previ-
ous work with an average ROCAUC score of 0.832 (95% con-
fidence interval [0.827-0.837]) and an average F1 score 0.479 
(95% confidence interval [0.470-0.484]). Additionally, the 
coverage was 0.998, indicating that for almost all proteins in 
the test set at least one molecular function was predicted. We 
observed a weak non-linear positive correlation between GO 
term depth and term-centric performance (Spearman correla-
tion: 0.16, P-value: 1.1e-3) (Figure 2a). For clarity, depth was 
defined as the length of the longest possible path to a GO term 
from the root term in the GO hierarchy. The number of pro-
teins in the training set and term-centric performance showed 
a weak non-linear negative correlation (Spearman correlation: 
−0.19, P-value: 6.6e-5) (Figure 2b). However, even between 
terms with the same depth or number of training proteins, we 
observed a large spread in the term-centric performance. We 
also note that as a result of the GO hierarchy, the depth and 
number of training proteins were not independent parameters, 
that is terms closer to the root (ie, with low depth) usually have 
more annotated proteins (Spearman correlation: −0.34, P-value: 
1.55e-13).

Protein-centric performance correlates positively 
with protein length

To test whether protein characteristics could be underlying 
the differences in term-centric performance, we characterized 
the protein-centric performance to protein length and the 
number of protein annotations. Again, these parameters were 

Figure 2. Term-centric performance (ROCAUC) per GO term of a LR classifier trained using SeqVec protein-level embeddings on the SwissProt dataset 

with at most 30% pairwise sequence identity in relation to (a) depth of the GO term and (b) the number of annotated proteins in the training set for the GO 

term. The Spearman correlations and corresponding P-values are shown in the respective plots. The box-whiskers plots show the interquartile range 

(IQR) with a box and the median as a bar across the box. Whiskers denote the range equal to 1.5 times the IQR.
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not independent as in eukaryotes the protein size is positively 
correlated with more extended multifunctional proteins.31,32 
However, in the SwissProt dataset, we observed only a mild 
correlation which we attributed to the lack of true annota-
tions for many proteins (Spearman correlation: 0.14, P-value: 
1.55e-13).8,9

We observed a weak non-linear positive correlation between 
protein length and protein-centric performance (Spearman 
coefficient: 0.10, P-value: 7.2e-9) (Figure 3a). The slightly 
increased protein-centric performance for longer proteins was 
mainly the result of improved precision for longer proteins 
with recall remaining similar for all protein lengths (Figure 
S.1A and B). For an increased number of protein annotations 
we observed a slightly decreased protein-centric performance, 
although testing for a correlation resulted in no statistical sig-
nificant finding (Spearman coefficient: 0.03, P-value: 0.06) 
(Figure 3b). Here, precision increased for more annotations 
while recall decreased (Figure S.1C and D).

Overall, the difference in protein-centric performance 
between long and short proteins was small. Therefore, even if 
some GO terms with the same depth or number of training 

proteins had large differences in the average length of their 
annotated proteins, our evaluated protein characteristics 
seemed an unlikely source of the differences in term-centric 
performance. However, in theory, taking the mean over a larger 
number of amino acid-level embeddings discards more infor-
mation as it results in an average closer to the population mean, 
whereas taking the mean over less amino acid-level embed-
dings should give an average closer to the sample mean.33 
Hence, we expected a lower protein-centric performance for 
longer proteins. This was not the case, hinting that SeqVec 
embeddings likely model some protein characteristic that 
countered the expected decrease in performance for longer 
proteins.

Protein-level embeddings effectively model protein 
length

To explain the observed positive correlation, we hypothesized 
that the protein length is somehow encoded in SeqVec embed-
dings. Specifically, as long proteins are relatively scarce, they 
might be easier to predict by having similar embeddings as 

Figure 3. Protein-centric performance (F1) per protein of the LR classifier trained using baseline SeqVec protein-level embeddings on the SwissProt 

dataset in relation to (a) protein sequence length and (b) the number of protein annotations. The LR was trained to predict GO terms. The Spearman 

correlations and corresponding P-values between protein-centric performance and protein length or number of protein annotations are shown. The 

box-whiskers plots show the interquartile range (IQR) with a box and the median as a bar across the box. Whiskers denote the range equal to 1.5 times 

the IQR. (c) Term-centric performance (ROCAUC) of the LR classifier trained using baseline SeqVec protein-level embeddings on the SwissProt dataset. 

The LR was trained to predict protein length encoded by one-hot encoding in the same intervals as in (a). Errorbars denote 95% confidence estimated 

using 100 bootstraps.
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other long protein in the training set with similar function. To 
test our hypothesis, we trained a LR classifier on the protein-
level embeddings to predict protein length. We binned the pro-
tein length similar as in Figure 3a and modeled these bins by 
one-hot encodings.

Indeed, we observed that protein length was modeled by the 
protein-level embeddings, as reflected by an average ROCAUC 
score of 0.856 taken over all protein length intervals of the LR 
classifier (Figure 3c). Specifically, the performance was high for 
very short or very long proteins, and moderate for proteins with 
a more average length. Overall, this finding indicated that 
embeddings still capture relevant information on protein size, 
even though they are obtained by taking the mean over amino 
acid embeddings.

Term-centric performance correlates positively 
with an increased domain, family, and superfamily 
similarity between proteins

As an alternative approach to explain the differences in term-
centric performance, we hypothesized that differences in simi-
larity between proteins annotated with certain GO terms 
might be the underlying cause. For example, proteins with the 
same domain tend to perform similar molecular functions. 
SeqVec embeddings might not be able to capture these 
domains. In that case, GO terms with proteins that are more 
structurally dissimilar but functionally similar (eg, same 
domains) should have a lower term-centric performance.34,35 
To test this, we retrieved the following annotations from the 
InterPro database: (i) protein domains (ie, structurally con-
served functional units) (ii) protein families (ie, evolutionarily 
related proteins with similar three-dimensional shapes), and 
(iii) protein superfamilies (ie, structurally/mechanistically 
related proteins not necessarily evolutionary related). As these 
annotations were sparse, we were unable to retrieve annotations 
for all test proteins.

To quantify the domain, family or superfamily similarity 
between proteins annotated with a certain GO term, we evalu-
ated what percentage of them shared a domain, family or 
superfamily annotation. Note that these annotations are not 
independent quantities (Spearman correlations; domains-fam-
ilies: 0.68, P-value: 1.6e-29; domains-superfamilies: 0.75, 
P-value: 5.2e-42; families-superfamilies: 0.49, P-value: 3.3e-14). 
We observed moderate non-linear positive correlations 
between the percentage of proteins sharing a domain, family or 
superfamily and term-centric performance (Spearman correla-
tions: 0.43, P-value: 9.5e-14; 0.37, P-value: 7.4e-13; 0.30, 
P-value: 5.5e-7, respectively) (Figure 4a). If we control for the 
confounding factor of differences in class imbalance across 
terms, we still find that performance can be predicted by 
InterPro annotation similarities (Supplemental Material sub-
section 1.1). This indicates that indeed the term-centric per-
formance for GO terms with many annotated evolutionary 
related proteins is generally better.

Next, we hypothesized that SeqVec’s ability to model such 
similarities might be compromised when a protein is annotated 
with multiple domains, families or superfamilies as more infor-
mation needs to be captured in the same 1024-dimensional 
embedding. However, we observed no statistically significant 
correlations between the average number of domains, families 
or superfamilies per annotated protein and term-centric per-
formance, indicating that SeqVec embeddings efficiently mod-
eled multiple functionalities of proteins (Figure S.2A).

Finally, as we still observed significant differences in term-
centric performance between GO terms with a low percentage 
of proteins sharing a domain, family or superfamily, we hypoth-
esized that a higher prevalence of the shared domain, family or 
superfamily among the remaining test proteins could lower 
performance as they might be predicted as false positives. 
Indeed, we observed a weak non-linear negative correlation 
between the prevalence of the shared superfamily for a certain 
GO term among the remaining test proteins and the term-
centric performance (Spearman correlation: −0.18, P-value: 
2.3e-3) (Figure 4a). We did not observe a statistically signifi-
cant correlation between the prevalence of the most shared 
domain or family and the term-centric performance, possibly 
due to the generally low prevalence of the most shared domain 
or family in the remaining population (Figure S.2B).

Overall, these correlations hint that some molecular func-
tions are being executed by a wider spectrum of protein fami-
lies, thereby lowering the term-centric performance of 
SeqVec-based molecular function prediction.

High term-centric performance related to specif ic 
molecular functions carried out by similar proteins

To identify the molecular functions with many similar anno-
tated proteins, we created so-called “GO categories.” First, we 
selected all GO terms in the SwissProt dataset with depth two. 
Next, from this selection, we selected terms with at least 5 child 
terms. This resulted in twenty “GO categories” indicated by 
their depth 2 GO term, thereby indicative of certain types of 
molecular functions.

We ordered the GO categories based on their median term-
centric performance and observed large differences in their term-
centric median performance and the spread in performance 
(Figure 4b). Notably outstanding was the GO category of “sign-
aling receptor activity” with a median performance of  0.98 and 
almost no spread. To confirm that the molecular functions of the 
best performing GO categories were executed by similar proteins, 
we related the performance of each GO category to the 4 signifi-
cant correlations on the similarity measures mentioned in the 
previous section (see Table S.3). As expected, we observed a 
strong positive correlation between the average percentage of 
shared domains among the annotated proteins and the median 
term-centric performance of the GO category (Spearman corre-
lation: 0.65, P-value: 7.7e-3) (Figure 4c). Additionally, we observed 
a strong negative correlation between the average prevalence of 
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the shared superfamily among the remaining proteins and the 
median term-centric performance of the GO category, indicating 
that proteins with more common superfamilies can generally be 
predicted worse (Spearman correlation: −0.69, P-value: 9.0e-4). 
We did not observe a statistically significant correlation between 

the average percentage of shared families/superfamilies among 
the annotated proteins and the median term-centric performance 
of the GO category.

These results, which also hold after controlling for term fre-
quency (Supplementary Material subsection 1.1), suggest that 

Figure 4. (a) ROCAUC per GO term of the SeqVec-based LR classifier in relation to the domain/family/superfamily similarity of proteins annotated with 

that term. From left to right: the performance in relation to the percentage of annotated proteins with a shared domain, family or superfamily. On the far 

right: performance in relation to the prevalence of the shared superfamily among the remaining non-annotated proteins. (b) ROCAUC per GO term of the 

same classifier in relation to GO category. Child GO terms in each GO category are shown as dots with color indicating their depth. The number of child 

terms per category is presented at the top. The box-whiskers plots show the standard IQR, median and 1.5 × IQR. (c) As in A, but terms are grouped per 

GO category and the median ROCAUC is shown for each category.
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differences in term-centric performance for SeqVec-based 
molecular function prediction models mainly stem from differ-
ences in the divergence between proteins executing the same 
molecular functions.

Results Cross-species Function Prediction
Model species selection

We assessed if knowledge about protein functions learned in 
one training species could be generalized to other species. To 
this end, we trained a SeqVec-based molecular function predic-
tion model on the data of one training species and assessed its 
performance on the data of several test species with varying 
evolutionary distance. As proof of principle, we considered 
seven well-annotated species from different evolutionary classes, 
phyla and even kingdoms: Mus musculus (Mouse), Rattus 

norvegicus (Rat), Homo sapiens (Human), Danio rerio (Zebrafish), 
Caenorhabditis elegans (C. elegans), Saccharomyces cerevisiae 
(Yeast) and Arabidopsis thaliana (A. thaliana) (Table S.4A).36 As 
these species have different genome sizes, they have a different 
number of testable protein sequences. To quantify how well 
these proteins represented all the molecular functions in the 
species, we calculated the coverage of the gene count, that is 
how many of the protein-coding genes were represented by the 
proteins (Table S.4A). We selected Mouse as the training spe-
cies, creating an ’evolutionary staircase’ in which the remaining 
species had increasing divergence time from Mouse (Figure 5a). 
To optimally tune and assess a classifier, we split the Mouse data 
into 8977 mouse training, 1801 mouse validation, and 1790 
mouse test proteins.

Besides the different number of test proteins for each spe-
cies, we note additional differences in the number of GO terms 

Figure 5. (a) Phylogenetic tree showing evolutionary relation and divergence time between the training species Mouse and the other test species. Tree 

produced via the PhyloT tool for phylogenetic tree visualization and divergence times retrieved using the TimeTree tool.37,38 (b) Average term-centric 

ROCAUC over all the GO terms and (c) average protein-centric F1 over all the proteins per species for the MLP classifier (brown). The MLP was trained to 

predict GO terms. Performance is compared to baseline Frequency PSI-BLAST (orange) and to DeepGoPlus (pink). In (c) the coverage C is shown inside 

the bars. (d) Average protein-centric performance (F1) over all the proteins per species of the MLP in relation to the average protein sequence identity to 

the Mouse training set. Sequence identity was retrieved using the PSI-BLAST top hit of every protein to the Mouse training set. Errorbars denote 95% 

confidence intervals estimated using 100 bootstraps.
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present among the proteins of each species (Table S.4B). In 
practice, one would want to predict as many molecular func-
tions as possible, but for this feasibility study we note 2 major 
limitations: (i) we could not test target species GO terms when 
they were not present among the Mouse training set GO terms 
(eg, GO terms related to photosynthesis), and (ii) testing all the 
Mouse training GO terms in the test species could have pre-
dicted annotations for some proteins which we would not be 
able to reliably validate as data on those functions was lacking. 
Hence, for protein-centric evaluation (F1-score), we evaluated 
only the GO terms overlapping between the Mouse training 
set and the datasets of the test species. For term-centric evalu-
ation (ROCAUC score), we evaluated only GO terms overlap-
ping with the mouse training set and with at least 3 annotated 
test proteins (Table S.4B).

After the GO term selection process, we checked if the 
selected GO terms for every species were of similar depth as we 
previously showed a positive correlation between term-centric 
performance and GO term depth. We observed similar distri-
butions of GO term depth per species, although for at least 1 
species the distribution was significantly different (Chi-square 
test P-value: 2.7e-23) (Figure S.3A). This was not the case for 
the depth distributions of GO terms selected for term-centric 
evaluation (Chi-square test P-value: 0.20) (Figure S.3B). The 
observed difference in depth distribution for protein-centric 
evaluation may have a minor influence on differences in perfor-
mance between test species.

Protein functions learned in training species are 
effectively predicted cross-species

We trained an MLP classifier on the embeddings of the Mouse 
training set. We specifically select the MLP over LR because 
our interest now lies in best performance. To evaluate protein-
centric performance (F1-score), GO term posterior probabili-
ties were converted into predicted binary class labels using a 
threshold. To mimic a real-case scenario in which no informa-
tion on the test species is present, we determined this threshold 
on the mouse validation set and applied it to posterior proba-
bilities for every test species (Figure S.4).

We observed that the MLP outperformed the baseline 
Frequency PSI-BLAST method and DeepGOPlus in all spe-
cies for both term-centric and protein-centric evaluation 
(Figure 5b and c). The absolute performance of the MLP 
decreased with increasing divergence time, yet the decrease was 
not as severe as for the DeepGoPlus, effectively increasing the 
difference by which MLP outperformed DeepGoPlus. 
Although less severe, this same trend was also observed between 
protein-centric performance of the MLP and the Frequency 
PSI-BLAST method (Figure 5b). For term-centric perfor-
mance, the difference in performance became smaller with 
evolutionary distance but stabilizes beyond the Chordata 
phylum.

We observed deviating behavior in Mouse, Yeast and A. thali-
ana as their MLP performance did not follow the trend of 
“increased divergence time, decreased performance.” As the 
behavior of Mouse might be caused by splitting the data into a 
train, validation, and test set, we recreated our MLP experiments 
with Human as the training species as a control experiment 
(Figure S.5A). We observed a similar trend as before but this time 
the performance in Human, Yeast and A. thaliana was deviating, 
indicating that the splitting of the training species into a train, 
validation and test set was responsible (Figure S.5B and C).

Evaluating using protein-centric semantic distance39 con-
firmed the superiority of the SeqVec-based MLP over 
Frequency PSI-BLAST and DeepGOPLus (Table S.5). In 
addition, recent work showed that several wrongful GO anno-
tations exist with the evidence code “IBA.”40 However, in our 
dataset, removing phylogenetic annotations had a very small 
effect on the results (Supplementary Material subsection 2.2, 
Figure S.6).

Similar to Littmann et al41 we observed a very strong posi-
tive correlation between protein-centric SeqVec-based molec-
ular function prediction performance and average sequence 
identity per species (Spearman correlation: 0.96, P-value: 4.5e-
05) (Figure 5d), although this trend breaks for proteins with 
less than 30% identity (Supplementary Material subsection 
2.3, Figure S.5D and E). The deviating performance of Yeast 
could partially be explained by the observed correlation, as 
Yeast had the lowest (but very similar to A. thaliana) average 
sequence identity to the training set (Figure S.7).

Finally, it must be noted that besides the quality of the 
molecular function prediction method, its coverage (ie, the 
fraction of protein for which at least one prediction was made) 
is a second most important characteristic. We observed that 
the coverage of the classifiers trained using SeqVec embed-
dings as well as for the baseline Frequency PSI-BLAST and 
DeepGoPlus was 1.0 in all experiments (Figures 5b and S.5C). 
For the SeqVec-based predictions, 50% to 80% of the proteins 
were assigned a term of depth at least 4 and these percentages 
decreased for increasing term depth (Figure S.8B).

Overall, the results reveal the ability of SeqVec-based 
molecular function prediction to extract information from one 
well-annotated training species for predictions in various other 
eukaryotic species.

Not-evaluated species-specif ic GO terms contribute 
only a few annotations

As cross-species molecular function prediction inevitably lim-
its the number of GO terms that can be predicted in test spe-
cies, we assessed to what extent this affects the integrity of 
SeqVec-based molecular function prediction. Specifically, a 
protein has a certain number of real annotations which are all 
the annotations present in the species datasets, including the 
non-evaluated GO terms. Given that we only evaluated 
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overlapping GO terms between training and test species, we 
calculated the percentage of these real annotations that we 
were able to predict as a quantity for missed predictions.

In all species, we observed a wide distribution of the predicted 
percentage of real annotations per protein (Figure S.8A). The 
distributions were heavily tailed to the high percentages for all 
test species except the Mouse and Yeast, which previously also 
showed lower performances. Interestingly, with increasing diver-
gence time, the average percentage of predicted real annotations 
remained fairly constant, whereas the percentage of real GO 
terms evaluated decreased with increasing divergence time (Table 
S.4). We hypothesized this observation might be indicating that 
the filtered-out GO terms were rare terms with few annotated 
proteins, and hence excluding them from evaluation had only 
minor influence on the percentage of true predicted GO terms.

To test this, we calculated the Resnik information content 
(IC)42 of each GO term per species. A high IC indicated a rare 
term in a GO corpus, and a low IC a common term. Indeed, 
the average IC value of not-evaluated GO terms was high for 
all species, indicating that the not-evaluated GO terms repre-
sent rare molecular functions among the proteins of the test 
species (Table S.7).

SeqVec-based molecular function prediction reveals 
specif ic types of molecular functions executed by 
conserved proteins across different species

From the characterization of SeqVec-based molecular function 
prediction, we know that performance positively correlates 
with an increased domain, family or superfamily similarity 

between proteins. We figured that we can exploit this property 
to identify types of molecular functions executed by more con-
served proteins. Specifically, if performance remains constant 
with increasing divergence time, it would indicate that the pro-
teins are more conserved. Hence, we compared the perfor-
mance of each GO category between all evaluated species.

We observed that indeed some molecular functions indi-
cated by their GO category could be predicted with constant 
performance across all species, such as “transmembrane trans-
porter activity” (Figure 6). Additionally, we observed GO cat-
egories with constant performance among the mammal species 
and decreased performance in the other species such as “hydro-
lase activity” and “catalytic activity, acting on a protein,” indi-
cating that these categories of functions might be more 
conserved among mammals.

As we ordered the GO categories the same as in Figure 4 
(best to worst performance), it was interesting to observe that 
GO categories did not perform similar in the cross-species 
experiments (ie, they do not have the same order of perfor-
mance in the different species). Note, the order was previously 
determined using the SwissProt dataset (which has maximum 
30% pairwise sequence identity), so this dataset disregarded 
many proteins of certain GO categories with high sequence 
similarity. Given the discrepancies in order and no restrictions 
on sequence similarity for the cross-species experiments, these 
results indicate that in reality a large number of similar pro-
teins likely exist for these categories. Overall, these results 
reveal a possible application for SeqVec-based molecular func-
tion prediction in which conserved protein functions could be 
identified.

Figure 6. Median term-centric performance (ROCAUC) per GO category per species of the MLP classifier trained using SeqVec protein-level 

embeddings on the Mouse training dataset. A missing number indicates that a certain GO category was not present among the evaluated proteins.
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Protein functions from the GO categories biological 
process and cellular component can also effectively be 
predicted cross-species

To further assess the potential of cross-species SeqVec based pro-
tein function prediction, we tried to predict GO terms from the 
GO categories Biological Process (BP) and Cellular Component 
(CC) using the same methodology as before. Again using Mouse 
as the training species, we created BP and CC datasets with pro-
tein annotations for the test species (the number of selected pro-
teins and GO terms can be found in Table S.8).

For BP, we observed the same trend as before as the absolute 
performance of the MLP decreased with increasing divergence 
time (Figures 7A and S.9A). Again, the decrease was not as severe 
as for the Frequency PSI-BLAST method, effectively increasing 
the difference by which MLP outperformed Frequency PSI-
BLAST. The term-centric performance of CC also displays this 
trend while its protein-centric performance does not (Figures 7B 
and S.9B). Here, performance initially decreases with increasing 
divergence time, but increases again for Yeast and A. Thaliana. 
Nevertheless, the MLP outperforms Frequency PSI-BLAST in 
all species except Zebrafish and C. Elegans.

Although no further experiments were done on the predic-
tion of biological process and cellular component GO terms, 
these results further support the potential for SeqVec-based 
protein function prediction in practical applications.

Discussion
Performance of SeqVec-based molecular function 
prediction models dominated by the level of 
conserved proteins

Protein-level embeddings from the SeqVec model are effective 
tools in the task of molecular function prediction, reaching 
competitive performance to many state-of-the-art sequence-
based molecular function prediction methods.24 Here, we shed 

light on the “black box’ of SeqVec performance and built upon 
previous work by characterizing the performance of a simple 
LR classifier trained using SeqVec embeddings.

Fundamental to the GO hierarchy, GO terms close to the 
root annotate a wide variety of proteins compared to more 
specific divergent functions lower in the GO hierarchy. Our 
findings suggest that inherent to this GO hierarchy, GO 
terms closer to the root can generally be predicted with lower 
term-centric performance than GO terms far from the root, 
despite having more positive examples. This implies that the 
performance of SeqVec-based molecular function prediction 
is sensitive to having access to a training set containing pro-
teins roughly similar on a large functional scale, yet still dis-
tinct on a smaller scale. A possible countermeasure is offered 
by “projected predictions” to correct predicted probabilities to 
respect the GO hierarchy.15 Specifically, the probability of a 
protein being annotated with a term close to the root (eg, 
“binding”) should never be lower than the probability of 
being annotated with a child term of it (eg, “DNA binding”). 
In theory, this could improve the predictions of GO terms 
close to the root, although it will be less effective for GO 
terms with many false positives that likely already have high 
predicted probability scores.

Contrary to our expectation, we also observed a positive 
correlation between protein-centric performance and protein 
length. To explain the observed behavior, we suspected that the 
length of the protein is somehow encoded in SeqVec embed-
dings. Specifically, as long proteins were relatively scarce in our 
dataset, they could be easier to predict by having similar embed-
dings to other long proteins with similar function in the train-
ing set. Indeed, we showed that protein length can effectively 
be predicted from SeqVec embeddings, thereby presenting 
itself as a protein characteristic that counters the expected 
decrease in performance for longer proteins. Interestingly, this 

Figure 7. The average protein-centric F1 performance over all the proteins per species for the MLP classifier (brown) for (a) biological process GO terms 

and (b) cellular component GO terms. Performance is compared to baseline Frequency PSI-BLAST (orange). The coverage C is shown inside the bars. 

Errorbars denote 95% confidence intervals estimated using 100 bootstraps.
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relevant information on protein length is present in protein-
level embeddings, even though they are obtained by taking the 
mean over amino acid embeddings. This is in line with results 
from NLP, where sentence embeddings have been shown to be 
predictive of sentence length, even by averaging the embed-
dings of all words in a sentence.43

As we observed large differences in performance between 
GO terms with the same depth, we hypothesized that some 
molecular functions are somehow easier to predict than others. 
We investigated the possible influence of differences in the 
domain similarity between annotated proteins on term-centric 
performance as we hypothesized that GO terms with diverse 
proteins might be harder to predict. Indeed, the term-centric 
performance for GO terms with many annotated proteins 
from the same family is generally better. Additionally, we 
showed that having multiple protein domains per protein does 
not interfere with SeqVec’s ability to model protein families. 
Hence, the SeqVec model is capable of modeling multiple 
functionalities of proteins in one embedding. Given that 
SeqVec is trained using biLSTM layers, this observation might 
indicate that SeqVec might be able to recognize protein 
domains in protein sequences potentially revealing the under-
lying mechanism by which it is capable of modeling multiple 
functionalities of proteins. It would be interesting to follow this 
up. Moreover, we showed that having a higher prevalence of 
the shared superfamily among the remaining protein popula-
tion lowered term-centric performance. The latter observation 
is in line with our previous notion that SeqVec-based molecu-
lar function prediction performance suffers from having to pre-
dict proteins with a similar function at the broad scale yet a 
distinct specific function. Overall, these observations hinted 
that some molecular functions are executed by a wider spec-
trum of proteins, thereby decreasing the predictive power of 
SeqVec-based molecular function prediction. Of note, we were 
unable to consider all test proteins in the experiments on 
domain, family and superfamily similarity as such annotations 
were sparse. Nevertheless, we do not expect large differences in 
the observed findings if all annotations would be available.

Using these insights, we identified specific groups of molec-
ular functions executed by more similar proteins in terms of 
their domains and families. The higher domain, family, and 
superfamily similarity in some GO categories might be 
explained from an evolutionary perspective: the proteins that 
execute the molecular functions of well-performing GO cate-
gories seem to be more conserved. For instance, our best per-
forming GO category was “signaling receptor activity,”, and the 
Par proteins, GTPases, kinases, and phosphoinositides that 
participate in signaling pathways are highly conserved over 
diverse species.44 On the other hand, our worst-performing 
GO category, “carbohydrate derivative binding,” is executed by 
proteins with a high degree of complexity and heterogeneity, as 
reflected by the fact that the proteins are grouped into 45 pro-
tein families.45,46 Therefore, the performance of SeqVec-based 
molecular function prediction might be indicative of groups of 

conserved proteins. For instance, we observed that even within 
the median performing GO categories some GO terms do 
have high performance . We speculate that these more specific 
molecular functions might be executed by a group of conserved 
proteins, but further research is required to validate this 
hypothesis. An alternative explanation might be that predictive 
performance is influenced by similarities in data availability for 
similar species or by an experimental bias that favors certain 
types of functionalities for certain species.

Cross-species SeqVec-based molecular function 
prediction is possible and offers many fruitful 
applications in practice

Our work provides a novel evaluation scheme to molecular 
function prediction based on the annotated protein sequence 
data of merely one training species. Using the methodology of 
SeqVec-based molecular function prediction in a transfer 
learning task, the model effectively extracted information on 
protein functions from one training species to make predic-
tions available in various other eukaryotic species. This ability 
to generalize learned protein functions across different king-
doms shows that the trends found by the neural network (both 
the SeqVec model and the MLP classifier) not only hold for 
the proteins of the training species but are conserved through-
out the eukaryotic domain of life. This was not the case for the 
supervised-learning-based baseline that failed to generalize to 
distant species. This confirms our hypothesis that SeqVec-
based molecular function prediction is to some extent inde-
pendent to the context of species and substantiate SeqVec’s 
capability to model underlying protein principles. It should be 
noted that all methods were evaluated using the intersection of 
terms between the training and test species, as species-specific 
terms not available in the training species cannot be predicted 
using this approach. We also chose not to include terms unique 
to the well-annotated training species, as it is not always clear 
whether these indeed species-specific terms or they are missing 
due to varying degrees of missing annotations.

We showed that the absolute performance of SeqVec-based 
molecular function prediction decreased with increasing diver-
gence time, although it was not as severe as for the other meth-
ods. We correlated this decrease in performance to a decrease 
in average sequence identity between the training species and 
the test species. One explanation to this observation comes 
from the rule of thumb “increased sequence identity, increased 
likelihood structural similarity and hence increased likelihood 
functional similarity” between proteins.17,34 We previously 
noted that SeqVec embeddings of proteins that share a domain 
or are from the same protein family are likely similar in embed-
ding space, and hence more likely to receive the same molecular 
function, explaining the observed behavior. However, if func-
tionally similar proteins are indeed similar in embedding space, 
one might not expect a substantial decrease in performance 
with increasing divergence time.
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However, we note that for proteins in the twilight zone, that is 
with maximum 30% sequence identity, the correlation between 
performance and sequence identity disappeared. We attributed 
this to the fact that the relationship between sequence identity 
and structural similarity vanishes in the twilight zone, potentially 
lowering the performance if proteins diverge.47 With Yeast and 
A. thaliana both having a significant proportion of their proteins 
with a lower than 30% sequence identity, the performance of 
cross-species function prediction becomes more dependent on 
the randomness of evolution, that is how many proteins will be 
divergent by evolution, thereby lowering the performance of 
SeqVec-based molecular function prediction. This is illustrated 
by the performance of Yeast, the species with the highest fraction 
of proteins in the twilight zone and the worst performance, while 
not being the furthest in divergence time. Overall, this indicates 
that after some threshold in divergence time from the training 
species, the molecular function prediction will disobey the 
observed “increased divergence time, decreased performance” 
trend. Hence, for high-performance in the test species, the train-
ing species should be reasonably evolutionary close. Ideally, one 
model species per kingdom (Plantae, Fungi, Bacteria) could deal 
with this problem.

Finally, we also evaluated cross-species SeqVec-based protein 
function prediction for the GO terms on Cellular Component 
(CC) and Biological Function (BF), the remaining categories of 
the Gene Ontology and observed the same behavioral trends in 
performance as for molecular function predictions.

A possible application for our approach is in cases where 
limited annotated protein training data is available per taxo-
nomic kingdom. For instance, the UniProtKB/SwissProt 
knowledgebase has started the Plant Proteome Annotation 
Program (PPAP) in 2009 to get more annotations on 2 model 
plant species, Arabidopsis thaliana and Oryza sativa, which 
could function as the training species in the plant kingdom.48 
Another application arises with the discoveries of novel protein 
functions. A recent study on the proteomes of 100 species has 
identified many highly expressed proteins without any func-
tional annotation or sequence homology to proteins with 
known annotations.3 It is proposed that the exploration of this 
dark proteome could reveal essential functions for the species 
which could be of biological or biotechnological interest and a 
SeqVec-based model might be useful at transferring to many 
species any novel functions that are experimentally identified 
functions in 1 species. All in all, we present a novel, data-unde-
manding protein function prediction evaluation scheme that 
relies on the availability of merely one adequately annotated 
model species per evolutionary kingdom and uses the method-
ology of SeqVec-based molecular function prediction.

Materials and Methods
Datasets: SwissProt and cross-species

SwissProt dataset. To characterize and improve the perfor-
mance of SeqVec-based molecular function prediction, we used 

the SwissProt dataset from previous work.24 In short, this data-
set contained labeled protein sequence data from the SwissProt 
database for a selection of proteins with a sequence length in 
the range [40, 1000]. Every protein had at least one functional 
GO term annotation from the Molecular Function Ontology 
(MFO) obtained by non-computational means, that is with 
one of the following evidence codes: “EXP,”, “IDA,” “IPI,” 
“IMP,” “IGI,” “IEP,” “HTP,” “HDA,” “HMP,” “HGI,” “HEP,” 
“IBA,” “IBD,” “IKR,” “IRD,” “IC,” “TAS.”. Data on the anno-
tations of 441 GO terms with at least 40 positive examples in 
the training set and at least 5 positive examples in the valida-
tion and test set was available. The dataset contained 63994 
training, 8004 validation, and 3530 test proteins with at most 
95% sequence identity to each other. Proteins in the test set 
had the additional constrain of at most 30% sequence identity 
to each other and proteins in the training set.

InterPro annotations for SwissProt dataset. We retrieved all 
available domain, family, and superfamily annotations from 
the InterPro database. We were able to obtain at least 1 
domain, family or superfamily annotation for 1631, 2210, or 
1687 out of the 3530 test proteins, respectively. To prevent 
calculating statistics over just 1 or 2 annotated proteins per 
GO term, we considered only GO terms with at least 50% of 
its functionally annotated proteins also having InterPro anno-
tations. As a result, we evaluated 278, 355, or 277 out of the 
441 GO terms for the domain, family or superfamily similar-
ity, respectively.

Cross-species datasets. We tested the ability to transfer knowledge 
on molecular function between different species using data from 
7 model species: Mus musculus (Mouse), Rattus norvegicus (Rat), 
Homo sapiens (Human), Danio rerio (Zebrafish), Caenorhabditis 
elegans (C. elegans), Saccharomyces cerevisiae (Yeast), and Arabi-
dopsis thaliana (A. thaliana). Independent for each of the model 
species, we retrieved data on the sequence and MFO of proteins 
from the Swiss-Prot Database, only including proteins with at 
least one MFO annotation obtained using non-computational 
means. We retrieved gene counts from the Uniprot reference 
proteomes.49 Since mouse was selected as the training species, 
the mouse data was split into a train, validation and test set using 
a stratified multi-label split to preserve as many overlapping GO 
terms as possible between them.50 This resulted in 8977 mouse 
training, 1801 mouse validation, and 1790 mouse test proteins 
(ratio of 5

7
:
1
7
:
1
7

 respectively). An overview of the taxonomic 

classification, the amount of selected proteins and gene coverage 
per species is provided in Table S.4A.

Amino acid-level and protein-level embeddings

We represented amino acids in the form of SeqVec embed-
dings.25 For every amino acid n  in the protein sequence,  
we extracted the d =  1024-dimensional embeddings 
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( w w w1 2 3
n n n, , ) ∈d  from the 3 layers of the SeqVec model 

(Figure 1b). As proposed by Heinzinger et  al,25 we summed 
these 3 embeddings component-wise using:

w w w wn n n n= 1 2 3+ +  (1)

to obtain an amino acid-level embedding wn
d∈ .

Using the amino acid-level embeddings, we represented 
protein sequences with protein-level embeddings.25 For a pro-
tein of length M , we calculated the protein-level embedding 
as the component-wise mean over the sequence of amino acid-
level embeddings w w1, , M( ) . Specifically, for every protein 
we obtained the concise matrix W w w= , ,1  M

d M  ∈
×  

and calculated the vector v W1( )  in d  whose d  compo-
nents were the component-wise arithmetic mean using:

v W w w
1

1=( ) + + M

M  (2)

This operation summarized the amino acid sequence of varia-
ble length M  into a fixed-sized vector v W1( )  (Figure 1c). 
Each of 1024 protein-level features was standardized to 0 mean 
and unit variance using the training set.

Molecular function prediction models

Models for the SwissProt dataset. We characterized the perfor-
mance of SeqVec-based molecular function prediction using a 
Logistic Regression (LR) classifier trained using the protein-
level embeddings. The trained classifier predicted for each test 
protein the probability ∈  [0, 1] of being annotated with a cer-
tain GO term.

We trained an independent LR for every GO term using L2 
regularization and Stochastic Gradient Descent (SGD) to 
accelerate the training process. To tune the penalty coefficient 
λ , we tested the values 10x  with x ∈  [2,1,0,-1,-2,-3] using 
the SwissProt validation set. The optimal value was determined 
jointly over all the 441 GO terms by the highest average 
ROCAUC score (term-centric evaluation).

Model for the cross-species datasets. For the cross-species experi-
ments, we trained an MLP with 1 hidden layer with 512 nodes 
followed by a ReLu activation function. We applied a dropout 
to the hidden layer of 30% to prevent overfitting.51 The input 
layer contained a number of nodes equal to the dimension of 
the input protein-level embeddings, that is 1024. The output 
layer contained nodes for all the 4086 GO terms in the mouse 
training set, followed by a Sigmoid activation function, ensur-
ing the MLP outputs are in the range [0, 1]. We trained the 
MLP in a mini-batch mode (size 64) for 100 epochs using the 
binary cross entropy averaged over all the GO terms as a loss 
function. We used the Adam optimizer52 for parameter updat-
ing at an initial learning rate of 5 10 4⋅ −  that was reduced by a 

factor of 10 whenever the validation loss did not improve for 5 
consecutive epochs. To obtain the optimally trained MLP 
model, we selected an independent model for term-centric 
evaluation and protein-centric evaluation determined by the 
highest validation performance using the Mouse validation set. 
Additionally, after the MLP predicted the probabilities of GO 
term annotations, we propagated them to respect the GO hier-
archy. Specifically, each parent term in the GO hierarchy 
received the highest probability score among its child terms, if 
and only if this score was higher than its own predicted prob-
ability score. This GO hierarchy correction step was not done 
for the experiments using the SwissProt dataset.

Protein length prediction model

To access if protein-level embeddings modeled protein length, 
we trained a LR classifier to predict protein length. We used 
one-hot encoding to model protein length in bins. The LR was 
implemented as described above. To tune the penalty coefficient 
λ , we tested the values 10x  with x ∈  (2,1,0,−1,−2,−3, −4, −5) 
using the SwissProt validation set. The optimal value was deter-
mined jointly over all the ten protein length intervals by the 
highest average ROCAUC score (term-centric evaluation).

Baseline method Frequency PSI-BLAST

We used PSI-BLAST with 3 iterations as a baseline method 
in the cross-species experiments.16,53 This baseline showed to 
be most suitable for the purpose of this paper (Supplementary 
Material subsection 2.1). We considered all PSI-BLAST hits 
to the target protein to obtain predicted probability scores for 
the GO terms as suggested by Radivojac et al15 In brief, we 
annotated each protein with all the GO terms present among 
all the PSI-BLAST hits. The predicted probability given to 
each annotation was the frequency of that term among all the 
PSI-BLAST protein hits, that is the number of (PSI-)
BLAST hits annotated to the GO term divided by total 
number of hits.

DeepGOPlus

We trained DeepGOPlus54 from scratch using only our mouse 
training set. DeepGOPlus uses a convolutional neural net-
work with one-hot encoded amino acids as input and calcu-
lates a final score for a protein-GO term pair using the 
weighted average of the posterior probabilities of the network 
and BLAST scores. We use the hyperparameters (learning 
rate, number of hidden layers, size of convolutional filters, and 
weights to combine the posterior probabilities) that were 
reported as optimal for molecular function prediction by the 
authors.54 We used our mouse validation set to decide on the 
optimal epoch to stop training, using early stopping as recom-
mended, and to find the threshold of posterior probabilities 
that maximizes the F1 score.
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Performance evaluation

We evaluated all models using the protein-centric F1 score and 
semantic distance39 and term centric ROCAUC, whose defini-
tions can be found in the supplementary material section 3. We 
estimated 95% confidence intervals using bootstrapping. We 
obtained a stratified resampled set from the test set with size 
equal to the original test set. Subsequently, we calculated the 
evaluation metrics on the resampled set, repeating this process 
100 times using a distinct random state. We executed every 
bootstrapping process on the different datasets with the same 
random states to enable comparison between them.

GO term selection for cross-species evaluation of models. The 
cross-species datasets differed in the number of unique GO 
terms present among the selected proteins. To deal with these 
differences, we evaluated only GO terms overlapping between 
the training species (Mouse) and the test species in case of 
protein-centric evaluation. For term-centric evaluation we had 
additional criteria as the proper calculation of ROCAUC 
scores needs enough positive examples for each GO term. To 
this end, we selected GO terms with at least 5 annotated pro-
teins in the mouse training set and at least 3 annotated proteins 
in the mouse validation, mouse test and the test species test 
sets. There were 1530 unique GO terms in the mouse training 
set with ≥ 5 annotated proteins. Again, we only evaluated GO 
terms from the test species overlapping with this selection. An 
overview of the amount of GO terms per species and evalua-
tion metric is provided in Table S.2B.
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