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A B S T R A C T   

In recent years, the role of bioinformatics and computational biology together with omics techniques and 
transcriptomics has gained tremendous importance in biomedicine and healthcare, particularly for the identi-
fication of biomarkers for precision medicine and drug discovery. Differential gene expression (DGE) analysis is 
one of the most used techniques for RNA-sequencing (RNA-seq) data analysis. This tool, which is typically used in 
various RNA-seq data processing applications, allows the identification of differentially expressed genes across 
two or more sample sets. Functional enrichment analyses can then be performed to annotate and contextualize 
the resulting gene lists. These studies provide valuable information about disease-causing biological processes 
and can help in identifying molecular targets for novel therapies. This review focuses on differential gene 
expression (DGE) analysis pipelines and bioinformatic techniques commonly used to identify specific biomarkers 
and discuss the advantages and disadvantages of these techniques.   

1. Introduction 

With advances in precision medicine and therapies, there is a 
growing focus on the identification of disease-driver genes for more 

precise diagnosis and prognosis. Biomarkers are identifiers that could 
categorize a biological event or condition and monitor certain biological 
changes [1]. These can include genes, transcripts, proteins, and me-
tabolites, all of which are termed biomarkers due to their ability to 
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provide valuable insights into the diagnosis, prognosis, and disease 
therapy. According to the Biomarkers Definitions Working Group’s 
specifications from 2001 (pp. 89–95) [2], biomarkers are pharmaco-
logical reactions to therapeutic intervention or objectively measurable 
indications of biological and pathological processes [3]. They are 
intended to replace a clinical endpoint and predict benefit or harm based 
on scientific evidence. Biomarkers have a variety of functions in 
healthcare and can have a substantial impact on patient care [4]. 

In recent years, bioinformatics has played a crucial role in omics 
techniques [5,6], particularly in transcriptomics [7]. For example, 
RNA-sequencing (RNA-seq) techniques have provided vast amounts of 
data on gene expression levels across multiple conditions at high reso-
lution [8]. This led to the need for the characterization of differentially 
expressed genes (DEGs) among various medical samples and biological 
contexts, including disease identification [9], tumorigenesis [10], mi-
crobial studies [11], and evaluation of therapeutic efficacy in patients. 

In addition, machine learning has also begun to play an important 
role in the analysis of RNA sequencing data, particularly in the identi-
fication of significant genetic patterns that might not be evident with 
traditional methods. The use of advanced algorithms makes it possible to 
examine complex datasets and identify key genetic markers, which may 
have implications in the diagnosis and treatment of various diseases. 
Wenric et al. [12] showed that supervised learning methods can 
outperform traditional differential expression analysis in RNA-Seq for 
the identification of survival-related genes in various cancer datasets. In 
this study, the authors used the Random Forests [13] classification al-
gorithm and an approach called EPS (extreme pseudo-samples), which 
employs Variational Autoencoders (VAE) [14] and regressors to classify 
genes [15]. The results indicated that out of 12 cancer datasets, these 
methods showed superior performance compared to differential 
expression analysis in 9 and 8 of the 12 datasets respectively. This 
demonstrates the potential of supervised learning-based gene selection 
methods in RNA-Seq studies. However, it is important to emphasize that 
these methods are still under development and do not replace, but rather 
complement, conventional genetic and transcriptomic analysis tech-
niques, which remain the focus of this review [12]. 

Different software programs for R/Bioconductor perform statistical 
tests to identify which genes have a statistically significant difference 
between comparable samples (Table 1). 

Among the various methods available, EdgeR and Deseq2 are some 
of the most used techniques for analyzing differential gene expression 
from RNA-seq data [31]. 

Once the differentially expressed genes have been identified, func-
tional enrichment analysis can be performed to better understand the 
molecular mechanisms and pathways underlying the disease or condi-
tion analyzed [32]. These approaches require annotating genes with 
identifiers and cross-database descriptions, using a variety of in-
struments and software programs for pathway analysis and biomarker 
discovery [32]. However, several differential expression tools and 
pathway enrichment methods can be used depending on data’s prop-
erties and study objectives [31]. 

This review will summarize the most common pipelines for differ-
ential gene expression analysis and bioinformatic studies for biomarker 
identification. We will also discuss the advantages and challenges 
associated with these techniques. 

Recently, Costa-Silva et al. [33], provided a broad overview of ad-
vances in the field of differential gene expression analysis using 
RNA-Seq data. This review highlighted the various computational 
methodologies used to examine these data. In this review, we will 
further extend this analysis by specifically focusing on statistical insights 
into commonly used methods for DGE analysis, graphical representa-
tions essential for interpreting the results, tools, and databases for 
enriching biological pathways, and two examples of statistical analyses 
useful for complementing and improving the reliability of results. 

2. Differential gene expression (DGE) 

DGE analysis is a technique used in molecular biology to compare 
gene expression levels between two or more sample groups, such as 
healthy vs disease tissues or cells exposed to different treatments [34]. 
DGE analysis’s primary objective is the identification of genes differ-
entially expressed in settings being compared [35]. This tool can help in 
identifying genes involved in a particular biological process, disease, or 
response to treatment, thereby providing information on gene regula-
tion and underlying biological mechanisms [36]. This multiple-steps 
analysis is frequently used in studies of disease, where it can help in 
the identification of biomarkers for diagnosis and prognosis or evaluate 
the effectiveness of specific treatments [37,38]. 

The first step is the normalization and preprocessing of the data. 
Noise in the analysis is diminished by reducing variability related to 
technical issues, thereby assuring better comparability between results 
[31]. 

Once the data is clean and consistent, the next step is to select a 
model most suitable for the data [39]. Parametric methods, such as 
edgeR and DESeq2, are typically preferred for data that align well with 
specific statistical distributions like the negative binomial distribution, 
often used for RNA-Seq data [40]. On the other hand, non-parametric 
methods like NOIseq [24,41] and SAMseq [26] are more suitable for 

Table 1 
Differential gene expression analysis (DGE) tools.  

DGE Tool Publish 
year 

Distribution Normalization Description 

DEGseq 2009 Binomial None Fisher’s exact test and 
the likelihood ratio 
test are used in a 
random sampling 
model [16,17] 

edgeR 2010 Negative 
binomial 

TMM [18] Empirical Bayes 
estimate and either a 
Fisher’s exact test 
tailored to over- 
dispersed data or a 
generalized linear 
model [8, 19, 20]. 

baySeq 2010 Negative 
binomial 

Internal The posterior 
likelihood is 
empirically estimated 
using Bayesian 
statistics [21]. 

DESeq 2010 Negative 
binomial 

Deseq [22] Shrinkage variance  
[22] 

NOIseq 2012 None RPKM [23] Nonparametric test 
based on the signal- 
to-noise ratio [24] 

PoissonSeq 2012 Poisson log- 
linear model 

Internal Score statistics [25] 

SAMseq 2013 None Internal Mann–Whitney test 
with Poisson 
resampling [26] 

EBSeq 2013 Negative 
binomial 

Deseq [22] Empirical Bayesian 
estimate of the 
posterior likelihood  
[27] 

Deseq2 2014 Negative 
binomial 

Deseq [22] Shrinkage variance 
with variance-based 
and Cook’s distance 
pre-filtering [28] 

limma 2015 Log-normal TMM [18] Generalized linear 
model [29] 

sleuth 2017 Linear model TMM [18] Estimates inferential 
variance through 
bootstrap pseudo- 
alignment techniques 
[30] 

Description of DGE tools (R/Bioconductor) packages, year of publication, type of 
distribution, type of normalization. 
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datasets where these assumptions might not be valid or data distribution 
is more complex. These methods have more flexibility but may require 
larger sample sizes for obtaining reliable results. However, parametric 
methods, can be more efficient in analyses with small sample size, a 
common situation in RNA-Seq studies [40]. 

The third step goes deeper into the processed data to pinpoint genes 
with significant differences in expression. These differentially expressed 
genes can provide critical insights into disease mechanisms, potential 
drug targets, or constitute diagnostic or prognostic markers [39,42]. 

The final step is the graphic visualization of the results. Once 
differentially expressed genes have been identified and their potential 
implications understood, it is then crucial to present these data in a clear 
and intuitive graphic format. Visualization allows researchers to easily 
observe trends, patterns, and anomalies in the data [43–46]. 

2.1. Normalization 

The accuracy and reliability of gene expression analysis largely 
hinges on the quality of the data analyzed [28,47] as in fact normal-
isation is a pivotal step in data pre-processing, and it serves to modulate 
values so that they are directly comparable [31]. 

TMM (Trimmed Mean of M-values) and geometric mean methods are 
two widely recognized techniques among the myriad of normalization 
methods currently used [48]. 

Specifically, the TMM normalization is a simple and effective method 
for estimating relative RNA production levels from RNA-seq data, based 
on the assumption that most of the genes in the dataset are not differ-
entially expressed between samples, i.e. their expression levels are 
relatively similar [18]. Then, this method estimates normalization fac-
tors that can adjust for differences in library size (total number of reads 
obtained from each sample) and composition (proportion of reads from 
different genes) between samples [49]. These differences can affect the 
accuracy of differential expression analysis, as in fact highly expressed 
genes or genes with different compositions might have a greater impact 
on the analysis results [49]. The TMM method can therefore help in 
eliminating the effect of sequencing depth on the analysis results by 
scaling the counts in order to have them comparable between samples 
[50]. This normalization process allows the accurate detection of dif-
ferential expression in genes truly differentially expressed between 
samples, minimizing false-positive or false-negative results associated 
with differences in sequencing depth [47]. 

In their 2021 study, Liu S. et al. [31] applied the TMM method, using 
the ’calcNormFactors()’ function of the edgeR package, to normalize 
RNA-seq data. This method corrects for discrepancies in library size and 
RNA composition, ensuring a more accurate comparison of gene 
expression levels between different samples. 

In the context of RNA-seq data analysis, the geometric mean 
normalization method, often associated with the DESeq2 package, 
operates distinctly from the TMM method used in edgeR. This method 
involves calculating the geometric mean of expression values for each 
gene across all samples. The core principle of this approach is to 
normalize gene expression data by adjusting for variations in sequencing 
depth and distributional differences across samples, allowing therefore 
for more accurate comparisons of gene expression levels. The principles 
of this normalization method are addressed in the resources made 
available by the developers of DESeq2 package [28,51]. Both methods 
are designed to tackle challenges in RNA-seq data analysis. However, 
they use different statistical approaches and are part of separate 
analytical packages. 

2.2. edgeR and Deseq2 differential gene expression analysis techniques 

EdgeR and Deseq2 are the most popular pipelines for analyzing 
differential gene expression from RNAseq data [31]. Table 2 lists the 
main features and advantages/disadvantages of these two pipelines. 

edgeR and Deseq2 are both based on the negative binomial 

distribution for modeling the count data in RNA sequencing experiments 
[22]. The parameters of the negative binomial distribution are deter-
mined solely by μ and φ. This approach assumes that the number of 
times a particular gene is read in an RNA sequencing experiment follows 
a certain pattern, known as the negative binomial distribution. This 
pattern is defined by two main factors: the average number of reads for a 
given gene (µij) and a factor called the dispersion parameter (φi), which 
accounts for variability in the data. These factors are both specific to 
each gene (i) and each sample (j) being studied. To identify DEGs, the 
accurate measurement of the dispersion parameter φ i for each gene is 
essential [19,28]. Thus, it describes the probability of obtaining a 
certain number of counts in any given experimental condition, given the 
mean of the counts and a dispersion parameter, which takes into account 
the variance overlap. Variations in the estimate of φ i explain the pri-
mary discrepancies between edgeR and DESeq2 [55,56]. 

The differences and similarities between these two important tools 
for analyzing differential gene expression in RNA-seq data have been 
extensively discussed and by Anders et al. [57]. 

2.2.1. The R package edgeR 
EdgeR (Empirical Analysis of Digital Gene Expression data in R) [58] 

is a powerful and flexible tool for the analysis of RNA-seq, and is used in 
many applications as in fact it is effective in identifying differentially 
expressed genes with a low false discovery rate [19]. EdgeR is based on 
the conditional maximum likelihood (CML) method to calculate a 
common dispersion accounting for variability across genes [59]. Then, a 
modification of this approach is used to assist the estimate of 
gene-specific dispersion, and an empirical Bayes technique is used to 
reduce the dispersion closer to the common one [60]. The extent to 
which these specific dispersion estimates are adjusted towards a com-
mon value depends on how similar a gene in question is to other genes, 
in terms of its average expression level measured in log 
counts-per-million (log CPM). The counts per million (CPM) value is 
used instead of the read count, to remove the variation brought on by 
various sequencing depths [61]. 

EdgeR uses a combination of common and gene-specific dispersion, 
an approach which allows for efficient management of gene expression 
variability between different biological samples. This capability is 
particularly useful in situations with a small number of samples, where 
variability can be high [62]. A concrete example of this effectiveness is 
illustrated in the study by Chen et al. [63] In this study, the authors used 
edgeR to compare 5 normal samples, 5 with vascular calcification (VC) 
caused by uremia, and 4 samples with vitamin D3-induced vascular 
calcification. They identified a total of 650 DEGs in uremia-induced VC, 
including 405 up-regulated and 245 down-regulated genes, while they 
isolated in vitamin D3-induced VC 64 DEGs, including 42 up-regulated 
and 22 down-regulated genes. They then separately intersected the re-
sults of these two groups of up- and down-regulated DEGs to obtain a set 
of DEGs containing five down-regulated genes and nine up-regulated 
genes. This comparison that are allowed the identification of genes 

Table 2 
Statistical model, advantages, disadvantages and applications of Deseq2 and 
edgeR pipelines.  

Features DESeq2 [51] edgeR [52] 

Statistical 
Model 

Negative binomial model Negative binomial model 

Advantages Suitable for data sets with minor 
variability; user-friendly interface 

Speed and robust 
approach for small data 
sets 

Disadvantages Lower speed; Less sensitivity for 
data sets with high biological 
variability 

Reduced sensitivity for 
data sets with low 
biological variability 

Typical 
Applications 

Analyses under controlled 
experimental conditions with 
well-defined control groups [53]. 

Analysis of complex 
datasets with high 
variability [54].  
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differentially expressed in VC, genes which might play a role in the 
development of this condition. 

2.2.2. The R package DESeq2 
DESeq2 (Differential Expression analysis for Sequence Count data) 

[28] uses a negative-binomial model similar to edgeR, but includes 
data-based shrinkage estimators for dispersion and l2FC. Specifically, it 
is based on a different approach to estimate the dispersion parameter 
based on a model which assumes a similar level of variability for genes 
with similar average expression levels. This approach is more appro-
priate when dealing with a large number of samples with relatively low 
biological variability [62]. Moreover, in DESeq2, gene-specific disper-
sion is narrowed down to a fitted smooth curve using an empirical 
Bayesian technique, based on the assuption that genes with comparable 
average expression levels have similar dispersion [28]. When the 
expression level is low, DESeq2 reduces l2FC estimates towards zero, 
overcoming the challenge in estimating l2FC for weakly expressed genes 
[64]. However, this narrowing process can produce conservative esti-
mation statistics for the DGE test, underestimate dispersion, and reduce 
sensitivity while lowering the frequency of false positives [65]. Despite 
this, DESeq2 is still one of the most commonly used and well-validated 
methods for analyzing sequence count data [28]. 

DESeq2 is often preferred for analyzing datasets derived from a large 
number of samples with relatively low variability [62], as demonstrated 
in the study by Casarrubios et al. [66] In this study, the authors exam-
ined 16 pre-treatment and 36 post-treatment tissue samples derived 
from 41 patients with resectable stage IIIA NSCLC treated with neo-
adjuvant chemoimmunotherapy. Using DESeq2, they discovered 
differentially expressed genes between pathological complete response 
(CPR) and non-CPR samples and identified potential biomarkers and 
mechanisms associated with tumor response and recurrence. 

2.3. Identification of differentially expressed genes 

The identification of DEGs is a crucial process that requires careful 
cutoff selection [67]. The choice for measuring statistical significance, 
such as p-values [68], and p-values [39] adjusted with different tech-
niques (padj) such as false discovery rate (FDR) [69], and magnitude of 
the difference, represented by the log2 fold change (l2FC) [42], is 
essential as in fact it directly affects reliability of results and interpre-
tation of data. A p-value too high could lead to false negatives, while a 
value too low could result in false positives [70]. Similarly, the choice of 
an appropriate l2FC threshold is essential for the identification of gene 
expression changes which are biologically significant and not simply 
random variations [71,72]. The choice of correction method for multiple 
tests, such as FDR or Bonferroni, has a significant impact on the iden-
tification of DEGs. While FDR offers a balance between discovery and 
reliability [73], Bonferroni’s method is more conservative and reduces 
the risk of false positives [74]. To avoid a high number of false positives, 
it is necessary to correct for multiple testing and select the DEGs, setting 
a cutoff on the adjusted p-value [75]. Furthermore, the l2FC can be used 
to rank the genes more representative of differences between two 
experimental conditions [76]. For instance, Chen et al. [63] selected 
DEGs between calcified and normal vessels using a cutoff criterion of | 
l2FC| > 1 and an FDR threshold of 0.05. In the Casarrubios et al. [66] 
study, DEGs were identified using a cutoff of |l2FC| > 1.5 and a padj 
threshold of 0.05, using the Benjamini-Hochberg procedure, which is 
less conservative than Bonferroni’s method and allows for the identifi-
cation of significant differences between groups [77]. 

However, the choice of cutoffs for l2FC and p-value should be guided 
by the specificity of the data and the experimental conditions. This 
implies that there is no universal cutoff value, which has to be deter-
mined instead on a case-by-case basis [78,79]. It is better to combine 
both cutoff criteria (l2FC and p-value/padj) for greater reliability in 
identifying DEGs [80]. To select appropriate cutoffs, it would be 
necessary to examine the distribution of data, identify appropriate 

thresholds reflecting biologically significant variations, and verify that 
the chosen cutoffs produce consistent and reproducible results [81]. 

2.4. Graphical representation 

Once the differential expression analysis has been done on genes 
with an adjusted p-value minor of a certain cut-off selected, the graphic 
representation of the statistical analysis results is essential for the 
interpretation of the data [35], as in fact these graphical representations 
help in visualizing statistical significance [68], mean expression levels 
[82], and magnitude of comparison [50]. These representations include 
methods such as comparing fold-change to normalized mean counts (MA 
plots) [83]and p-value to fold-change (Volcano plots) [44]. 

2.4.1. MA and Volcano plot 
The representation of l2FC vs. means expression between two 

treatments is frequently done using MA plots (Fig. 1) [83]. l2FC is 
plotted on the y-axis of a scatter plot, while normalized mean expression 
is plotted on the x-axis. Genes with different expression levels are shown 
as data points with extreme values along the y-axis. Lower mean 
expression values often exhibit greater l2FC variability than higher 
expression values. As a result, the data points fan out as the graph reads 
from right to left. Since there are established limits for l2FC, these are 
often represented on the MA plot by dotted lines. From these graphs, it is 
not possible to identify which genes are significant as the p-value is not 
evaluated [40,84]. However, statistical significance does not always 
translate into biological or clinical relevance. A change in gene expres-
sion may be statistically significant but not biologically relevant [35]. 
l2FC, on the other hand, provides a measure of the magnitude of the 
change in gene expression between two conditions, and extreme l2FC 
values (both positive and negative) indicate marked differences in gene 
expression, which are likely more biologically relevant [35]. Thus, the M 
(A) graph is particularly useful because it combines information on the 
magnitude of change (on the y-axis) with the average abundance of gene 
expression (on the x-axis). This allows the visualization of both genes 
showing big changes in expression and those highly or poorly expressed 
in both conditions. This visualization avoids the confusion that might 
result from over-reliance on p-values and highlights biologically rele-
vant differences [35]. 

The comparison of padj and l2FC is commonly used to examine 
differences in gene expression between two conditions. This represen-
tation is often illustrated with a ’volcano plot’ (Fig. 2), showing statis-
tical significance versus magnitude of change [44]. On this graph, the 

Fig. 1. MA plot. MA plot showing l2FC compared to mean expressions gener-
ated by Deseq2 R. 
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y-axis represents the negative log in base 10 of the p-values, reflecting 
statistical significance, while the x-axis illustrates l2FC, providing an 
indication of the magnitude of the difference in expression for each 
gene. As smaller p-values indicate greater significance, high points on 
the y-axis represent genes with statistically significant differences. 
Similarly, extreme values of l2FC on the x-axis indicate marked differ-
ences in gene expression. Thus, genes located far from the origin in both 
directions are the ones showing differences in expression both signifi-
cant and biologically relevant. It is crucial to note that, although volcano 
plots provide an indication of statistical significance (via the y-axis) and 
magnitude of the differences (via the x-axis), statistical significance does 
not necessarily mean biological importance. Therefore, it is essential to 
interpret the results in the context of the overall study and research 
objectives, to determine which changes in gene expression are truly 
biologically relevant [35]. 

When conducting hypothesis-driven studies, the identification of 
DEGs can be crucial for detecting genotypic differences between 
different sets of samples. Graphical visualisation of the resulting data 
can greatly facilitate the analysis and interpretation of these differences 
[85]. 

Lim, SH. et al. in 2021 [86]analyzed by DGE analysis changes in 
eyelid and buccal microbiomes between patients receiving long-term 
prostaglandin analogues for open-angle glaucoma (PG-OAG) and 
OAG-naive (Open-Angle Glaucoma patients without treatment) patients. 
The MA and volcano diagrams demonstrated that the PG-OAG group’s 
relative abundances of a particular eyelid microbiome species were 
different from those of the naive-OAG group. When considering the 
eyelid microbiome of PG-OAG vs. OAG naïve, the MA graph specifically 
demonstrated the variance in measurements between the two samples 
by converting the data to M- and A-scale. The volcano plot of the 
PG-OAG patients revealed that Azomonas, Pseudomonas, and Gran-
ulicatella were abundant, while Delftia and Rothia were diminished 
when compared to OAG-naïve patients [86]. 

2.4.2. Heatmaps and Venn’s diagrams 
The aim of DGE analyses, is the identification of genes showing 

significant differences in expression levels between two or more groups. 
The number of DEGs between these groups provides a metric for 
assessing the extent of gene expression changes [31]. 

Heatmaps and Venn diagrams are visualization tools commonly used 
to display the results of DGE analysis [45,46]. Heatmaps use color scales 
to map data values and create a grid with variables and observations 
along the two axes [31]. However, it is crucial to carefully use heatmaps. 
Indeed, if the heatmap is generated without proper statistical analysis 
and previous filtering, it could lead to incorrect or misleading in-
terpretations instead of focusing on statistically relevant genes. Thus, 
researchers must be cautious when interpreting and presenting results 
using these graphical presentations, ensuring that they represent the 
most relevant and significant data [87]. 

On the other end, Venn diagrams represent the intersection and 
uniqueness of different data sets. Each circle in any Venn diagram rep-
resents a data set and the intersections between the circles show the 
similarities between these sets. This type of visualization is particularly 
useful to highlight similarities or differences between several groups or 
conditions concerning gene expression [46]. Yang Z. et al. in 2018 [88] 
analyzed exosomal miRNA profiles of SAT (Subcutaneous Adipose Tis-
sue) and VAT (Visceral Adipose Tissues) from obese and lean patients. 
They discovered 10 exosome-derived DE-miRNAs (differentially 
expressed miRNAs) in SATs and 58 exosomal DE-miRNAs in VATs. The 
detected DE-miRNAs in SAT and VAT were different between patients 
with obesity and lean patients, according to heatmaps produced by the 
commonly used R package’s ’pheatmap()’ [89] function. One common 
exosomal DE-miRNA between SAT and VAT was specifically identified 
by Venn diagram analysis, but the remaining nine DE-mRNAs in SAT 
and 57 DE-miRNAs in VAT were tissue-specific. Utilizing the Venn di-
agram online tool, Lv X. et al. [90] compared two sets of differentially 
expressed genes and discovered 755 overlapped DEGs, comprising 590 
up-regulated genes and 165 down-regulated genes. By using a Venn 
diagram to intersect the results of two separate groups of up- and 
down-regulated DEGs, Chen C. et al. (2022) [63]were able to produce a 
set of DEGs that contained five down-regulated genes with varying de-
grees of vascular calcification (VC) and nine up-regulated genes with 
varying degrees of VC. 

3. Pathway enrichment analysis 

Once differentially expressed genes are identified between two sets 
of samples, a tool called pathway enrichment analysis can be then used 
[91]. 

Pathway enrichment analysis is a computational tool to identify 
biological pathways or pathways significantly enriched in differentially 
expressed genes/proteins, or associated with a defined set of samples 
and/or diseases. 

Pathway enrichment analysis [92] serves multiple purposes for 
biomarker identification and validation. First, it helps in pinpointing 
potential biomarkers by highlighting genes overrepresented in specific 
biological pathways [93]. It then helps in validating the biological sig-
nificance of these candidate genes by analyzing their roles within 
enriched pathways and their interactions at protein level [94,95]. In 
addition, this analysis links gene changes to relevant diseases, suggest-
ing their potential as disease markers and insights into therapeutic tar-
gets [96,97]. Finally, it supports the validation and refinement of 
biomarkers, ensuring their clinical relevance and accuracy [98–100]. 
For instance, Chen, G. et al 2021 performed pathway enrichment to 
investigate the biological function of DEGs in breast cancer. 
Up-regulated DEGs were significantly enriched in pathways such as p53 
signaling, progesterone-mediated oocyte maturation, protein degrada-
tion, and uptake, and down-regulated DEGs were mostly enriched in 
AMPK, adipocytokine, and PPAR signaling pathways. They identified 12 
genes correlated with prognosis of breast cancer patients using a 
protein-protein interaction (PPI) network analysis. Based on their re-
sults, the authors concluded that the identified pathways and genes play 
important roles in the development and prognosis of breast cancer. 
These findings provided valuable insights into the molecular mecha-
nisms underlying breast cancer and contributed to the identification of 
potential prognostic biomarkers and therapeutic targets for breast can-
cer [98]. 

The construction of pathway enrichment networks is a key step in 
understanding the biology of complex systems and allows the identifi-
cation of biological pathways involved in specific functions, such as 
regulation of apoptosis or cell signaling [101]. 

However, it is important to emphasize that the success of pathway 
enrichment analysis depends largely on the background distribution 
used in the analysis, i.e. the complete set of genes considered when 
determining pathway enrichment [101]. If the background is not 

Fig. 2. Volcano plot. Volcano plot generated by DESeq2 R.  
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representative or if it contains bias due to selection procedures, it could 
lead to incorrect conclusions. Otherwise, the analysis allows a complete 
and integrated view of biological functions and pathological mecha-
nisms, providing insights for developing new therapies or diagnostic 
strategies [102]. 

Given its capability to consolidate large, high-dimensional datasets 
into key biological pathways, pathway enrichment analysis has become 
one of the main methodologies for analyzing and interpreting biological 
data [101]. 

In this respect, both databases and tools are key resources for facil-
itating and optimizing pathway enrichments. 

3.1. Databases 

WikiPathways [103] KEGG (Kyoto Encyclopaedia of Genes and Ge-
nomes) [104], GO (Gene Ontology) [105], Reactome [106], STRING 
(Search Tool for the Retrieval of Interacting Genes/Proteins) [107], 
Panther Pathways [108,109], Biocarta [110], and HumanCyc [111] are 
some of the most widely used databases, which provide information on 
metabolic pathways, biological processes, and protein interactions 
useful to analyze gene expression data and identify pathways and bio-
logical functions associated with genes of interest [112] (Table 3). 

Lv et al. [90] used DAVID [113] to perform enrichment analysis via 
GO [114] and KEGG [104] to highlight the biological functions of 755 
DEGs. This analysis revealed significant enrichment of DEGs in several 
biological processes, including mitotic nuclear division, sister chromatid 
cohesion, and cell division. These findings provide valuable information 
on the specific cellular functions and processes that are influenced by 
DEGs. In addition, using the KEGG database analysis, the authors found 
that the most enriched pathways were PPAR and AMPK signaling, and 
oocyte meiosis pathways. Lastly, the authors used the STRING database 
[115] to map protein interactions between overlapping DEGs. The 
STRING database provides information on known or predicted in-
teractions between proteins. The authors identified a total of 148 nodes 
(proteins) and 477 edges (protein interactions) using the STRING 
database. These nodes and edges represent the protein interactions 
corresponding to the overlapping DEGs in their study. In addition, the 
authors applied an enrichment test based on protein-protein interactions 
(PPI) using an enrichment p-value of less than 1.0e-16. This p-value 
indicates a high degree of statistical significance in the enrichment of 
protein interactions between overlapping DEGs. Overall, the use of the 
STRING database allowed the authors to visualize protein interactions 
between DEGs, providing information on protein networks and in-
terconnections between proteins involved in the biological processes 
studied [115]. 

Overall, each database has differences and peculiarities and the 
choice of pathway database depends on the specific research question 
and the nature of the data [124] (Table 4). 

3.2. Tools 

Enrich-r [125], DAVID (Database for Annotation, Visualisation, and 
Integrated Discovery) [126], Metascape [127], GSEA (Gene Set 
Enrichment Analysis) [128], GSVA (Gene Set Variation Analysis) [129] 
and Cytoscape [130] are the most widely used bioinformatic analysis 
tools to identify biological pathways involved in any specific biological 
response or disease [131]. These tools (Table 5) offer a variety of 
functionalities ranging from pathway enrichment analysis, annotation 
and analysis of gene lists, visualization and analysis of biological net-
works, and examination of hierarchical relationships in terms of Gene 
Ontology. 

In Cytoscape, after constructing interaction networks of gene 
expression data, centrality metrics can be then used to identify hub 
genes within the network. Notably, Cytoscape’s ’Correspondence’ plu-
gin offers advanced tools to examine these metrics. Centrality metrics 
include degree, betweenness, and proximity. The degree is the number 

Table 3 
Main bioinformatic databases for the analysis of biological pathways.  

Database Description URL 

WikiPathways An open science platform for the analysis of 
biological pathways developed, updated, and 
used by the research community. It allows 
users to collaboratively create, edit, and 
visualize biological pathways. WikiPathways 
comes with several features, including a 
zoomable pathway viewer and support for 
annotations of pathway ontologies. The 
content of the platform is available for free 
and has been adopted by external databases 
and tools. WikiPathways is also used as the 
base for centrally maintained databases such 
as Reactome [103]. 

WikiPathways 

KEGG A manually curated database resource and 
one of the most established databases of 
biological pathways and genomic 
annotations. It provides a representation of 
metabolic and signaling pathways and gene- 
protein interactions and contains manually 
curated pathways based on scientific 
literature [104, 116–118]. It also provides an 
application programming interface (API) for 
data integration[119]. 

KEGG 

GO Gene Ontology provides a unified annotation 
system to describe the roles of genes and 
proteins in any organism. It has three main 
categories: Biological Processes, Cellular 
Components and Molecular Functions. It is an 
important bioinformatic resource for the 
functional annotation of genes and proteins 
and is widely used to interpret gene 
expression and proteomic datasets. The GO is 
collaboratively maintained by several 
database projects such as UniProt and NCBI, 
providing a common language for describing 
gene and protein characteristics across 
different species. GO also contributes to 
powerful analysis tools for functional 
enrichment, allowing researchers to identify 
and better understand biological patterns  
[105]. 

GO 

Reactome A manually curated biological pathway 
database, which provides information on 
more than 2000 human biological pathways. 
It also provides pathway enrichment analysis 
based on gene expression data [106,120]. 

Reactome 

STRING The STRING database contains all known and 
predicted protein-protein interactions, 
including both functional (proteins involved 
in the same biological processes or pathways) 
and physical interactions, annotated for 
different species. It also provides clustering 
and pathway enrichment analysis based on 
protein-protein interaction data and allow 
data visualization [107,121]. It collects and 
scores evidence from a variety of sources, 
including automated text mining of scientific 
literature, databases of interaction 
experiments and annotated 
complexes/pathways, computational 
predictions of interactions based on 
co-expression and genomic context, and 
systematic transfers of evidence of 
interactions from one organism to another  
[115]. 

STRING 

Panther 
Pathways 

A manually curated database of more than 
1962 genes and 145 pathways. These 
pathways are divided into groups based on 
structural or functional annotations, which 
include metabolic, signaling, biosynthesis, 
and degradation processes. Literature 
curation and connection with curated 
pathways are used to quantify the 
relationships between proteins and pathways. 

Panther 
Pathways 

(continued on next page) 
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of connections a gene has with other genes in the network, while 
betweenness indicates how often a gene is on the shortest path between 
two different genes in the network. Proximity, on the other hand, 
measures how close a gene is to other genes in the network. In this way, 
it is possible to identify genes that play a central role in gene regulation 
and biological processes [132,133]. 

ClueGO is another example of Cytoscape plug-in [134] to visualize 
non-redundant biological keywords for large gene clusters in networks 
grouped by function. The plug-in uses kappa statistics to create a ClueGO 
network and reflects the relationships between keywords based on the 
similarity of associated genes. ClueGO can be updated with the latest 
files from Gene Ontology, KEGG, WikiPathways, and Reactome. In 
addition, the plug-in performs single cluster analysis and comparisons 
between several gene clusters. ClueGO has REST-enabled functions, 
which allows integration into analytical pipelines. New features include 
a new option for customized reference sets and ability to display lists of 
GO terms from other enrichment analyses. ClueGO facilitates the bio-
logical interpretation of large gene or protein lists by selecting repre-
sentative terms from Gene Ontology [135]. However, it is essential to 
emphasize a significant limitation of traditional enrichment analyses 
using GO terms. Gene Ontology is inherently hierarchical, and different 
branches have different depths. Consequently, the conventional 
approach, which focuses on specific levels of the GO tree, may lead to 
analysis in which generic and specific GO terms are equally considered, 
introducing potential ambiguities or inaccuracies in the conclusions of 
the analysis. More appropriate approaches, which attempt to overcome 
this limitation, consider the context and proximity of terms in the GO 
tree, ensuring a more accurate and informed representation of func-
tional enrichment [136]. The TopGO package [136] in R provides an 
example of this type of approach and offers many algorithms to perform 
enrichment analysis of Gene Ontology terms. One of these algorithms is 

Table 3 (continued ) 

Database Description URL 

Moreover, Panther Pathways offers 
visualizations of attribute and gene similarity  
[108, 109,122, 123]. 

Biocarta 
Pathways 

1396 genes, 254 pathways, and 4417 protein- 
pathway connections are present in this 
database. A valuable resource for experts in 
the field of biology and medical research. This 
site is constantly manually updated and 
provides in-depth details on pathways 
involved in important biological processes, 
including immune response, bone 
remodelling, gene regulation, apoptosis, and 
cell cycle regulation. The availability of 
detailed information on these biological 
pathways helps the understanding of the 
molecular mechanisms regulating these 
processes [110]. 

Biocarta 
Pathways 

HumanCyc A database containing information about 
human metabolic processes, enzymes, and 
pathways. It provides a comprehensive 
collection of enzymatic reactions and 
metabolic pathways. It is a versatile reference 
resource for analyzing omics data. The 
database assigns enzymes to predicted 
metabolic pathways, placing genes in their 
biological context, thereby enabling 
measurement of metabolism. It contains 2709 
human enzymes assigned to 896 bioreactions, 
with 622 enzymes assigned roles in 135 
predicted metabolic pathways that closely 
match known human nutritional 
requirements. It allows analysis of gene 
expression, proteomics, and metabolomics 
data through an Omics Viewer. The database 
helps assess causal conclusions regarding the 
consequences of mutations, treatments, and 
modifications of gene regulation [111]. 

HumanCyc  

Table 4 
Advantages, disadvantages, and context for the main bioinformatic databases for 
analyzing biological pathways.  

Database Advantages Disadvantages Context of Use 

WikiPathways  
[103] 

Community- 
curated content; 
intuitive user 
interface; regular 
updates; open 
platform. 

Limited coverage 
of less common 
species in research. 

Useful for 
collaborative 
research and 
pathway analysis, 
particularly 
suitable for systems 
biology and omics 
studies. 

KEGG [116, 
117] 

Extensive 
integrated data 
collection; 
detailed pathway 
information; 
analysis and 
mapping tools; 
broad species 
coverage. 

Limited access to 
advanced features 
for non-registered 
users; interface not 
very intuitive. 

Extensive use in 
bioinformatics for 
pathway analysis 
and genomic 
research, 
metabolomics and 
multi-omics data 
integration; used in 
a wide range of 
biological and 
medical studies. 

GO [105] Annotation of 
genes and proteins 
in many species; 
extensive 
integration with 
numerous other 
bioinformatic 
tools; tripartite 
structure covering 
biological 
processes, cellular 
components, and 
molecular 
functions. 

Requires 
understanding of 
specific ontological 
categories for 
effective use; may 
not cover all 
possible gene 
functions, 
especially in less- 
studied species. 

Used in a wide 
range of 
bioinformatic 
studies for 
functional 
annotation; 
particularly useful 
to identify 
underlying 
biological 
mechanisms; 
applied in 
comparative and 
functional studies 
across different 
species. 

Reactome  
[120] 

High-quality 
curated data; good 
data integration 
and visualization; 
biological event- 
oriented 
approach. 

Mainly human- 
centred coverage; 
less detail for other 
species. 

Preferred for 
studies on 
biological 
pathways and 
processes, 
especially in 
humans. 

STRING [107] Extensive 
database of 
protein 
interactions; 
integration of 
different data 
sources; user- 
friendly interface. 

Possible false 
positives in 
predicted 
interactions; 
require 
experimental 
validation. 

Used for the 
analysis of protein 
interaction 
networks and for 
proteomics studies. 

Panther 
Pathways  
[122] 

Integration of 
functional and 
evolutionary data; 
based on 
standardized 
ontologies; use of 
familiar gene 
models. 

Limited coverage 
compared to other 
databases; more 
recent data may be 
missing. 

Suitable for 
evolutionary and 
functional analyses 
of genes and 
proteins. 

Biocarta [110] Specificity in 
pathway detail; 
curated data. 

Not frequently 
updated; limited 
coverage. 

Used for detailed 
analysis of specific 
biological 
pathways, 
especially in 
biomedical studies. 

HumanCyc  
[111] 

Dedicated to 
human 
biochemistry; 
detailed in 
metabolic 
pathways; based 
on curated data. 

Focused 
exclusively on 
humans; requires 
an understanding 
of biochemistry for 
effective use. 

Used for the in- 
depth study of 
human metabolic 
pathways, 
particularly useful 
in biochemical and 
metabolomics 
research.  
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the elim method, which considers hierarchical relationships between GO 
terms in its analysis. This means that, in assessing the significance of a 
particular GO term, the elim method considers neighboring terms in the 
GO graph [137]. The elim method provides more contextualized results 
by considering hierarchical relationships. It provides a better under-
standing of how different GO terms are related to each other and how 
they contribute to the overall enrichment analysis. This can be partic-
ularly useful for identifying biological processes or essential functions 
relevant to a given dataset [136]. 

Pro and Cons of each specific tools are described in Table 6. 
These bioinformatic tools are crucial for determining prospective 

biomarkers and therapeutic targets, as well as comprehending the 
functional implications of variations in gene expression [131]. Casar-
rubios et al. [66] performed a functional enrichment analysis using 
GSEA to characterize upregulated pathways in each pathological 
response group, revealing upregulation of pathways related to TCR 
co-expression, lymphocyte infiltrate (CCL21, CXCR4, GZMK, CD52, 
IL7R, LAMP3 and PTPRC), type II interferon signaling, and antigen 
processing in NSCLC tumors with CPR (pathological complete response) 
to neoadjuvant chemo-immunotherapy. In contrast, they discovered an 
increase of tumor markers, housekeeping genes, proliferation, and PD-1 
signaling pathways in non-CPR (non-complete pathological response) 
cancers [66]. 

After identifying the most significant pathways associated with 
DEGs, it becomes crucial to explore different bioinformatic strategies to 
identify potential new biomarkers. These methods are designed to 
identify specific genes or molecular patterns that could serve as in-
dicators or predictors of specific disease processes, paving the way for 
the development of targeted therapies and personalized medicine 
approaches. 

4. Statistical analysis and result evaluation 

Survival analysis and ROC are useful analyses for assessing the 
ability of a biomarker to predict outcomes, such as survival or mortality 
[145]. Survival analysis can be used to estimate the biomarker’s link to 
survival or mortality, while ROC curves can be used to assess the bio-
marker’s ability to distinguish between subjects with and without the 
disease [146]. In summary, survival analysis and ROC curves are useful 
statistical tools for assessing the relationship between variables and the 
outcome of interest in biomedical research [145]. 

4.1. ROC curve analysis 

ROC curve is essential for comparing two different diagnostic tasks 
when performed on the same subjects, determining the best diagnostic 
threshold values (cutoff), and assessing the ability of the diagnostic test 
to distinguish the status of patients and determine, for example, whether 
a patient is sick or healthy [147]. ROC curves are graphically repre-
sented with true positive rate (sensitivity) on the y-axis and false positive 
rate (1-specificity) on the x-axis, providing a visual measure of the test’s 
ability to discriminate between two conditions under exam [148]. AUC 
(area under the roc curve) is a useful measure of the test’s overall 
diagnostic efficacy, with values between 0 and 1. Various methods are 
available to calculate the AUC [149], including the trapezoidal rule 
[150], non-parametric methods [151] and those based on statistical 
models [152]. The advantages of ROC curve analysis include its inde-
pendence from disease prevalence in the population, which means that 
the AUC value remains the same regardless of disease incidence [153]. 
Another advantage is that the AUC does not depend on specific decision 
criteria or choices of diagnostic thresholds [148]. In conclusion, the AUC 
of the ROC curve provides a comprehensive and objective measure of the 
discriminatory ability of a diagnostic test. Being independent of disease 
prevalence and specific decision criteria, the AUC provides a reliable 
indication of test performance and facilitates comparison between 
different diagnostic tests [154]. However, it is important to emphasize 

Table 5 
Main bioinformatic tools for the analysis and visualisation of biological path-
ways and networks.  

Tool Description URL 

Enrich-r Web-based open-source bioinformatic analysis tool, 
which allows pathway enrichment analysis using over 
100 publicly available databases. It also provides an 
intuitive user interface and offers many options for 
presenting results with precise statistical evidence  
[125]. It does not support the analysis of protein-protein 
interaction networks and is restricted to a single type of 
analysis and therefore not appropriate for more complex 
analysis [125]. 

Enrich-r 

DAVID A bioinformatic analysis web-based tool integrating 
different sources of gene annotation and biological 
pathways, offering similar capabilities to Enrich-r, but 
with more user-friendly interfaces. It also provides 
clustering analysis based on gene and protein expression 
data [126]. 

DAVID 

Metascape It offers a complete resource for gene list annotation and 
analysis. Metascape integrates functional enrichment, 
interactome analysis, gene annotation, and membership 
search to interrogate more than 40 separate knowledge 
bases in any single integrated gateway. Furthermore, 
despite the slow loading of results, it facilitates the 
comparison of data sets from many independent and 
orthogonal studies [127]. 

Metascape 

GSEA Gene Set Enrichment Analysis (GSEA) is a tool used to 
determine whether a predefined set of genes shows 
statistically significant differences in gene expression 
between two biological conditions [138]. It is 
particularly useful for large-scale studies, such as 
analysis of high-throughput gene expression data [128, 
139]. GSEA offers detailed analysis based on lists of 
genes sorted by p-value, fold change, or both, rather 
than on individual genes, allowing a comprehensive 
biological interpretation of the data [140]. GSEA 
software, available for free download, is accompanied 
by MSigDB, a collection of annotated gene sets. 
Although starting with the web version of the GSEA is 
more straightforward, downloading the software and 
MSigDB offers more flexibility for customized analyses  
[138] 

GSEA 

GSVA A new gene enrichment analysis method for estimating 
variations in pathway activity in an unsupervised 
manner over a population of samples. GSVA is more 
robust and flexible than currently available sample 
enrichment methods for both microarray and RNA-seq 
data. It provides a more powerful analysis to detect even 
small variations in pathway activity and contributes to 
the need for enrichment analysis methods for RNA-seq 
data. It is a Bioconductor project component and an 
open-source R software package. A gene-expression 
matrix can be changed using the GSVA technique. It 
transforms a matrix in which each row denotes a gene 
and each column a sample into a matrix in which each 
row denotes a group of genes and each column a sample. 
This transformation allows for pathway-centric analysis, 
which focuses on analyzing groups of functionally 
related genes [129]. GSVA, like GSEA, has a user 
interface that requires expert users [128, 129, 139, 
141]. 

GSVA 

Cytoscape An open-source visualization and analysis software for 
biological networks with a wide range of functionality 
for creating biological networks, including tools for 
importing data, visualizing networks in different layout 
modes, and manipulating nodes and arcs [142]. In 
addition, it offers a wide range of plugins and analysis 
tools to perform various biological network analysis 
tasks, such as identifying network modules, analyzing 
pathways, and predicting protein-protein interactions  
[143,144]. It is used in many applications, including 
biomarker identification, prediction of protein-protein 
interactions, studies on complex diseases, and drug 
design. 

Cytoscape  

D. Rosati et al.                                                                                                                                                                                                                                  



Computational and Structural Biotechnology Journal 23 (2024) 1154–1168

1162

that evaluating the effectiveness of diagnostic tests requires an appro-
priate study design, which should include a representative study popu-
lation, with clearly defined inclusion and exclusion criteria to ensure 
that the patient’s pool reflects the diversity of the general population 
[155]. The inclusion in the study population of a wide range of cases and 
controls is crucial for accurate and reliable results and should be 
accompanied with appropriate randomization procedures to minimize 
bias and confounders [156]. Finally, an approach that includes com-
parison with a gold standard, appropriate statistical techniques for data 
analysis, and an adequate sample size can provide a comprehensive 
assessment of the effectiveness of a diagnostic test [147, 149, 153]. 

Chen et al. [63] assessed the ability of hub genes to distinguish 
calcified vessels from normal vessels by examining the expression pro-
files of hub genes in normal and uremia-induced VC samples. They 
determined that the area under the ROC curves of Sost, Ibsp, Fn1, Col1a1, 
and Spp1 were all near to one in the uremia-induced VC group in 
GSE146638 (Gene Expression Omnibus dataset), with the normal group 
serving as a control, indicating that these genes can discriminate be-
tween calcified and normal arteries. Thus, this analysis demonstrated 
that ROC curves can be used in biomedical research to assess the ability 
of a biomarker to distinguish between subjects with or without a certain 
disease. This can help in early diagnosis or monitoring its progression. 

4.2. Survival statistical analysis 

Statistical survival analysis are other important tools commonly used 
in clinical trials designed to identify specific biomarkers with predictive 
or diagnostic value for molecular-targeted therapies and personalized 
treatments [157,158]. Accordingly, a statistical approach, like Cox 
regression analysis, is crucial for the evaluation of aetiological and 
prognostic hypotheses. It is based on the estimation of the HR related to 
a given risk factor or predictor for a given endpoint [159]. The Cox 
approach must take into account the number of patients who had the 
event in question when determining the number of variables to be tested 
(univariate, bivariate, or multivariate) [160]. 

For an effective application of Cox regression analysis, it is crucial to 
select a study design that involves longitudinal data collection [161], 
such as cohort studies [162] or nested case-control studies [163]. In 
these studies, enrolled patients are observed over extended periods, and 
events of interest (such as disease occurrence or mortality) are recorded 
over time. In this way, it is possible to analyze how risk factors or patient 
characteristics influence the probability of an event over time, a key 
element of Cox analysis [164–166]. Furthermore, it is essential that the 
enrolled pool includes an adequate number of events (such as deaths or 
relapses) to ensure sufficient statistical power [167,168]. Variables 
should be selected on the basis of their clinical relevance and their 
plausible association with the event of interest and should be collected 
in a uniform and standardized manner to minimise the risk of bias [169]. 

The primary presumption of the traditional Cox hazard analysis is 
the proportionality of the risk [170]. Erroneous conclusions can be 
drawn by treating variables that become more pronounced as hazard 
factors during follow-up or even disappear altogether over time as their 
association with the hazard or risk under study diminishes or becomes 
negligible over time [171]. Thus, Cox analysis can be used to identify 
risk factors and biomarkers associated with a particular disease. 

When combined with ROC curves, survival analysis can provide a 
deeper understanding of risk factors associated with specific diseases 
and improve the assessment of a biomarker’s ability to anticipate the 
desired outcome [145]. 

Table 6 
Advantages, disadvantages and context of bioinformatic tools for the analysis 
and visualisation of biological pathways and networks.  

Tool Advantages Disadvantages Context of Use 

Enrich-r  
[125] 

Extensive 
collection of gene 
set libraries; visual 
summaries; user- 
friendly interface, 
robust for different 
types of 
enrichment 
analysis including 
transcription, 
pathways, 
ontologies, 
diseases/drugs, 
cell types, and 
miscellaneous. 

Overestimated 
results with large 
gene sets; lack of ID 
conversion tools. 

Ideal for rapid, 
interactive analysis 
of gene/protein sets 
in transcriptomics 
and proteomics 
studies. Useful for 
identifying 
pathways and 
functions associated 
with diseases, drugs 
or cell types. 

DAVID  
[126] 

Broad taxonomic 
coverage; up-to- 
date annotations; 
gene ID 
conversion; free; 
intuitive interface; 
species parameter 
for list upload to 
minimize 
ambiguity. 

General results; 
based on existing 
data; requires 
familiarity with 
biological databases. 

In-depth analyses of 
gene sets with 
emphasis on 
detailed annotations 
and molecular 
interactions; 
comparative and 
functional studies on 
different species. 

Metascape  
[127] 

Automatic 
processing and 
recognition of 
various gene 
identifier; auto- 
clustering; 
supports multiple 
flexible file 
formats; user- 
friendly interface. 

Generic results; may 
generate too many 
enriched pathways; 
limited support for 
species other than 
human and mouse. 

Complex analyses 
requiring the 
integration of 
multiple omics data. 
Excellent for studies 
requiring 
enrichment analysis 
and automatic gene 
clustering. 

GSEA  
[138] 

Robust analysis 
method sensitive 
to the top and 
bottom of the gene 
list; handles large 
gene sets; support 
for gene lists from 
different model 
organisms. 

It requires advanced 
skills in 
bioinformatics, 
systems biology and 
statistics; 
computationally 
intensive, requiring 
considerable 
processing resources. 

Preferred for studies 
exploring subtle 
differences in gene 
expression between 
groups of samples, 
such as comparative 
studies between 
healthy and diseased 
conditions. Useful in 
oncology and 
genetics research. 

GSVA  
[129] 

pathway-centric 
analysis of 
molecular data; 
supports wide 
range standard 
analytical methods 
(i.e. functional 
enrichment, 
survival analysis, 
clustering); 
flexibility in input 
formats. 

It requires expertise 
in R, bioinformatic 
and statistics; it does 
not consider 
correlations between 
genes, leading to an 
increased number of 
false-positive gene 
sets. 

Suitable for pathway 
analysis in large- 
scale gene 
expression data, 
such as RNA-seq and 
microarray studies. 
Useful for studies 
requiring 
differentiated 
expression profile 
analysis. 

Cytoscape  
[143, 
144] 

Open-source; runs 
on all operating 
systems that 
support Java; 
supports an ever- 
growing number of 
apps, continuously 
extending its 
capabilities and 
applications. 

It requires memory 
and computational 
power for large 
networks; complex 
analyses may require 
additional tools (e.g. 
R/igraph). 

Analysis of complex 
interactions in 
biological systems 
(e.g. signalling 
pathways, protein- 
protein interactions 
and gene 
relationships); 
integration of multi- 
omics data; 
translational 
research (e.g. 
understanding the 
molecular networks 
involved in various  

Table 6 (continued ) 

Tool Advantages Disadvantages Context of Use 

diseases, including 
cancer and genetic 
diseases).  
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Lv et al. [90], performed a survival analysis to assess whether the 
prognostic values of six mRNAs were independent of clinicopathological 
factors after selecting hub genes from the 755 differentially expressed 
mRNAs in triple-negative breast cancer and identifying the relative 
enrichment pathways of these genes. Specifically, the univariate Cox 
proportional hazard regression model showed that 16 out of 755 DEGs 
were substantially linked to survival time (P < 0.05), and the multi-
variate Cox proportional hazards regression model was used to create a 
predictive gene signature made up of six hub genes (6-mRNA) to predict 
overall survival. After that, using the median risk score as cut-off point, 
patients were separated into low- and high-risk categories of survival. 
According to the expression of the 6-mRNAs and the time-dependent 
ROC curve [172], TNBC patients with high-risk scores showed consid-
erably shorter survival time than those with low-risk scores 
(P < 0.0001) [90]. Thus, through this analysis, it was confirmed that the 
identified genetic patterns were effective in predicting and diagnosing 
the disease. These results will form the basis not only for future prog-
nosis but also for targeted therapy in TNBC [90]. Accordingly, Casar-
rubios et al. [66] performed ROC curve and survival analysis to assess 
the ability of tumor microenvironment gene expression profiles to pre-
dict response to neoadjuvant therapy and disease-free survival in NSCLC 
patients. The ROC curve analysis values with the highest likelihood ratio 
were utilized as thresholds to classify DEGs or immune cell subsets for 
each sample into high or low groups in the identification of individuals 
at high risk of recurrence following surgery. While progression-free 
survival (PFS) and overall survival (OS) were examined using the 
Kaplan-Meier curve, the log-rank test was used to compare groups. The 
results showed that gene expression profiles of the tumor microenvi-
ronment could significantly predict response to neoadjuvant therapy 
and disease-free survival in NSCLC patients [66]. 

5. Case studies 

Several case studies used these pipelines to identify molecular sig-
natures as potential biomarkers. 

Han et al. [53] analyzed transcriptomic profiles and molecular sig-
natures in platinum-sensitive and platinum-resistant ovarian carcinoma 
patients using DESeq2 software for normalization and differential gene 
expression analysis. Notably, differentially expressed genes were 
selected by meeting the criteria of an adjusted p-value (Benjamini--
Hochberg) of less than 0.05 and an absolute log2 fold change greater 
than 1. They identified 263 genes differentially expressed between 
platinum-sensitive and resistant groups. Of these genes, 98 were upre-
gulated and 165 downregulated and were represented by heatmap and 
volcano plot. In addition, the authors performed GO and KEGG enrich-
ment pathway analyses to obtain information on the biological mecha-
nism associated with platinum resistance and demonstrated that 
pathways significantly enriched were related to apoptosis, cell cycle, 
DNA damage repair, and epithelial-to-mesenchymal transition, which is 
an important mechanism regulating migration, invasion, and acquisi-
tion of chemoresistance. Because genes induced or suppressed in the 
platinum-resistant group were interlinked, the authors further charac-
terized them via the STRING functional protein network and identified 3 
key regulators (upregulated PACSIN3 and downregulated NTS and 
KIAA0319) related to the response to platinum-based chemotherapy. 

In Suryawanshi et al. [173], the authors investigated the placental 
transcriptome and analyzed gene changes and differential gene expres-
sion between different sections of the placenta. They used Differential 
expression analysis with DESeq2 to compare gene expression levels 
between different trimesters of the placenta and between fetal and 
maternal side sections of the placenta at the end of pregnancy. The 
authors considered das differentially expressed genes the one with a P 
-Log10 value of 5 or more and a Log2 fold change of 1 or more. The 
analysis identified a total of 1120 differentially expressed genes in the 
placenta tissues of T1 and T3 (first and third trimester of pregnancy) 
samples. Specifically, 411 genes were upregulated in T1 placentas, while 

709 genes were upregulated in T3 placentas. However, no significant 
differences in gene expression were observed between fetal and 
maternal side sections of the placenta in the third trimester, suggesting 
that gene expression patterns do not spatially change in the placenta. 
The authors used volcano plots to visualize differentially expressed 
genes between two groups of samples (genes expressed in the fetal 
versus the maternal side of T3 and genes expressed in T1 vs T3). The 30 
best genes from each comparison were then chosen based on p-value, 
log2FC and BaseMean. These genes were then combined into a heatmap 
to visually identify common or differential gene expression patterns 
between sample groups. Finally, for pathway enrichment analysis, the 
authors removed genes with a BaseMean value below 20 to select genes 
with a higher expression level. Then, they analysed these genes for GO 
term enrichment using Enrichr, revealing that the biological processes 
enriched in T1 were related to cell division and proliferation, while in T3 
were related to development and regulation of the vasculature. Thus, 
researchers can understand the molecular mechanisms underlying these 
disorders and potentially develop new diagnostic or therapeutic ap-
proaches by understanding the transcriptional changes that occur dur-
ing different stages of pregnancy. 

Chen et al. [174] used RNA-seq data from 169 glioblastoma multi-
forme (GBM) samples and RNA-seq data from 5 normal brain tissue 
samples downloaded from The Cancer Genome Atlas (TCGA) (portal. 
gdc.cancer.gov) database [175] to identify potential key nodes and 
molecular mechanisms associated with GBM progression [175]. They 
examined DEGs between GBM and normal samples using the edger 
package in R, with a significance cutoff of P < 0.01 and |log2 (fc)| > 4. A 
volcano graph was plotted to visualise the DEGs. The authors identified 
a total of 1483 DEGs (954 upregulated and 529 downregulated) and 
used the DAVID Database to analyze GO terms and enriched KEGG 
pathways in identified DEGs. A number of DEGs ≥ 2 and a significance 
cutoff of P < 0.05 were used to identify significant biological functions 
and signalling pathways. GO enrichment analysis revealed that upre-
gulated DEGs were involved in biological processes such as ante-
rior/posterior pattern specification, morphogenesis of the embryonic 
skeletal system, sister chromatid cohesion and cell division. Down-
regulated DEGs were significantly associated with chemical synaptic 
transmission, regulation of transmembrane ion transport and the 
γ-aminobutyric acid signaling pathway. KEGG pathway analysis indi-
cated that upregulated DEGs were involved in pathways such as the cell 
cycle and the p53 signalling pathway, whereas downregulated genes 
were associated with retrograde endocannabinoid signalling, GABAer-
gic synapse and glutamatergic synapse. Next, they used the STRING 
database to assess the DEGs interacting partners andCytoscape’s Cyto-
Hubba tool to identify the top 10 significant genes based on their degrees 
of connectivity, including CDK1, CENPA, GNG3, BUB1, CCNB2, KIF2C, 
AURKB, BIRC5, CDCA8 and BUB1B. The genes identified in the PPI 
network may represent potential targets for the development of new 
treatments for GBM. 

Clancy et al. [54] wanted to identify markers of severe response to 
SARS-CoV-2 through secondary transcriptomic analysis of biological 
material derived from human blood. They used MOdular Automated 
Reproducible Workflow for Preprocessing and Differential Analysis of 
RNA-seq Data (ARMOR) [52,176] for the preprocessing and analysis of 
RNA-seq data. This workflow includes steps such as clipping of 
sequencing adapters and low-quality regions, calculation of quality 
control metrics, mapping and quantification of reads in the human 
GRCh38 transcriptome, and calculation of differential gene expression 
using edgeR. The authors used for differential gene expression analysis 
RNA-seq data from three studies based on blood samples from patients 
infected with SARS-CoV-2, stratified between severe and mild disease 
groups based on disease metadata. After calculating differential gene 
expression, they obtained 7941 DEGs genes which differed between 
severe and mild disease. Some highly significant DEGs were ASPH, 
MACIR/C5orf30, DGKH, and SLC26A6, genes involved in calcium ho-
meostasis, immune response regulation, and metabolite transport. Gene 
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ontology terms were determined using the DAVID database resource. 
DEGs were then subjected to signaling pathway analysis using the Signal 
Pathway Impact Analysis (SPIA) algorithm [177,178], a tool for data 
analysis The signaling pathways used in the analysis were derived from 
publicly available versions of KEGG, Reactome, Pathway Interaction 
Database, BioCarta and Panther. This analysis identified nine signifi-
cantly affected pathways, five of which were directly related to T-cell 
receptor (TCR) signaling, while a sixth described a Zap70 immunolog-
ical synapse, the latter inhibited during severe COVID-19. Finally, to 
improve the reliability of their study, they constructed an ROC curve 
with all RNA sequencing reads and obtained an AUC value of over 96%. 
In this case, the AUC represents the percentage specificity and sensitivity 
of host transcriptomic data to predict disease severity, thereby indi-
cating that the host transcriptional response strongly reflects disease 
severity. 

6. Limitations 

This review has highlighted the effectiveness of bioinformatics, 
computational biology, and statistical techniques in identifying bio-
markers with prognostic and diagnostic values. However, significant 
challenges and limitations exist in these approaches. 

Although RNA-Seq is a powerful technology for analyzing gene 
expression, it has limitations due to variability introduced during library 
preparation and sequencing, which can lead to differences in gene 
expression estimates between replicates [179]. This variability can be 
mitigated through appropriate normalization methods that correct for 
library size and reduce technical bias [180]. 

EdgeR and DESeq2, as highlighted in this review, are formidable 
tools for analyzing RNA-seq data butach comes with its own set of ad-
vantages and limitations, which affect theselection process based on the 
specific needs of the study andfactors like sample size, biological vari-
ability, and the underlying assumptions of the data distribution. 

Pathway enrichment analysis is are a critical step following the 
identification of differentially expressed genes. This is a useful tool for 
identifying biological pathways involved in a particular biological 
function or disease. This review highlight various databases and tools 
that facilitate this analysis, highlighting their functionalities, the con-
texts in which they are most useful and limitations [181]. In particular, 
attention must be paid to the reliability of annotations [106], biological 
interpretation [182], and choice of analysis model [183]. Pathway da-
tabases and annotation resources are curated by experts, but some an-
notations might be outdated, while others might lack experimental 
validation. Using unreliable or incomplete annotations for pathway 
enrichment can lead to misleading results or omit key pathways relevant 
to the biological question posed [106]. While computational tools can 
identify statistically enriched pathways, the biological relevance of 
these pathways can sometimes be not clear. Using complementary data 
or experimental validation, careful interpretation can help in discerning 
the truly biologically relevant pathways from false positives [182]. 
Finally, different pathway enrichment methods and tools use various 
models and algorithms and some might be more suited for a particular 
data type or biological question than others. The choice of model can 
significantly influence the pathways identified, and no single model is 
universally optimal for all datasets or research questions [183]. 

We have also covered statistical analysis and evaluation of results, 
key to identifying potential biomarkers and to provide insights into their 
efficacy in distinguishing between different disease stages. Cox analysis 
and ROC curves are useful statistical techniques in biomedical research, 
but they must be used with caution and their limitations must be 
considered. Careful selection of patients [184], reduction of biological 
variability [185] and avoidance of overfitting [186] can help to ensure 
the reliability of the results of Cox analysis and ROC curves [187,188]. 
The selection bias occurs when there is a systematic difference between 
those who were included in a study and those who were not [189]. 
Improper or biased patient selection can lead to potential confounding 

and inherent biological variability can introduce noise in the analysis. 
Thus, minimizing this variability, by focusing on homogeneous patient 
groups or using consistent measurement techniques, can improve the 
accuracy and reliability of the analysis. A further limitation may lie in 
the overfitting occurring when a statistical model captures not only the 
underlying patterns of data but also random noise. When applied to new 
data, an overfitted model is likely to perform poorly. In the context of 
Cox analysis, this may mean the inclusion of too many variables in the 
model. For ROC curves, overfitting can artificially inflate the area under 
the curve, leading to over-optimistic performance metrics. It is crucial to 
be aware of this risk and to take preventive measures. To avoid over-
fitting, regularisation techniques such as ridge regression [190] or 
LASSO (Least Absolute Shrinkage and Selection Operator) [191,192] 
can be adopted during the model training phase. In Cox analysis regu-
larization can help in reducing the weight of less relevant or redundant 
variables, limiting the complexity of the model and keeping only most 
influential variables [193]. For example, LASSO is effective in excluding 
insignificant variables by selecting an optimal subset of predictors [191, 
192]. For ROC curves, regularisation can be used to prevent the model 
from over-fitting the training data, ensuring that the performance, as 
measured by the area under the curve (AUC), is realistic and repro-
ducible on new datasets [194]. This can be achieved by implementing 
cross-validation techniques during the training process to evaluate the 
effectiveness of the model on different subsets of the dataset, ensuring 
that the model is well-trained and generalizable [195,196]. Finally, 
continuous validation of the model on new data and critical review of 
the results are essential for maintaining the integrity and robustness of 
the analyses. 

7. Conclusions 

This review highlights the intricate and multifaceted nature of 
biomarker research, underscoring the importance of integrating bio-
informatic tools and statistical analyses to comprehensively understand 
and utilize these tools in healthcare. 

While there are challenges associated with these techniques the use 
of appropriate strategies to overcome methodological limitations, can 
produce accurate and reproducible analyses. 

However, current developments in the field of computational 
biology and data analysis continue to enhance the accuracy and reli-
ability of these analyses, bringing us ever closer to optimal solutions for 
biomarker research. 

We expect future improvements in sequencing techniques and 
analysis algorithms to further accelerate the discovery and validation of 
novel biomarkers. This will have significant implications for diagnosis, 
prognosis, and therapy, bringing us ever closer to the idea of personal-
ized medicine, in which treatments can be tailored to unique needs of 
each patient. 
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