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Abstract

Network-based analysis has been proven useful in biologically-oriented areas, e.g., to explore the dynamics and complexity
of biological networks. Investigating a set of networks allows deriving general knowledge about the underlying topological
and functional properties. The integrative analysis of networks typically combines networks from different studies that
investigate the same or similar research questions. In order to perform an integrative analysis it is often necessary to
compare the properties of matching edges across the data set. This identification of common edges is often burdensome
and computational intensive. Here, we present an approach that is different from inferring a new network based on
common features. Instead, we select one network as a graph prototype, which then represents a set of comparable network
objects, as it has the least average distance to all other networks in the same set. We demonstrate the usefulness of the
graph prototyping approach on a set of prostate cancer networks and a set of corresponding benign networks. We further
show that the distances within the cancer group and the benign group are statistically different depending on the utilized
distance measure.
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Introduction

For many diseases no longer single genes act as marker, but a set of

interacting genes may be used to characterize or diagnose a

pathological process [1]. Driven by that rational a plethora of new

data analysis methods emerged over the last years, as the need for

methods that are able to capture the related complexities arose. A

simple example is to look for objects that are highly connected to

other objects and may therefore play a central role in regulatory

processes. The network-based analysis [2] of biological data is one

related field in systems biology [3]. Whereas classical data analysis

was driven by a reductionistic point of view, modern network biology

aims at perceiving the data holistically [3]. Using networks allows

leaving behind the static exploration of one feature at a time, and

enabling an investigation of the more realistic dynamic nature of

biological and medical data. The dynamics lie in several dimensions,

as systems change over time [4], react to perturbations [5] or are

simply made up by biological functions, which are interlinked into

complex cascades [6]. Simultaneously, combining different data

sources has become a standard procedure in modern computational

biology. Be it by means of data integration or classical meta-analysis,

much effort is still being put into standardizing approaches that

enable an integrative analysis [7]. Integrative approaches allow

increasing the evidence base for new findings by combining

information from different sources. In a classical view data

integration refers to the integration of data of different nature (e.g.

gene expression and proteomics). In this present paper, we also refer

to the integration of the same type of data as data integration.

Research for combining network biology and integrative data

analysis has flourished over the last years [8–10]. This allows

deriving generalizations from a set of differing networks that

investigate the same or similar research questions. Such general

findings can be used for answering biological questions or for

creating new hypothesis about underlying processes. Measuring the

similarity between networks has been proven useful for assessing

systematic effects of time course for metabolic networks [8],

matching regulatory interactions [9] or for identification of similar

subgraphs in pairs of networks [10]. Another application of

comparative network analysis is the systematic comparison of two

association networks that were trimmed for partial correlations [11].

Yet, detecting and inferring knowledge about common properties

for a set of networks is a challenging task since comparing networks

depends on the definition of the underlying similarity measure.

However, the similarity between any objects is not uniquely defined

since multifaceted aspects such as structure, function and semantics

are involved [12]. Therefore, it is necessary to find comparable

features in biological networks. Often this is done by detecting

common edges or vertices, and comparing them or their

distributions [13,14]. To address the issue of meaningfully

comparing biological networks a multitude of methods has been

developed. We can here only present a small selection of these

approaches and their applications. Piruzian et al. employed

topological information for integrating transcriptomic and proteo-

mic data in a rank-based approach [15]. A generalized form of the

degree distribution, the so called graphlet degree distribution, can

be applied for determining network similarity [16]. Graphlets were
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also used to align PPI networks from human and yeast [17]. A

statistical method for comparing large disease networks inferred

from cervical cancer using a tree decomposition and alignment

technique was also proposed in [18]. Here, we focus on the

application of comparing networks, that are derived from the same

type of data and are used as representations for a class of specimen.

Therefore, we analyze a set of association networks derived from

prostate cancer gene expression data. By making use of this

combination it is possible to derive generalized information about

the network-based findings related to certain diseases or develop-

mental states. A common approach to the problem of analyzing

network properties by means of meta-analysis is to compare the

overlap of edges in different networks. We demonstrated its

usefulness for a network-based integration in a previous study

[19]. A similar approach for shared edges was given by Cootes et al.

[10]. An alternative method was presented by Wang et al., who

utilized information about the effect-size to combine information

from a set of network [20]. However, this approach requires

information about the effect-size to be available. Detecting common

edges in a network is a challenging task if no proper mapping

between the vertex labels is available. When considering co-

expression networks, the vertex labels refer to gene names. In order

to generate a common name space across the different networks, it is

therefore useful to map the study-specific, platform-depended gene

identifiers to other identifiers, e.g. Entrez gene identifiers.

In the present paper we demonstrate an alternative approach

for inferring common topological properties for a set of networks.

Here, graph prototyping can be understood as a method that

selects an existing network from a set of networks as a

representative for the complete set, with respect to an underlying

graph distance measure [21]. This means that the structural graph

prototype represents the topological properties of a complete set of

networks, depending on the selection criterion that is defined by

the graph distance measures. A schematic illustration for selecting

a graph prototype is given in Fig. 1. Note that other definitions of

graph prototypes such as the so-called consensus tree [22] have

been also explored. But those won’t be discussed in this paper.

Thus, this prototype network can then be used for performing a

topological analysis and inferring new knowledge, as it represents

the properties of all other networks from the same set. One strong-

point of this method is that detecting common edges or nodes may

become unnecessary, depending on the employed graph distance

measures. Then, it is crucial using a graph distance measure whose

computational complexity is polynomial. To implement graph

prototyping, we select proper graph distance measures that are

able of meaningfully quantifying the distance between two

networks. As part of our contribution we describe four distance

measures that are based on the probability distributions of network

properties. This is another strong-point of this method, as it can be

modified to make use of other, customized graph distance

measures. To demonstrate the selection of a graph prototype

[21,23] we make use of prostate cancer gene expression studies.

25% of newly diagnosed male cancers in the US are prostate

cancers [24], which makes it an attractive target for ongoing

biomedical research. A broad range of studies have been

conducted over the last years, and much of the corresponding

data is available in public data repositories [25–27]. We apply our

method on a set of seven prostate cancer studies [28–24], which

consist of cancer samples and samples from benign or healthy

tissue. We expect a two-fold result: First, we expect to see

Figure 1. The graph prototyping method. This figure schematically illustrates the derivation of the graph prototype.
doi:10.1371/journal.pone.0022843.g001
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significant structural differences between benign and cancer

studies by making use of topological measures. Secondly, we

expect to see significant differences between the distances within

the cancer data networks and the distances within the benign data

networks. This could show that not only the networks themselves

differ, but that even the similarities between the two groups differ.

If so, the pathogenic processes that are caused by the cancer are

most likely responsible to explain these observations. Based on

previous work [19] we expect to observe higher similarities within

the cancer group. More precisely, we expect distances within data

sets from a cancer group to be smaller than those from a benign

set.

The paper is organized as follows: In the ‘Data and Methods’

section we present the exploited data sets and the inference process

of the networks. Then, we describe the graph prototyping

approach and the employed graph distance measures in detail.

The section ‘Results’ summarizes and describes the obtained

results. The section ‘Discussion and Outlook’ ends the paper with

discussing our results and is followed by some final remarks.

Materials and Methods

Prostate Cancer Data
We demonstrate the graph prototyping approach using a set

of prostate cancer studies. Since this cancer has been thoroughly

investigated for the last years, a larger number of gene

expression data is on-hand through public repositories. For

the presented study a survey on the repositories NCBI GEO

[25], EBI Arrayexpress [26] and Oncomine [27] was conducted.

For inclusion into our analysis studies have to report gene

expression levels from prostate cancer and benign specimen

using microarrays. Benign specimen are either samples from

normal tissue adjacent to tumors or healthy males. We

expurgate metastatic forms from the cancer samples for this

study in order to decrease heterogeneity in the networks. Cell

line expression data was also excluded. To reduce the data

preparation and mapping effort we only include Affymetrix

microarray platforms in this study.

For conducting this analysis we select seven data sets [28–34]

from the data pool as listed in Table 1. To investigate the effect of

sample size within the studies on our results a broad range of

sample sizes (from small studies to larger ones) is allowed. After the

selection of studies to be included, we re-perform microarray

preprocessing. The given sample sizes in Table 1 refer to the post-

quality control state. To enable inter-study comparison of the

genes, the original identifiers are mapped to Entrez gene identifiers

by using the biomaRt package [35] for Bioconductor [36].

Wherever multiple probesets map to one Entrez gene identifier,

we retain the measurement with the highest variance. After this

mapping 8906 genes common within all seven studies are left for

further analysis. For deriving a suitable network representation of

the data, the creation of association networks was chosen.

However, the methods presented below are applicable to a range

of other network types too, if adopted properly.

Network Inference
To infer a proper network representation of the underlying data

is an important challenge in network-based research [37–39]. A

broad range of network representations for biological data exist

[39–41], and the graph prototyping method presented hereinafter

can be applied for most of them. Here, we utilize information

about the association between two genes. The resulting networks

are therefore called association networks. For inferring and

analyzing gene expression data as association networks, co-

expression relationships have been often utilized [42]. Note, that

association does not necessarily indicate causality. One way to

address this problem is to apply the concept of causal memberships

[43], where genes have been functionally categorized.

Here, we utilize the mutual information as a measure for the

association, as described in [39]. For inferring the networks from

the gene expression data, we make use of the MRNETB algorithm

[38]. To set up data sets for selecting a graph prototype, we infer

two networks from each study. One network that is based on the

information from the benign samples in a study, and one network

from the cancer samples in the same study. This leads to 6 benign

networks, and 7 cancer networks, as we remove the benign

network from the Wang data. This is done due to the small sample

size (nbenign~3) since we regard the inferred network as being of

little reliability. In general, inferring a network for each patient

group separately allows performing topological comparisons and

thereby deriving new insights on the underlying functional

differences.

Selection of a Graph Prototype
To generalize the graph similarity problem [21], it has been

shown by Dehmer et al. that one graph can be used to represent a

set of other comparable graphs [21]. The task of determining this

so called graph prototype can be solved by applying distance or

similarity measures [21,44]. Let G be a network, and d(Gi,Gj) be a

graph distance measure. Having a set of networks S~fG1,
G2,:::,GjSjg, the graph prototype can be expressed by [21,23,45]:

Table 1. The data sets that were used in this study.

Name Journal Year Platform nbenign ncancer

Chandran BMC Cancer 2007 Affymetrix GeneChip HG U95Av2 15 57

Liu Cancer Res 2006 Affymetrix GeneChip HG HG-U133A 13 41

Wallace Cancer Res 2008 Affymetrix GeneChip HG U133A 2.0 14 68

Tsavachidou J Natl Cancer Inst 2009 Affymetrix GeneChip HG HG-U133A 49 23

Singh Cancer Cell 2002 Affymetrix GeneChip HG U95Av2 48 50

Yu J Clin Oncol. 2004 Affymetrix GeneChip HG U95Av2 58 59

Wang Cancer Res 2010 Affymetrix GeneChip HG HG-U133A 3{ 138

We infer the networks from public available data sets. The given sample size are after quality control and related filtering. { We do not infer a network from this group,
due to the small sample size.
doi:10.1371/journal.pone.0022843.t001
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M~ arg min
G[S

1

jSj
XjSj
i~1

d(G,Gi): ð1Þ

We see that
1

jSj
XjSj

i~1
d(G,Gi) in Eq. 1 gives the mean distance

from network G to all other networks in S. We denote this as �dd(G).
Our goal in the present paper is to apply a selection of graph

distance measures for selecting graph prototypes from a set of

prostate cancer networks and a set of corresponding benign

networks. Applying different graph distance measures means that

we can cover different aspects of structural similarity. In general, it

is a still outstanding problem what aspect of structural similarity an

underlying measure captures [44]. If different graph distance

measures select the same network as a graph prototype for a set of

networks, this increases the validity of the selection. With respect

to the employed distance measure the graph prototype represents

the topological properties of the other networks from the same set

S. It can therefore be used for performing a topological and

functional analysis.

Graph Distance Measures
In order to perform graph prototyping it is necessary to

meaningfully measure the distance between two networks. In this

subsection we present two approaches for accomplishing this task.

The first approach is based on using inexact graph matching. In

particular, we choose the so-called graph edit distance (GED) [46].

The second approach is based on comparing two discrete

probability distributions [47], that are inferred by deriving

structural features of the networks.

The GED is the minimum cost of a sequence for transforming a

graph Gi into another graph Gj using edit operations (deleting and

inserting edges or deleting, inserting, and substituting vertices)

[46]. The underlying problem (to compare two graphs structurally)

can be seen as a generalization of Levenshtein’s method [48] for

comparing strings. Generally, calculating the GED for (unlabeled)

graphs is computationally demanding, as it is NP complete [49].

For our purpose the complexity can be reduced due to three facts

[50]: i) All of our networks Gi~1,2,...,jSj have the same number of

(unconnected) vertices jV1j,jV2j, . . . ,jVjSjj, ii) all the vertices are

labeled uniquely, and iii) by selecting only the genes that are

present in all studies, all the networks have the same set of vertices,

which frees us of deleting, inserting or substituting any vertices.

Thus, reducing the computational complexity to O(jV j2) [49]. For

measuring the distances between two networks, we employ a

normalized form, which is given by the percentage GED (pGED)

[51]:

pGED(Gi,Gj)~
2GED(Gi,Gj)

jV j(jV j{1)
[ ½0,1�, ð2Þ

where jV j(jV j{1) is the number of maximum possible edges in

G, and the factor 2 refers to the non-directed nature of the edges.

We weight all remaining edit transformations (insert, delete)

equally by assigning a weight of w~1.

An information-theoretic approach for quantifying distances

between graphs can be defined based on the Kullback-Leibler

divergence (KLD) [47]. We define two discrete probability

distribution P and Q, so that the KLD is given as [47]:

KLD(P,Q)~
X

i

Pi log
Pi

Qi

: ð3Þ

The KLD is always defined positively for the distance between P

and Q. Note, that KLD(P,Q)=KLD(Q,P). As the KLD is

asymmetric and does not satisfy the triangle inequality, it is no

metric [52]. We then calculate the graph prototype by setting d to

the KLD in Eq. 1. Numeric stability is ensured by setting

probabilities of zero to e~10{16.

A typically distribution that is often used in Systems Biology is

the degree distribution D(G). In undirected networks, the degree

k(vi) gives the number of neighbors for a vertex vi. If we define jkj j
to be the number of vertices with j neighbors, we can derive a

probability distribution so that:

D(G)~
Xmax (k)

i~1

jkijP
jkj~1, ð4Þ

where max (k) is the maximum number of neighboring vertices in

G. Fig. 2 shows the degree distributions of the benign and cancer

networks. D(G) can be used to characterize a network [9,42,53–

55], and has been shown to be scale-free and follow a power-law

distribution for various types of biological networks [42,53–55].

Power-law distributions of the degrees can also be seen in Fig. 2.

Here, we use D(G) to calculate the KLD, which we therefore

denote as KLD(degree).

Distances present another prominent network invariant. For a

vertex vi the distance to all other vertices is given by

z(vi)~
XjV j
j~1

p(vi,vj), ð5Þ

where p(vi,vj) is the shortest path between the vertices vi and vj . If

we let jzl j be the cardinality of all the distances with the length l,

then the according distance distribution Z(G) is given as

Z(G)~
jz1j
E?

,
jz2j
E?

, . . . ,
jzr(G)j

E?

� �
, ð6Þ

where E? is the number of paths. We see that
Xr(G)

i~1

jzij
E?

~1.

Note, that r(G) is the diameter of G, which is the maximum of the

shortest paths between all pairs of vertices. The distance

distributions for the networks is presented in Fig. 3. We employ

the distance distributions of the included networks in order to

quantify the distance between two networks, which is denoted as

KLD(distance).

While for the three distance measures that we presented above

the complete, unconnected network was analyzed, we now present

two distance measures that work on connected graphs only. This

means that we have to infer the largest connected subgraph of

each network and apply the two distance measures to them. The

third distribution that we include in our KLD-based distance

measures is based on vertex probabilities [56]. A vertex probability

p(vi) assigns a probability value to a vertex vi by making use of a so

called vertex functional f (vi) [56]:

Integrative Network Biology
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Figure 2. The degree distributions. The degree distributions for the benign data (top) and the cancer data (bottom). For displaying reasons we
trimmed the number of counts at 300.
doi:10.1371/journal.pone.0022843.g002

Figure 3. The distribution of distances. The distance distributions for the benign data (top) and the cancer data (bottom).
doi:10.1371/journal.pone.0022843.g003
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p(vi) : ~
f (vi)PjV j

j~1 f (vj)
: ð7Þ

We see that
P

p(vi)~1. In this paper we utilize the following

vertex functional [56]:

f (vi) : ~c1jS1(vi,G)jzc2jS2(vi,G)jz � � �z

cr(G)jSr(G)(vi,G)j, ckw0:
ð8Þ

The number of vertices in the j-th sphere is given for every vertex

vi[V as jSj(vi,G)j [56]. We see that f (vi) is based on metrical

properties of graphs [57]. Here, we let the weighting factors cj

decrease in an exponential manner. This allows us to emphasize

the vertices fairly close to vi, as they are probably stronger effected

by information that spreads out from vi [56].

Finally, we use a distribution that can be calculated by using the

topological information content based on vertex orbits [58,59]. An

orbit contains topologically equivalent vertices [58], and jNV
i j

provides information about the number of vertices belonging to

the i-th vertex orbit [58]. We here determine a probability

distribution by summing up the number of orbits sharing the same

number of vertices within a network G. Let jMO
j j be the number

of orbits containing j vertices. If G has jMj vertex orbits then we

obtain the orbit distribution

M(G) : ~
jMO

1 j
jMj ,

jMO
2 j
jMj , . . . ,

jMO
M j
jMj

� �
: ð9Þ

Note, that
XM

i~1

jMO
i j
jMj ~1, where M is the sum of the number of

orbits containing the same number of vertices. The information

about the distribution of topological equivalent vertices in each of

our networks can then be used to combine the information for a

set of networks by the KLD. We refer to this as KLD(orbits).

With each of these four presented probability distributions we

can cover different aspects of topological properties of our

networks. The probability distribution for KLD(degree) is based

on information about how connected the genes in each of the

networks are. Information about the communication distances

between genes is reflected by the distribution that is used in

KLD(distance). KLD(spheres) is based on a probability distribu-

tion that describes the spread of information in a network, while

the probability distribution in KLD(orbits) reflects topological

equivalence of vertices. Table 2 summarizes the employed distance

measures. After having introduced our formal apparatus, we

compute the distances and graph prototype for the two sample

groups (benign and cancer). For calculations and statistical analysis

we make use of the statistical programming language R (http://

www.r-project.org). The probability distributions to calculate

KLD(spheres) and KLD(orbits) are computed using the QuACN

package [60].

Results

Table 3 provides a summary of the mean distances for the five

distance measures and the two groups. When calculating the

pGED we see that the mean distance �dd for the six networks ranges

from 0:022 to 0:053 in the benign group, and from 0:002 to 0:010
for the seven networks in the cancer group. The mean values are

0:036 (benign) and 0:004 (cancer). Fig. 4 provides an illustration of

all the single distances from one network to all others in the same

group. A distinction between the distribution of pGEDs between

the cancer and benign sample can be seen. For the benign group,

the network that is based on the data by Yu is selected as graph

prototype, while for the cancer group the network form the Wang

data is selected. The mean distance for the Yu data is 0:022 and

for the Wang data 0:002. The network-specific mean distance �dd of

the KLD(degree) ranges from 4:269 to 12:358 for the networks

from the benign data, respectively 6:498 to 20:176 for the prostate

cancer data. The mean values are 8:330 (benign) and 13:438
(cancer). Fig. 5 visualizes the results. The selected graph prototypes

are Yu (benign) with a mean distance of 4:269 and Wang (cancer)

with a mean distance of 6:498. KLD(distance), which is based on

the distance distribution within a network, selects the networks

from the Singh data (benign) and Wang data (cancer) as graph

prototypes. The graph prototypes have a mean distance �dd of 0:502
(benign) and 0:218 (cancer). The mean distances from one network

to all others in the same groups for each set are 0:934 (benign) and

0:671 (cancer). The detailed results are depicted in Fig. 6. The

networks from Yu (benign) and Wang (cancer) are again selected

as graph prototypes when using KLD(spheres). The minimum �dd is

3:525 for the benign graph prototype, respectively 6:434 for the

cancer graph prototype. The mean values are 7:351 (benign) and

13:078 (cancer). The distances from one network to all other

networks within the same group are illustrated as boxplots in Fig. 7.

Together with the KLD(degree) this represents the two cases,

where the distance within the cancer data is larger then within the

benign data. For the measure based on the orbits KLD(orbits) the

distances of the graph prototypes are 0:052 for the benign Yu

network and 0:032 for the cancer network that is based on the

Wang data. The mean distances are 0:163 (benign) and 0:082
(cancer), as shown in Fig. 8.

Our main hypothesis is that there is a significant difference

between the distances in the group of cancer samples and the

distances in the group of benign samples. For testing this

Table 2. The employed distance measures.

Name Type Description

pGED Normalized graph edit distance Minimization of a sequence of morphological graph edit operations that are needed to make two networks isomorph [46].

KLD(degree) Kullback-Leibler divergence Comparison of the degree distributions of two networks.

KLD(distance) Kullback-Leibler divergence Comparison of the distance distributions of two networks.

KLD(spheres) Kullback-Leibler divergence Comparison of the sphere-based vertex probabilities of two networks.

KLD(orbits) Kullback-Leibler divergence Comparison of the distribution of the number of topologically equivalent vertices of two networks.

Here, we list the 5 distance measures that were used for the selection of a graph prototype.
doi:10.1371/journal.pone.0022843.t002
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hypothesis we employ a Wilcoxon test (see Table 4) for each of the

five distance measures on the set of distances from the cancer

samples and the benign samples. We correct for multiple testing

with the Bonferroni method. pGED, KLD(degree), KLD(spheres)
exhibit a significant difference (pBonf v0:05), as can be seen in

Table 4. The observed results support the hypothesis, see boxplots

in the related figures.

For detecting patterns within the set of distances we employ

clustering. Therefore, we normalize the result of each distance

measure without the group information. This is done for each

distance measure separately, so that the minimum of each distance

measure is set to 0 and the maximum to 1. Then we apply

hierarchical clustering. For each network we have a feature vector,

that consists of the mean distance to all other networks for each of

the five utilized distance measures. So, for the overall clustering we

have a matrix with 5 rows and 13 columns. The corresponding

heatmap, using the Euclidian distance and complete linkage, is

depicted in Fig. 9. We also applied average linkage as clustering

function, which lead to the same result. We therefore regard the

observed outcome as stable with respect to these two linkage

functions. The results show that three of the cancer networks

(Tsavachidou, Wallace, Singh, Liu) form a separate cluster, while

all other networks are clustered together. In the second cluster we

observe that three of the cancer networks (Chandran, Wang, and

Yu) cluster closely to three benign networks (Yu, Singh,

Tsavachidou).

Based on the results from the graph prototyping we select the

network from the Yu data as graph prototype for the benign set,

and the network from the Wang data as graph prototype for the

cancer set. For the analysis of the topological properties of the

Table 3. Ranges of mean distances �dd .

benign cancer

min mean max min mean max

pGED 0.022 0.036 0.053 0.002 0.004 0.010

KLD(degree) 4.269 8.330 12.358 6.498 13.438 20.176

KLD(distance) 0.502 0.934 1.280 0.218 0.671 1.900

KLD(spheres) 3.525 7.351 9.979 6.434 13.078 18.534

KLD(orbits) 0.052 0.163 0.333 0.032 0.082 0.184

For each distance measure that is applied, we here list a summary of the results, based on the mean distances �dd from one network to all other networks belonging to
the same group (benign or cancer). This table shows the corresponding range and the mean values.
doi:10.1371/journal.pone.0022843.t003

Figure 4. The results for pGED. This figure illustrates the distances from one network to all other networks, based on the normalized Graph Edit
Distance pGED. In the left part it depicts the distances between one benign network and all other benign networks, whereas in the right part it lists
the distances for one cancer network to all other cancer networks. The networks that are selected as graph prototypes are highlighted in different
colors (benign = blue, cancer = brown).
doi:10.1371/journal.pone.0022843.g004
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Figure 5. The results for KLD(degree). Here, we show the distances between one network and all other networks as boxplots, measured by the
Kullback-Leibler divergence, which was based on the degree distribution. In the left part we show the benign data, and in the right part the distances
from the cancer data. The graph prototypes are highlighted.
doi:10.1371/journal.pone.0022843.g005

Figure 6. The results for KLD(distance). This figure displays the distances between the networks as boxplots. The distances are based on the
distribution of distances between vertices and the Kullback-Leibler divergence. In the left part are the distances between the benign networks, and in
the right part the distances between the cancer networks.
doi:10.1371/journal.pone.0022843.g006

Integrative Network Biology

PLoS ONE | www.plosone.org 8 July 2011 | Volume 6 | Issue 7 | e22843



Figure 7. The results for KLD(spheres). Here, we display the distances based on the Kullback-Leibler divergence, based on the sphere vertex
functionals. In the left part we show the benign samples and in the right part the distances for the cancer samples. The selected graph prototypes are
highlighted.
doi:10.1371/journal.pone.0022843.g007

Figure 8. The results for KLD(orbits). This figure illustrates the Kullback-Leibler divergences for the orbit probability distributions. In the left part it
lists the benign samples, and in the right part the cancer samples from the studies.
doi:10.1371/journal.pone.0022843.g008
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networks we investigate the hub genes. The distribution of the 15

mostly connected hub degrees is shown in Table 5. We observe

that the main hub genes in the cancer network are remarkably

smaller than those in the benign network. This is in accordance

with known results for which we applied edge vote counting for the

integrative network analysis [19]. In that study we also observed

fairly small degrees in the common cancer network. A dysregu-

lation of hub genes, associated with the cell-cycle, may play an

major role in the development of an aggressive form of prostate

cancer [61]. Similar to other scale-free networks [62,63], biological

networks may be vulnerable to attacks against a the few central

hub genes. However, it has been recently shown that hub genes do

not necessarily qualify as being fragile, and that other measures for

this property might be more appropriate [64]. Analyzing the

distances between vertices allows characterizing communication

processes in a biological network. Therefore, we explore the

distances between the vertices in the two graph prototypes. By

definition, the eccentricity s(vi) of a vertex vi is the maximum of

Table 4. Wilcoxon tests on distance measures results.

p pBonf W

pGED v0:001 v0:001{ 92

KLD(degree) 0.004 0.018{ 883

KLD(distance) 0.114 0.570 491

KLD(spheres) 0.001 0.005{ 914

LD(orbits) 0.032 0.158 442

In order to test whether we could really see statically significant differences
between the distances in the cancer network distances and the benign network
distances we apply two-sided Wilcoxon tests. pBonf reports the p-values after
multiple hypothesis correction as suggested by Bonferroni. W is the test
statistic. { indicates a significant difference between the distances within cancer
networks and the distances within the benign networks (pBonf v0:05).
doi:10.1371/journal.pone.0022843.t004

Figure 9. Heatmap of mean distances. We here show the mean distance from one network to the other networks within the same group (benign
or cancer). For clustering we then omitted the group information. We independently add the group information as brown bars (cancer) and blue bars
(benign).
doi:10.1371/journal.pone.0022843.g009
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the shortest paths from vi to all other vertices vj[V . For the benign

graph prototype the majority of vertices have a s(vi) of 10, while

for the cancer graph prototype the majority of vertices have a s(vi)
of 1. We compare the eccentricity distributions of the two networks

with a Kolmogorov-Smirnov test, which results in a highly

significant difference (pv0:001). Another interesting network

characteristic is the network diameter r(G), which is the

maximum of all s(vi)[V . For the two graph prototypes the

diameters are 17 (benign) and 12 (cancer). However, when

analyzing the average path length in the largest connected

components of the graphs we find it to be 4:905 for the benign

graph prototype and 4:033 for the cancer graph prototype.

Furthermore, we see only a small difference in the average

clustering coefficients 0:217 (benign) and 0:268 (cancer), which is

the mean of the local clustering coefficient [65].

Discussion

In this paper we applied a method for selecting prototypical

networks for two sets of biological networks. One set of networks

was based on prostate cancer data, and the other set on data from

benign samples. We employed a selection of five distance

measures for the task of selecting the group-specific graph

prototype. The first method was a classical graph distance

measure [46], while the other four were based on using an

information-theoretic approach [47]. We then compared the

distances from all networks in the cancer group with the distances

in the benign group for all five distance measures by a Wilcoxon

test (see Table 4).

When applying the graph prototype method the interpretation

of the results is intricate. It is necessary to understand what kind

of information is captured by a graph distance measure, in order

to interpret the selection of the graph prototypes. For instance

for pGED we conclude that the graph prototype is the graph that

in average needs the least number of morphological operations

to reach morphological equivalence to all other graphs.

Interpreting the KLD-based results is more difficult since they

withhold direct information on the underlying measures, but

refer to the distances between the distributions of topological

properties. So, the gained information tells about the distances

between the distributions for the used topological network

measures but does not allow for direct interpretation of the

underlying topological network measures themselves. Most of the

existing graph similarity measures are either computationally

demanding (NP-complete in the case of unlabeled graphs) or

expect the graphs to be uniquely labeled in order to ensure

efficient computation. Three of the presented information-

theoretic distance measures do not rely on the graphs to be

labeled uniquely, but still demonstrate acceptable computational

performance, as they rely solely on the distribution of the

underlying features. This also effects the phase of data

preparation and network inference. Here, we had to first map

the microarray-specific probe-set ids to a common identifier

(Entrez gene), and then infer the underlying networks for pGED

and KLD(spheres) to work efficiently. In other cases, where a

distance measure is applied that is independent of vertex labels,

no mapping is required. This issue is of importance with respect

to classical network meta-analysis methods that are based on

counting common edges [10,19] or summarizing the effect-sizes

of common edges [20]. Then, the identification of common

edges is a crucial requirement for the employed methods. In the

present paper, we demonstrated an approach that is in principle

independent of this requirement.

To investigate a potential systematic effect caused by the

cancer, we performed a Wilcoxon test on the set of distances

between cancer and benign networks. The results indicate that a

systematic effect is likely to be present as we can see significant

differences (pBonf v0:05) for three out of five graph distance

measures. When considering the pGED as a gold standard

distance measure, we can find the following: Firstly, there is a

statistically significant difference between the distances in the

benign data and the cancer data (pBonf v0:001), and secondly

these distances are much smaller within the cancer data.

Additionally, the two networks are selected as graph prototypes

that are selected by most other distance measures as well. We also

observe that within the benign data two clusters are formed, as

can be seen in the boxplots for the measures pGED,

KLD(degree), KLD(orbits), and KLD(spheres). Our observation

is also reflected by the hierarchical clustering (Fig. 9). The three

benign networks (Chandran, Liu, Wallace) that form a cluster of

their own have a fairly small sample size (nbenign~15,13,14). This

might be the main reason for the clustering result. However, this

needs to be further validated with additional data in future

studies. We demonstrated in previous work that complex

quantitative graph measures are capable of capturing differences

in the underlying topology of biological networks for prostate

cancer samples and benign samples [66]. This indicates that the

cancer causes functional changes to sets of genes that are reflected

in changes of structural properties. One structural change that we

observed is related to the degree distribution, as the hub genes in

the cancer graph prototype are remarkably smaller than those in

the benign graph prototype. The topological analysis of the graph

prototypes leads us to hypothesize that the prostate cancer is

rewiring the communication paths in the diseased cells. By

intuition it is possible to assume that the flow of information takes

longer in networks with a larger diameter [67]. A topological

analysis of different signaling networks by Schramm et al. led to

similar results for prostate cancer and cancer in general [68].

They observed a slight decrease in the average path length for

Table 5. Distribution of main hubs in graph protoypes.

benign

j 107 105 96 91 88 87 86 85 84 83 82 79 77 75 74

jkj j 1 1 1 1 2 3 1 1 1 2 2 1 2 3 2

cancer

j 19 18 17 16 14 13 12 11 10 9 8 7 6 5 4

jkj j 1 1 1 2 2 16 2 3 2 23 12 11 6 35 44

We list the distribution of the 15 main hub gene degrees in the two graph prototypes. Here, jkj j is the number of genes with j neighbors.
doi:10.1371/journal.pone.0022843.t005
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cancer networks and the tendency to form hubs was lower in

cancer networks [68]. Schramm et al. also observed a decrease in

local clustering coefficients for cancer networks [68], which we

could not observe in our graph prototypes. However, in their

networks for prostate cancer one network exhibited a small

increase in the local clustering coefficient, so this calls for a

further analysis. As they investigated one network from the same

data we did select as the cancer graph prototype (Wang [34]), the

overlap in the results is no surprise. Still, by graph prototyping we

came to similar conclusions with respect to cancer networks as

they did in their study. For a topological analysis, Wang et al.

investigated the role of hub genes in aggressive forms of prostate

cancer [61]. They observed dysregulations in genes that are

related to the cell-cycle [61]. Our goal is now to identify further

structural changes they might be used as markers for disease-

specific events.

Taking the sample size of the single studies into account shows

that four out of five times the network from the largest study

(nbenign~58) was selected as graph prototype for the benign data.

In the case of the cancer data the network from the largest study

(ncancer~138) is always selected. This leads us to conclude that

the network that was inferred from the largest study, represents

all the other networks the best. The sensitivity regarding the

sample size, which massively influences the quality of the inferred

network, is also reflected by the hierarchical clustering. However,

this quite intuitive hypothesis needs further verification in future

work. Therefore we plan on pursuing a twofold approach: On the

one hand by calculating more distance measures on the present

data and, on the other hand, by testing the employed methods on

new networks. This should also allow investigating how the

distances are distributed in other types of cancer or even in other

diseases. Interestingly, whenever a distance measure showed a

significant difference between benign and cancer network

distances, the same networks were selected as graph prototype:

The Wang data for the cancer networks and the Yu data for the

benign networks. This coherence might indicate that the more

specific a used distance measure captures group (benign or

cancer) information the better is works for the selection of a graph

prototype.

The selected graph prototypes might be thought of as structural

prototypes for the available set of networks. This means that, with

respect to the employed distance measure, the graph prototypes

represent the topological properties of the entire set of networks.

Therefore, the information that is based on the topological

properties of the graph prototype can be used for succeeding

network analysis. However, the outcome depends directly on the

quality of the set of networks. Note, that this approach always

selects one network as being representative for the set, regardless of

the underlying distances. The selection alone is therefore primarily

no measure for the quality of a single study or the used inference

method, but a result driven by the selected distance measure. The

employed distance measure and the related quality of the result

have to be considered in order to assess the outcome quality. An

upper threshold for the average distance might be introduced to

force meaningful selections, but was disregarded in this present

study. A topic that has been omitted from our analysis so far is

semantic similarity between networks. We expect functional

similarity to be of importance when comparing biological data,

and therefore plan on investigating the role of semantic relatedness

in more detail. This would enable us to not only integrate

topological information, but a whole set of other potential distance

and similarity measures.

The presented methods provide a consistent and reproducible

procedure for performing integrative network analysis. As the

quality assessment for inferred networks is a challenge in systems

biology, using the presented methodology helps to address this

issue by quantifying inner-group and outer-group similarity in

simple way. It can also be used to determine the quality of a newly

inferred network, by comparing it to a set of existing networks. If

the observed distances lie within a certain range of validity the

network might be considered of reasonable quality or even as new

prototype for this set. Whereas, if it differs strongly from all other

networks it might be considered as being potentially erroneous. A

possible application of this method is to assess the quality of

trimming for indirect linkages or partial correlations as addressed

by [42]. This could be done by performing graph prototyping

before and after the trimming and comparing the two sets of

networks. We are confident that in a similar manner as classical

meta-analysis has now become a standard method for gene

expression data, the integrative analysis of network information

will become a common procedure in future systems biology

applications. A broad range of methods for quantitative network

analysis in this research field is currently emerging. Therefore,

finding and developing methods and applications for a combined

analysis is an ongoing challenge, yet open for defining standard

methods and tools. Our presented method brings the advantage of

being easily adoptable to other distance measures, that captures

the underlying information better.

Conclusion
It is a challenging task to infer common topological properties

from a set of networks. Frequently, this is done by detecting

common edges, which is, however, a burdensome procedure.

Different vertex labels from different platforms make it hard to

infer what edges are common. Finding common vertex labels is

however often challenging. Our goal in this paper was to

employ an alternative approach, that is independent from

mapping vertex labels. We tackled this problem by selecting one

network from a set of networks to be a representative for the

complete set. This structural graph prototype was then used for

succeeding topological analysis. To perform a comparative

analysis thereof, we introduced four information-theoretic graph

distance measures. Our initial hypothesis was that the distances

between networks differ significantly between the group of

prostate cancer networks and the group of benign networks. For

three out of five employed graph distance measures we

positively tested the initial hypothesis using a Wilcoxon test

(pBonf v0:05). As future work, we will investigate other diseases

as well and perform graph prototyping on other types of

biological networks.
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