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Corrupted coordination of epigenetic modifications
leads to diverging chromatin states and
transcriptional heterogeneity in CLL
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Cancer evolution is fueled by epigenetic as well as genetic diversity. In chronic lymphocytic
leukemia (CLL), intra-tumoral DNA methylation (DNAme) heterogeneity empowers evolu-
tion. Here, to comprehensively study the epigenetic dimension of cancer evolution, we
integrate DNAme analysis with histone modification mapping and single cell analyses of RNA
expression and DNAme in 22 primary CLL and 13 healthy donor B lymphocyte samples. Our
data reveal corrupted coherence across different layers of the CLL epigenome. This manifests
in decreased mutual information across epigenetic modifications and gene expression
attributed to cell-to-cell heterogeneity. Disrupted epigenetic-transcriptional coordination in
CLL is also reflected in the dysregulation of the transcriptional output as a function of the
combinatorial chromatin states, including incomplete Polycomb-mediated gene silencing.
Notably, we observe unexpected co-mapping of typically mutually exclusive activating and
repressing histone modifications, suggestive of intra-tumoral epigenetic diversity. Thus, CLL
epigenetic diversification leads to decreased coordination across layers of epigenetic infor-
mation, likely reflecting an admixture of cells with diverging cellular identities.
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ARTICLE

ancer growth, progression, and relapse are the result of an

evolutionary process fueled by intra-tumoral diversity!—3.

Chronic lymphocytic leukemia (CLL)—a common B cell
malignancy—serves as a highly informative model for cancer
evolution as it undergoes substantial genetic diversification* and
evolution with therapy®.

In addition to genetic changes, the CLL epigenome is an
important disease-defining feature linked to its cell-of-origin and
is predictive of outcome®~5. In fact, the stable propagation of the
ancestral epigenome allowed the use of DNA methylation
(DNAme) patterns to precisely retrace the initially transformed
cell-of-origin from which different CLLs emerge®. In addition to
the largely stably inherited epigenome, we have previously shown
that growing CLL populations also undergo ongoing somatic
DNAme changes akin to the process of genetic diversification
through ongoing mutations, leading to high intra-leukemic epi-
genetic heterogeneity, greater clonal evolution, and adverse out-
come’, as has been shown for other malignancies!?.

However, DNAme constitutes only a single layer of the epi-
genetic information encoding cell identity. Given the importance
of histone modifications to lineage plasticity in cancer!12, we
reasoned that intra-leukemic epigenetic heterogeneity may extend
to histone modifications, likely promoting lineage plasticity by
enabling permissive chromatin states. To address this question,
we complemented bulk reduced representation bisulfite sequen-
cing (RRBS) analysis with a chromatin immunoprecipitation
sequencing (ChIP-seq) compendium of histone post-translational
modifications and gene expression, together with joint DNAme
and transcriptome single cell analysis in a cohort of 22 primary
CLL and 13 healthy B lymphocytes samples. Our integrative
analysis revealed a markedly decreased coordination between
different layers of the CLL epigenome, whereby ongoing epige-
netic diversification leads to an admixture of cells with diverging
epigenetic identities, thus providing a novel perspective into the
epigenetic dimension of cancer evolution.

Results
Super-enhancer and associated DNAme alteration in CLL. To
comprehensively study the epigenetic landscape of evolving CLL
and its relationship to intra-leukemic diversity, we generated
genome-wide maps of histone marks with non-overlapping reg-
ulatory functions (H3K4me3, H3K27ac, and H3K27me3) and
transcriptome sequencing (bulk RNA-seq) in a cohort of 20
primary IGHV mutated and unmutated CLL (corresponding to
the major known disease subtypes!3; #n =14 and n =6, respec-
tively), as well as 12 healthy B lymphocytes samples (CD19/
CD23/IgD-positive CD27-negative tonsillar naive B cells [NBCs;
CD19+CD23+CD27 1gD*], n=2; peripheral blood NBCs
[CD197CD23TCD27 1gD™], n=4; CD19/CD23/CD27-positive
IgD-negative tonsillar germinal center B cells [GCBs; CD19+
CD23+tCD271IgD~], n=2; peripheral blood memory B cells
[GCBs; CD19+tCD23+tCD27%1IgD~], n=3; CD20-positive ton-
sillar B cells [CD207"], n = 1; Supplementary Fig. 1a, b).
Analysis of H3K27ac, a histone modification known to be a
marker of active gene regulatory regions!4, revealed core
enhancer and super-enhancer (as defined in ref. 14; see Methods;
Supplementary Fig. 1c) reprogramming in CLL. A total of 297
super-enhancers were differentially regulated in CLL compared
with normal B cells (absolute log,[H3K27ac fold-change] >2 and
Wald test BH-FDR <0.01; see Methods), with increased H3K27ac
in proximity to genes critical for lymphocyte proliferation and
differentiation, including BCL2, LEF1, and CTLA4'>-17 (Fig. la—c;
Supplementary Fig. 1d) and involved in pathways previously
reported to play key roles in CLL (e.g., B cell receptor, NF-kB and
MAPK inflammatory signaling pathways>; Fig. 1d). As ChIP-seq

experiments are prone to technical variation, we further
demonstrated the reproducibility of H3K27ac derangements in
CLL by analyzing additional CLL and normal B cell samples from
the Blueprint Initiative!® (Supplementary Data 1), showing high
pairwise correlations across our cohort and the Blueprint
initiative samples at super-enhancers (Supplementary Fig. le).
Fewer differences in the super-enhancer landscape were observed
between the two major known CLL subtypes (IGHV mutated and
unmutated; n =27 super-enhancers differentially regulated;
Supplementary Fig. 1f; see Methods), and with chromosome
13q deletion (del(13)q; n =25 super-enhancers differentially
regulated; Supplementary Fig. 1g; see Methods), consistent with
previous studies showing more subtle chromatin differences
between CLL subtypes!®. In line with prior studies that profiled
epigenomic features of a large CLL cohort and discrete normal B
cell subtypes along the differentiation program®!9, this extensive
chromatin rewiring at super-enhancers is mediated by specific
transcription factors, as evidenced by enrichment of their motifs
in activated super-enhancers, including NFAT, a deregulated gene
with functional and therapeutic potential in CLL3, and TCFL2, a
downstream target of the WNT pathway overexpressed in CLL20
(Fig. le, f; Supplementary Data 2, 3).

DNAme changes at enhancers and super-enhancers impact
their transcriptional activity?!. Therefore, to assess the relationship
between DNAme and enhancers, we profiled bulk DNAme of
normal B cell populations (peripheral blood naive B cells [CD19F
CD23+7CD27 1gD"], n=3; peripheral blood memory B cells
[CD19TCD23+CD27+1gD~], n=2) and CLL patient samples
(IGHV unmutated, n = 2; IGHV mutated, n = 3) using a targeted
bisulfite sequencing capture assay, which preferentially evaluates
dynamic CpGs at gene-regulatory elements?? (Supplementary
Fig. la, b; Supplementary Fig. 2a, b; Supplementary Data 4, 5).
Consistent with prior reports’->23, we observed a global decrease
in DNAme in CLL compared with normal B samples (Supple-
mentary Fig. 2¢, left; Supplementary Fig. 2d), with a focal increase
in methylation of CpG islands (CGI; Supplementary Fig. 2c, right).

In addition, we identified 41,057 differentially methylated regions
(DMRs; absolute change in DNAme > 0.3 and Fisher’s exact test
FDR <0.05%%; see Methods) between CLL and normal B samples,
most of which were hypomethylated in CLL (Supplementary
Fig. 2¢; Supplementary Data 6-8). Interestingly, hypomethylation
preferentially affected H3K27ac-enriched regions, including super-
enhancers (Fisher’s exact test P<0.0001; Fig. 2a; Supplementary
Fig. 2e, f). This extensive focal hypomethylation at super-enhancers
was observed in proximity to genes involved in pathways previously
reported to play key roles in CLL (e.g., B cell receptor activation,
Notch signaling, and cell proliferation®; Supplementary Fig. 2g;
Supplementary Data 9). Additionally, CLL-specific super-enhancers
showed a strong decrease in DNAme compared to normal B
samples (Mann-Whitney U-test, P <0.0001; Fig. 2b, c), as
illustrated for the BCL2 gene locus (Fig. 2d). In contrast, super-
enhancers that become inactive in CLL did not gain DNAme
compared to normal B samples (Mann-Whitney U-test, P> 0.05;
Fig. 2b-d), supporting the concept that DNAme is slow to
accumulate with CLL progression!%24,

Notably, we observed that hypomethylation at super-enhancers
resulted preferentially in intermediate DNAme levels in CLL
(Fisher’s exact test P <0.0001; Fig. 2e; Supplementary Fig. 2h).
These data demonstrated that cancer-associated hypomethylation
is not limited to previously described intermediately methylated
blocks in heterochromatin and lamina associated domains2>26,
but may also involve regions of active chromatin.

Decreased epigenetic-transcriptional coordination in CLL. The
observed intermediate bulk DNAme patterns at H3K27ac
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Fig. 1 Super-enhancer rewiring in CLL. a H3K27ac profiles of 297 differentially regulated super-enhancers (absolute log,[H3K27ac fold-change] > 2 and
Wald test BH-FDR < 0.01) between CLL and normal B cells. Red indicates high H3K27ac level, blue low H3K27ac level. Gene assignment to super-
enhancers based on proximity (average distance of 2775 bp). Genes critical for lymphocyte proliferation and differentiation are highlighted. b Differential
H3K27ac at super-enhancers (n = 2869) between CLL and naive B cells (same samples as in a were used in the analysis). Differentially regulated super-
enhancers defined as having absolute log,(H3K27ac fold-change) > 2 and Wald test BH-FDR < 0.01. ¢ Same as b for differential H3K27ac at super-
enhancers (n=2869) between CLL and germinal center B cells. d KEGG pathways enriched at differentially regulated super-enhancers (n=297;
hypergeometric test BH-FDR < 0.01). @ Comparison of rank in transcription factor de novo motif enrichment (n =310, ranked by hypergeometric test P-
value) between CLL (x-axis) and naive B cells (y-axis) at super-enhancers. Critical TF motifs for lymphocyte proliferation and B cell differentiation are
highlighted. LOESS regression line of observed ranked P-values is shown in dotted gray. Color: red—CLL biased; blue—naive B cell biased, size adjusted
based on residual. f Position weight matrices of selected de novo TF motifs significantly over-represented in CLL (standardized residuals > 1.65). For each
motif, the differential ranked P-value between CLL and naive B cells, motif enrichment hypergeometric test P-value, and the best match to JASPAR core

database are shown

regulatory regions are reminiscent of our previous observation of
intermediate DNAme in promoters stemming from stochastic
DNAme intra-leukemic diversification during CLL evolution®.
Therefore, to examine whether enhancer rewiring is also asso-
ciated with disordered methylation leading to reduced coordi-
nation between DNAme and H3K27ac, we drew on a well-
established metric in information theory—mutual information
(MI)—which measures how much can be learned from one
variable about another (see Methods). Consistent with disrupted
coordination across these two layers of the CLL epigenome, we
observed lower pairwise MI between bulk DNAme and H3K27ac
in CLL samples (irrespective of their IGHV mutational status)
compared with normal B cell samples at super-enhancer regions
(Welch’s t-test, P <0.0001; Fig. 3a; Supplementary Fig. 3a). This
decrease in MI also corresponded to a weaker correlation between
DNAme and H3K27ac in CLL samples compared with normal B
cell samples at super-enhancers (linear regression R? of 0.558
normal B vs. 0.471 CLL samples, t-test P < 0.0001).

The decrease in MI was observed more broadly, including a
13% decrease in MI between DNAme at transcription start sites
(TSSs) and gene expression, in CLL relative to normal B cells
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(Supplementary Fig. 3b). This decrease in MI may result from
greater intra-leukemic cell-to-cell heterogeneity that is not
captured in bulk population sequencing assays. To directly test
this hypothesis, we performed joint single-cell DNAme sequen-
cing and whole transcriptome sequencing on additional normal B
and CLL samples (n=96 cells [1 sample], n=288 cells
[2 samples], respectively; Fig. 3b; Supplementary Fig. 3c). While
MI was higher across samples in matched vs. scrambled single-
cell DNAme and RNA-seq data (paired t-test, P <0.0001), the
matched single-cell MI increase was higher in CLL compared
with normal B cells (43+£52% vs. 29+4.8%, respectively;
Mann-Whitney U-test, P =0.036; Fig. 3c). These data suggest
that, at least in part, the decreased epigenetic-transcriptional
coordination observed in CLL is the result of cell-to-cell
epigenetic diversification.

To more broadly examine the relationship between epigenetic
states (i.e., combinatorial interactions of epigenetic marks) and
transcriptional output, we modeled the combinatorial patterns of
histone modifications (H3K4me3, H3K27ac, H3K27me3) and
DNAme (based on bulk bisulfite sequencing), with or without
gene expression (based on bulk RNA-seq), using a Dirichlet
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Fig. 2 DNA methylation alteration at super-enhancers in CLL. a Percentage of differentially methylated regions (DMRs) measured with targeted bisulfite
sequencing capture assay in (i) Global: all covered 500bp-tiles in the genome; (ii) H3K27ac: union of all H3K27ac peaks; (iii) CGl: CpG islands; (iv) SE:
union of all super-enhancers; (v) H3K27ac distal peaks: union of all H3K27ac peaks that did not overlap TSSs (2.5 kb). P-values are shown for two-sided
Fisher's exact test. Bottom: percentage of distinct genomic features covered by the targeted bisulfite sequencing capture assay. b CpG methylation for CLL
and normal B cells across all super-enhancers (left), super-enhancers upregulated in normal B cells (center), and super-enhancers upregulated in CLL

(right), measured with targeted bisulfite sequencing capture assay. ¢ Difference in mean CpG methylation between CLL and normal B cells for the three
categories shown in b. Error bars represent 95% confidence interval. P-values are indicated for two-sided Mann-Whitney U-test. NS, not significant. d
Epigenomic profiling of the BLC2 locus in CLL compared with normal B cells. e The percentage of CpG methylation values at super-enhancers in CLL (no. of
CpGs used = 468,303) and normal B cells (no. of CpGs used = 502,607), measured with targeted bisulfite sequencing capture assay. P-value is shown for

two-sided Fisher's exact test for the intermediate category [0.2-0.8]

Process Mixture (DPM) approach, which allows learning de novo
the number of combinatorial states. We observed a significantly
higher number of states across CLL samples (in both IGHV
mutated and unmutated samples), compared with normal B cells
when adding RNA information into the DPM analysis, indicating
that the transcriptional output of epigenetic states is less uniform
in CLL (Mann-Whitney U-test, P <0.0001; Fig. 3d; Supplemen-
tary Fig. 3d). Specifically, while H3K27me3h/H3K4me3ow/
H3K27aclo%-marked genes (n=904) were associated with uni-
form gene silencing in B cells, they were associated with variable
expression in CLL (Mann-Whitney U-test, P < 0.0001; Fig. 3e),
suggesting that disrupted Polycomb repression in CLL results in
leaky silencing allowing partial reactivation of these genes.
Notably, variable expression of H3K27me3h/H3K4me3!ow/
H3K27aclo%-marked genes preferentially affected genes related
to the critical B-cell receptor (BCR) signaling pathway (Supple-
mentary Fig. 3e). In addition, we observed enrichment of specific
transcription factor binding motifs in H3K27me3hi/H3K4me3low/
H3K27acl*%-marked regions, including NFAT® and MYB, a
proto-oncogene overexpressed in CLL2” (Hypergeometric test P
<0.0001; Supplementary Fig. 3f). These data suggest that CLL
epigenomes are associated with less uniform transcriptional
outputs compared with normal B cell epigenomes.
Transcriptional variation in genes with similar epigenetic states
may stem from cell-to-cell transcriptional heterogeneity. To test
this, we computed gene expression information entropy, a
measure of cell-to-cell gene expression heterogeneity’ in our

4

single-cell whole transcriptome data, and found that in CLL
single cells (n=94) H3K27me3M/H3K4me3!oW/H3K27aclow-
marked genes were indeed associated with significantly higher
intra-leukemic expression information entropy compared to
normal B cells (n=84), or compared to a set of genes with
matched mean expression but not marked by H3K27me3hi/
H3K4me3!°W/H3K27acloW (Mann-Whitney U-test, P = 0.0003
and P =0.005, respectively; Fig. 3f, g; Supplementary Fig. 3g).
Our data therefore suggest a model in which H3K27me3-marked
genes in CLL are incompletely silenced, resulting in greater cell-
to-cell transcriptional heterogeneity.

Corrupted coherence across layers of the CLL epigenome. An
alternative approach to assess the coordination between layers of
the epigenome involves capturing their overlapping and mutually
exclusive combinatorial patterns?®, We pursued this orthogonal
approach by training a multivariate Hidden Markov Model (HMM)
on CLL and normal B cells data based on three of the different
histone modifications (H3K4me3, H3K27ac, H3K27me3), DNAme
(based on bulk bisulfite sequencing), and gene expression infor-
mation (based on bulk RNA-seq). We identified 12 distinct epige-
netic states that fell into two broad categories. First, a category that
correlated with active transcription including active promoters
(“Active flanking TSS”, “T'SS”), enhancers (“Enhancer”, “H3K4me3/
H3K27ac”), and 5" and 3’ boundaries of transcribed genes (“I-IV
transcription”). Second, a category of genes with no or little
detectable transcription, including bivalent or poised (“Bivalent/
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Poised TSS”), repressed Polycomb (“PRC”), and mCpG-rich
(“mCpQG”) states (Fig. 4a).

CLL overall showed high resemblance to normal B cells, and
no significant differences in genomic coverage were observed
between IGHV mutated and unmutated CLL (Supplementary
Fig. 4a). Importantly, HMM analysis revealed a chromatin state
simultaneously marked by H3K27ac and H3K27me3, modifica-
tions which are typically mutually exclusive, with a >2-fold
enrichment in CLL compared with normal B cells (Hypergeo-
metric test P <0.0001; Fig. 4a, b), and affecting ~1.6 M 200 bp
genomic segments including non-first introns and distal
regulatory elements (Supplementary Fig. 4b). We further
validated this chromatin state by analyzing an additional 6
CLL and 7 normal B cell samples from the Blueprint Initiative!8

and obtained high pairwise correlation (Spearman’s rho
correlation  coefficient =0.47) between H3K27ac and
H3K27me3 marks at H3K27ac-H3K27me3 segments identified
in our data (Supplementary Fig. 4c). Evaluation of these
H3K27ac-H3K27me3 segments from CLL revealed that a
notable fraction (46.7%) of these regions possessed repressive
chromatin modifications in normal B cells (Fig. 4c), suggesting
these are genomic regions that are subject to CLL-specific
activation by gaining activating acetylation marks (H3K27ac).
Gaining H3K27ac in the transition from a healthy to disease
state may be associated with upregulation of neighboring genes.
Consistent with this scenario, RNA gene expression was
increased in proximity to regions that gain H3K27ac in CLL
(Fig. 4d; Supplementary Fig. 4d). A gene set enrichment
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Fig. 4 Corrupted coherence across layers of CLL epigenome leads to cell-to-cell transcriptional heterogeneity. a Chromatin state definitions and
enrichments for a 12-state Hidden Markov Model based on three histone marks (H3K4me3, H3K27ac, H3K27me3), DNAme, and RNA information. P-
values of a given HMM state between CLL and normal B cells are shown for two-sided hypergeometric test. b Epigenomic profiling of the FYN gene locus,
demonstrating “H3K27a-H3K27me3" state increase in CLL compared with normal B cells across our cohort and Blueprint initiative samples. ¢ Sankey
diagram showing that ~47% of the regions in a "H3K27ac-H3K27me3" state in CLL carried repressive chromatin modifications in B cells. d Fold-change
gene expression between CLL and normal B cells in relation to genomic distance from regions that gain H3K27ac (orange; n = 11,740 genes) or H3K27me3
(blue; n= 28867 genes) in CLL. Mann-Whitney U-test. e Position weight matrices of the top three motifs over-represented in CLL “"H3K27ac-H3K27me3"
regions. Motif enrichment hypergeometric test P-value and the best reference motif match (JASPAR core database) are shown. f Expression levels
(logo[TPMI) of MYC target genes (containing promoter MYC binding motif, as in analysis in @) compared with non-MYC target genes in “H3K27ac-
H3K27me3" regions in CLL. Mann-Whitney U-test. g Single-cell (n = 94) gene expression Shannon's information entropy in relation to the population
average gene expression in CLL (scCLL_21). Colored lines—local regression curves for genes in a ‘H3K27ac-H3K27me3' (brown) or “Repressed Polycomb
(PRC)" (gray) state. Inset: single-cell gene expression Shannon's information entropy for each of the two chromatin states comparing genes within a
defined range of population average gene expression. Mann-Whitney U-test. h Gene expression magnitudes of genes in “Repressed Polycomb (PRC)"
state and genes in "H3K27ac-H3K27me3" state. Cumulative distribution (right) showing the proportion of intermediate single-cell gene expression
Shannon'’s information entropy values at these genes is also shown. Kolmogorov-Smirnov test. i Well-coordinated chromatin programs stabilize gene
expression and cellular identities in normal B cells (left). On the contrary, intra-leukemic epigenetic diversity results in a permissive chromatin state in CLL
cells (right), enhancing cell-to-cell transcriptional variation. Boxplots represent median and bottom and upper quartile; whiskers correspond to 1.5*IQR;
error bars represent 95% confidence interval
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analysis of closest genes to these regions revealed enrichment in
gene sets associated with stem cell identity?*30 (Hypergeo-
metric test BH-FDR <0.05), linking regulatory chromatin
variability to stem-like cell programs, according to the notion
that epigenetic variability in cancer may lead to a drift toward a
hybrid stem-somatic cell state®3! (Supplementary Fig. 4e;
Supplementary Data 10).

Epigenetic factors, such as aberrant regulation of H3K27
methylation!? and sporadic TF activation?2, have been recently
implicated in promoting lineage plasticity in cancer. Thus, to
identify which TFs may carry the potential to rewire CLL cells
and promote lineage plasticity in CLL, we further mined the
regions marked by H3K27ac-H3K27me3 for transcription factor
motif enrichment and identified a significant enrichment of the
proto-oncogene MYC motif, a TF associated with lineage
plasticity and CLL transformation to aggressive large B cell
lymphoma3? (Hypergeometric test P < 0.0001; Fig. 4¢). RNA gene
expression of genes with a MYC binding motif at their promoters
was increased compared with non-MYC target genes, in the
regions marked by H3K27ac-H3K27me3 (median [IQR] of 9.44
[4.34] vs. 8.23 [5.17] log,[TPM], respectively; Mann-Whitney U-
test, P < 0.0001; Fig. 4f).

Notably, the observed co-mapping of H3K27ac and
H3K27me3 to the same genomic locus in CLL may arise from
cell-to-cell divergence in histone modification, rather than co-
occurrence of these mutually exclusive marks in the same cells.
Consistent with this hypothesis, we analyzed our single-cell
whole-transcriptome data and observed that genes neighboring
H3K27ac-H3K27me3 regions in CLL were associated with higher
intra-leukemic expression information entropy in single cells
compared with genes neighboring Polycomb repressed regions
(Mann-Whitney U-test, P<0.0001; Fig. 4g, h; Supplementary
Fig. 4f, g). Collectively, these data suggest that CLL cell
populations lose effective Polycomb repression of MYC targets,
likely enabling an exploration of transcriptional stem-like cell
programs in CLL evolution.

Discussion

While cancer evolution investigations have focused on genetic
alterations, emerging data across cancer also highlighted the
contribution of heritable epigenetic changes to cancer
evolution! 11232 Tn this study, we provided an integrative analysis
of the epigenetic landscape of CLL and its relationship to intra-
leukemic epigenetic and transcriptional diversity.

We observed extensive chromatin rewiring at H3K27ac regulatory
regions mediated by specific transcription factor families, in parti-
cular NFAT and TCF/LEF transcription factor families®!1%20,
Through targeted bisulfite sequencing capture assay, we further
showed these regulatory regions to display the highest degree of
change in DNAme. Notably, enhancer hypomethylation is pre-
ferentially associated with intermediate DNAme levels, likely
reflecting intra-leukemic cell-to-cell heterogeneity®!0. Thus, inter-
mediately methylated regions in cancer may not be limited to het-
erochromatin as previously described?>29, affecting also regions of
regulatory chromatin.

Moreover, while normal B cells exhibit coordinated epigenetic-
transcriptional regulation resulting in higher pairwise mutual
information, CLL samples have a substantial decrease in
DNAme-RNA mutual information. This finding is consistent
with intra-leukemic heterogeneity decreasing the mutual infor-
mation of these two variables when measured at the population
level. To directly examine this scenario, we applied matched
DNAme and mRNA single-cell information and found a greater
increase in single-cell mutual information in CLL compared with
normal B cells. This observation confirms that the relatively small

contribution of promoter DNAme to explaining transcriptional
variation in bulk cancer studies® results, at least in part, from
intra-leukemic epigenetic diversity.

To further extend the evaluation of epigenetic co-ordination
beyond two epigenetic layers, we modeled the combinatorial
patterns of histone modifications, DNAme, and gene expression.
Interestingly, we observed a dysregulation of the transcriptional
output as a function of the combinatorial chromatin states.
Specifically, while in normal B cells H3K27me3h/H3K4me3!ow/
H3K27acl®%-marked genes were generally associated with a uni-
form transcriptional output, in CLL these genes were associated
with variable expression level. As H3K27me3 is typically depos-
ited at gene promoters by Polycomb Repressive Complex 2
(PRC2) via its catalytic Ezh2/Ezhl subunit34, these results are
consistent with CLL epigenetic landscape being marked by
incomplete Polycomb complex-mediated gene silencing resulting
in permissive chromatin states in a fraction of cells. Furthermore,
as DNAme is important for appropriate retargeting of PRC2 and
H3K27me3 histone modification across cell divisions3?, stochastic
DNAme alterations during CLL evolution® may lead to redis-
tribution of the repressive activity of the PRC2 complex and the
H3K27me3 mark, and cell-to-cell variation in the efficiency of
PRC?2 transcriptional silencing®.

Lastly, we observed an unexpected co-occurrence of typically
mutually exclusive activating (H3K27ac) and repressing
(H3K27me3) histone modifications, closely associated with activa-
tion of stem-like programs and greater cell-to-cell transcriptional
heterogeneity. Notably, the co-mapping of these typically mutually
exclusive histone modifications was previously observed in the
context of embryonic stem cell neural differentiation, reflecting
cellular heterogeneity due to admixture of differentiated and
undifferentiated cells’”. Thus, epigenetic diversification leads to
corrupted coherence across the different layers of the epigenome in
CLL, consistent with ongoing epigenetic diversification leading to
an admixture of cells with diverging epigenetic identities (Fig. 4i).

While genetic heterogeneity plays a key role in cancer growth,
progression, and evolution with therapy>>3839, epigenetic evolu-
tionary routes are a major emerging theme across cancer, including
prostate cancer, lung cancer and melanoma!#0. Cancer cells can
display profound non-genetically mediated transcriptional varia-
bility, which may enable adaptive changes such as therapeutic
resistance, persistence or lineage plasticity. Notably, these states are
efficiently propagated to progeny cells suggesting stable epigenetic
encoding. Indeed, in CLL, non-genetic persistence as well as lineage
transformation have been reported as potential routes of escape
from therapeutic inhibition>3%41. Our data demonstrates that these
adaptive capacities may be fueled by significant intra-tumoral epi-
genetic diversity resulting in permissive chromatin states across
cells, leading to greater cell-to-cell transcriptional variation (Fig. 4i).
Thus, intra-tumoral epigenetic diversity may permit leukemic cells
to stochastically activate alternate gene regulatory programs, facil-
itating the emergence of novel cell states, ultimately fostering CLL’s
ability to efficiently explore the fitness landscape for superior evo-
lutionary trajectories during tumorigenesis and in response to
therapy.

Methods

Human subjects, sample collection, and genotyping. The study was approved by
the local ethics committee and by the Institutional Review Board (IRB) and conducted
in accordance to the Declaration of Helsinki protocol. Blood samples were collected in
EDTA blood collection tubes (BD Biosciences) from patients and healthy adult
volunteers enrolled on clinical research protocols at the Dana-Farber/Harvard Cancer
Center (DF/HCC), Memorial Sloan Kettering Cancer Center (MSKCC), and New-
York-Presbyterian/Weill Cornell Medical Center (NYP/WCMC). We note that the
IRB does not permit collection of demographic information of healthy donors.
Informed consent on DF/HCC, MSKCC and WCMC IRB-approved protocols for
genomic sequencing of patient samples was obtained prior to the initiation of
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sequencing studies. The diagnosis of CLL according to World Health Organization
(WHO) criteria was confirmed in all cases by flow cytometry, or by lymph node or
bone marrow biopsy. B cells from healthy donors and CLL patient samples were
isolated from blood samples using Ficoll-Paque Plus (GE Healthcare) density gradient
centrifugation and red blood cell lysis, followed by EasySep™ Human B Cell
Enrichment Kit (STEMCELL Technologies, Vancouver, Canada) as per manufacturer
recommendation. Cells were then cryopreserved in 50% FBS/40% RPMI/10% DMSO
and stored in vapor-phase liquid nitrogen until the time of analysis. Tonsillar B cell
populations were affinity-purified from de-identified human tonsillectomy specimens
by magnetic cell separation®?, cryopreserved in 50% FBS/40% RPMI/10% DMSO and
stored in vapor-phase liquid nitrogen until the time of analysis. White blood cells
(WBC) counts for the CLL patient samples used in our analyses were in a range of
50-394 K (median of 201 K), consistent with a purity of >90% based on previously
published sequencing data3. Immunoglobulin heavy-chain variable (IGHV) homology
(unmutated was defined as greater than or equal to 98% homology to the closest
germline match) were determined*3. Cytogenetics were primarily evaluated by FISH
analysis for the most common CLL abnormalities [del(13q), trisomy 12, del(11q), del
(17p), del(6q), amp(2p)] (Supplementary Fig. 1b); if FISH was unavailable, genomic
data were used.

Antibodies. Purified CD197 naive B cells (CD19+CD23+CD27 IgD%) and
germinal center memory B cells (CD19+CD23+CD27*IgD~) were sorted using
PE/Cy7 anti-human CD27 (1:5 dilution; clone 0323, Bio Legend) and FITC mouse
anti-human IgD (1:5 dilution; clone IA6-2, BD Pharmingen) antibodies with a
FACSAria II instrument (Becton Dickinson, Franklin Lakes, NJ). Tonsillar CD20+
cells were sorted as CD19+CD20TCD38%F. CD5% normal B cells were not profiled
due to their low frequency, and previous data’ showed minimal DNA methylation
differences between CD5% and CD5™ naive B cells. Antibodies used for ChIP
include anti-H3K4me3 (1 mg for 50 mg of chromatin; 9751S Cell Signaling,
Danvers, MA), anti-H3K27ac (2 mg for 25 mg of chromatin; ab4729 Abcam,
Cambridge, United Kingdom), anti-H3K27me3 (2 mg for 25 mg of chromatin;
07-449 Millipore, Burlington, MA).

ChlIP-seq and motif analysis. A minimum of 2 million purified human cells were
used. Briefly, cells were fixed in a 1% methanol-free formaldehyde solution and
then resuspended in sodium dodecyl sulfate (SDS) lysis buffer. Lysates were
sonicated in an E220 focused-ultrasonicator (Covaris, Woburn, MA) to a desired
fragment size distribution of 100-500 base pairs. ChIP assays were processed on a
SX-8G IP-STAR Compact Automated System (Diagenode, Denville, NJ) using a
direct ChIP protocol#4. Briefly, immunoprecipitation reactions were performed
with the above-indicated antibodies, each on approximately 500,000 cells, and
incubated overnight at 4 °C. The immune complex was collected with protein A/G
agarose or magnetic beads and washed sequentially in the low salt wash buffer (20
mM Tris pH8, 150 mM NaCl, 0.1% SDS, 1% Triton X-100, 2 mM EDTA), the high
salt wash buffer (20 mM Tris pH8, 500 mM NaCl, 0.1% SDS, 1% Triton X-100, 2
mM EDTA), the LiCl wash buffer (10 mM Tris pH8, 250 mM LiCl, 1% NP-40, 1%
Sodium Deoxycholate, 1 mM EDTA) and TE. Chromatin was eluted with elution
buffer (1% SDS, 0.1 M NaHCQ3), and then reverse cross-linked with 0.2 M NaCl at
65 °C for 4h. DNA fragments were purified using Agencourt AMPure XP beads
(Beckman Coulter, Brea, CA). Barcoded immunoprecipitated DNA and input
DNA were prepared using the NEBNext ChIP-seq Library Prep Master Mix Set for
Mumina (#E6240, New England Biolabs, Ipswich, MA) and TruSeq Adapters
(Ilumina) according to the manufacturer’s protocol on a SX-8G IP-STAR Com-
pact Automated System (Diagenode). Phusion High-Fidelity DNA Polymerase
(New England Biolabs) and TruSeq PCR Primers (Illumina, San Diego, CA) were
used to amplify the libraries, which were then purified to remove adapter dimers
using AMPure XP beads and multiplexed on the HiSeq 2000 (Illumina, San Diego,
CA). Previously published CLL and normal B cells ChIP-seq datasets were
downloaded from the Blueprint DCC portal (Blueprint; http://dcc.blueprint-
epigenome.eu/#/home/).

ChIP-seq data were processed according to the ENCODE Histone ChIP-seq
Data Standards and Processing Pipeline (https://www.encodeproject.org/chip-seq/
histone/). Raw reads were mapped to the human genome GRCh37 assembly using
Burrows-Wheeler Aligner®> (BWA v0.7.17). Duplicate reads were removed using
Picard (https://broadinstitute.github.io/picard/) and bigwig files were created for
visualization. Peaks were identified with Macs24® (v2.0.10) with a g-value threshold
of 0.01. De novo motif enrichment analyses were performed using Homer#” against
JASPAR CORE database (-cpg parameter was used for CpG% normalization).
Peaks overlapping with Satellite repeat regions and Encode Blacklist were
discarded. All ChIP-seq reads were normalized and displayed as read counts per
million mapped reads. Super-enhancers in H3K27ac peaks were defined as in'443.
First, for each sample, H3K27ac peaks without any overlap with known gene
promoters (TSS + 2.5 kb) were identified. Then, H3K27ac peaks within 12.5 kb of
each other were concatenated and these regions were ranked by their total
normalized H3K27ac signal. H3K27ac intensity was plotted against the
corresponding concatenated enhancers rank. The cut-point between super-
enhancers and enhancers was defined on the enrichment profile as the tangent with
slope equal to 1. Enhancers on the right of the inflection point were defined as
super-enhancers (see Supplementary Fig. 1c). We note that the number of super-
enhancers identified in our CLL cohort (range [279-964]; median of 474 across

samples) is in line with a recent study that investigated enhancer architecture in a
distinct CLL cohort*8. To identify variable super-enhancer domains enriched in
either CLL or normal B cells, we defined the union of all super-enhancers
discovered across the CLL and normal B cell cohorts. Differentially regulated
super-enhancers in CLL compared with normal B cells (n = 297; see Fig. la—c and
Supplementary Fig. 1d) were identified with DESeq2%’ as those with absolute
log,(H3K27ac fold-change) >2 and Benjamini-Hochberg adjusted P-value < 0.01.
We note that few differences in the super-enhancer landscape were observed
between the two major known CLL subtypes, even with less stringent fold-change
and P-value thresholds (absolute log,[H3K27ac fold-change] >1 and Benjamini-
Hochberg adjusted P-value < 0.05; see Supplementary Fig. 1f, g), consistent with
prior studies showing more subtle chromatin differences between CLL
subtypes!*48. For visualization purposes, count data matrices were transformed
using variance stabilizing transformation (VST).

RNA-seq. RNA was extracted using Qiagen (Hilden, Germany) RNeasy columns
according to the manufacturer’s instructions. Subsequently, 500 ng of total RNA
was used for polyA selection and TruSeq library preparation according to the
instructions provided by Illumina (TruSeq RNA Sample Prep Kit v.2), with 8 cycles
of PCR. Samples were barcoded and run on a HiSeq 4000 in a 125 bp paired-end
mode, using the TruSeq SBS Kit v.3 (Illumina, San Diego, CA). An average of 75
million paired reads was generated per sample. Raw reads were mapped to the
human genome GRCh37 using STAR (v2.5.2a) aligner®?. We used several QC
metrics for the RNA-seq library, including intron-exon ratio, intragenic reads
fraction, and GC bias. We quantified exon and gene expression using Salmon®
against the Homo sapiens transcriptome GRCh37.

1

Reduced representation bisulfite sequencing (RRBS). Genomic DNA from CLL
samples and normal B cell samples were used to produce RRBS libraries. These
were generated by digesting genomic DNA with MspI to enrich for CpG-rich
fragments, and then were ligated to barcoded TruSeq adapters (Illumina, San
Diego, CA) to allow immediate subsequent pooling. This was followed by bisulfite
conversion and PCR. Libraries were sequenced and 29mers were aligned to the
hgl9 genome using MAQ version 0.6.6°2. Reads were further filtered if: (i) the read
did not align to an autosome, (ii) the read failed platform/vendor quality checks
(SAMtools flag 0 x 200), and/or (iii) the read did not align to an Mspl cut site. The
methylation state of each CpG was determined by comparing bisulfite-treated reads
aligning to that CpG with the genomic reference sequence. The methylation level
was computed by dividing the number of observed methylated cytosines (which
did not undergo bisulfite conversion) by the total number of reads aligned to that
CpG. In addition, the number of CpG measurements on each read was noted.

Targeted bisulfite sequencing capture assay. Hybrid-selected sequencing
libraries were prepared combining Accel-NGS Methyl-Seq DNA Library Kit (Swift
Biosciences) with the NimbleGen SeqCap Epi Enrichment System (Roche Nim-
bleGen), enabling lower input DNA quantities while maintaining library com-
plexity. Briefly, pre-capture libraries were constructed following the “bisulfite-
conversion first” library construction protocol of the Accel-NGS Methyl-Seq DNA
Library Kit (Swift Biosciences) with the following exceptions: (1) To minimize the
off-target sequencing rate, we sheared the input DNA to ~200 bp fragments instead
of shearing to ~400 bp fragments; (2) we doubled the PCR volume and used 8 PCR
cycles for the pre-capture library amplification in 1x HiFi HotStart ReadyMix
(Kapa Biosystems). SeqCap Epi hybridization reactions contained a total of 1 pug of
a pool of 2-4 PCR-amplified pre-capture libraries, a total of 1 nmol of 2-4 index-
specific blocking oligonucleotides, and the custom SeqCap probe pool designed for
the targets listed in Supplementary Data 4. Hybrid-selected sequencing libraries
were sequenced on an Illumina HiSeq 2500 instrument in fast mode together with a
10% spike-in of a non-indexed PhiX174 library to generate a median of ~48 million
indexed 100-base purity-filtered paired reads per sample. Raw reads were aligned to
the human genome (hgl9) using bsMap v2.9°3 with the following parameters:
bsmap -s 16 -v 0.1 -S 1 -n 1 -q 20 -r 0. Subsequently, we used Picard tools (http://
picard.sourceforge.net) version 2.16.0 to further process and QC the aligned data
files. Standard performance metrics for each library are available in Supplementary
Data 5. We used MarkDuplicates with standard parameter settings to mark and
remove likely PCR duplicates, CollectAlignmentMetrics to compute basic align-
ment statistics, and CalculateHsMetrics with Supplementary Data 4 to calculate all
hybrid capture-related metrics, including the on-target rate (Supplementary

Fig. 2a). To determine the methylation state of all CpGs captured and assess the
bisulfite conversion rate, we used the mcall module in the MOABS># software suite
with standard parameter settings. Then, we converted the resulting CpG level files
to bigBed files for visualization in IGV>, filtering out all CpGs that were covered
with less than five reads. Analysis of targeted bisulfite sequencing capture assay
data was conducted using the methylKit package®® and a 500-bp tiling of the target
capture set. Briefly, we imported the CpG level methylation call files from mcall
into R using the methylKit function “methRead” and then computed the weighted
methylation mean for each 500-bp tile using the function “getData”, weighting the
methylation level of each CpG with its coverage. We then merged the tile level
methylation information across all samples and retained only those tiles covered
with more than 10 reads in 70% or more of all samples. To compute differentially
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methylated tiles, we performed Fisher’s exact test on pooled CLL vs. normal B
samples for each tile. Subsequently, we corrected the resulting P-values using
Benjamini-Hochberg correction and defined regions with a Q-value < 0.05 and an
absolute methylation difference > 0.3 as differentially methylated. Finally, we
merged differentially methylated tiles into larger differentially methylated regions
(DMRY) if they were less than 400 bp apart?2.

BEDTools v2.25.057 was used to calculate overlaps between differentially
methylated regions with the different genomic features investigated, requiring a 50%
minimal overlap fraction. Promoters were defined as 1kb upstream and 1 kb
downstream of hgl9 RefGene gene transcription start sites (TSSs), unless stated
otherwise. The set of CpG Islands (CGIs) were defined using biologically-verified
CGIs®8. ChIP-seq peak sets were defined as above-described. For the pathway analysis
in Supplementary Fig. 2g, we used GREAT version 3.0.0°° to identify associated
biological themes, using default association rule (i.e., basal plus extension: 5000 bp
upstream, 1000 bp downstream; Hypergeometric test BH-FDR < 0.05).

Whole-exome DNA sequencing (WES). Genomic DNA from two IGHV mutated
and two IGHV unmutated CLL patient samples were used to produce whole-exome
libraries. Details of whole-exome library construction and analysis have been detailed
elsewhere3. Briefly, output from Illumina software (Illumina, San Diego, CA) was
processed by the Picard data processing pipeline to yield BAM files containing aligned
reads with well-calibrated quality scores. We used the ABSOLUTE algorithm® to
calculate tumor purity—the ratio of tumor cells to total cells in the sample—and
obtained a very high degree of purity (median of 0.98; range [0.9-1]), consistent with
a negligible contamination of non-malignant cells in our CLL samples.

Multiplexed single-cell RRBS (MscRRBS) library construction. Single cell
experiments were performed by sorting DAPI negative cells in 96-well plates in 3 pL
of 0.1x CutSmart buffer (New England Biolabs) per well using a BD Influx sorter
(Becton Dickinson, Franklin Lakes, NJ). Nucleated CLL cells were gated and index-
sorted as CD197CD5™ cells, which in CLL patients are overwhelmingly malignant®!
(295%). Plates were stored at —80 °C until further processing. The day of the
experiment, cells were lysed for 2h at 50 °C in 1x CutSmart buffer supplemented
with Proteinase K (0.2U, NEB) and Triton X-100 (0.3%, Sigma Aldrich) for a final
volume of 5 L. Proteinase K was heat-inactivated for 30 min at 75°C. DNA was
incubated with 10 units of the restriction enzyme Mspl (Fermentas) in 6.5 pL final
volume reaction during 90 min at 37 °C. Heat-inactivation was performed for 10
min at 70 °C. Digested DNA was filled-in and A-tailed at the 3’ sticky ends in 8.5 L
final volume of 1x CutSmart with 2.5 units of Klenow fragment (Exo-, Fermentas).
Reaction was supplemented with 1 mM dATP and 0.1 mM dCTP and 0.1 mM
dGTP (NEB) and performed as follows in a thermocycler: 30 °C for 25 min, 37 °C
for 25 min and heat-inactivation at 70 °C for 10 min. Custom barcoded methylated
adapters (0.1 uM) were then ligated overnight at 16 °C with the dA-tailed DNA
fragments in the presence of 800 units of T4 DNA ligase (NEB) and 1 mM ATP
(Roche) in a final volume of 11.5 uL of 1x CutSmart buffer. T4 DNA ligase heat-
inactivation was performed at 70 °C for 15 min the next day. Genomic DNA from
24 individual cells were pooled together according to their barcodes, giving, for a 96-
well plate, 4 pools of 24 cells. Pooled genomic DNA was cleaned-up and con-
centrated using 1.8x SPRI beads (Agencourt AMPure XP—Beckman Coulter). Each
pool was then sodium bisulfite converted (Fast Epitect Bisulfite, Qiagen) following
manufacture recommendations. To ensure full bisulfite conversion, two cycles of
conversion were performed. The double-stranded DNA was first denatured 10 min
at 98 °C and then incubated for 20 min at 60 °C. Hundred nanogram of depho-
sphorylated and sheared bacterial DNA was added as carrier to every pool prior to
conversion. Converted DNA was then amplified using primers containing Illumina
i7 and i5 index. Following Illumina pooling guidelines, a different i7 index was used
for every 24-cell pool, allowing multiplexing of 96 cells for sequencing on one
Ilumina HiSeq lane. Library enrichment was done using KAPA HiFi Uracil +
master mix (Kapa Biosystems) and the following PCR condition was used: 98 °C for
45 s; 6 cycles of: 98 °C for 20's, 58 °C for 30 s, 72 °C for 1 min; followed by 12 cycles
of: 98 °C for 205, 65 °C for 30s, 72 °C for 1 min. PCR was terminated by an
incubation at 72 °C for 5 min. Enriched libraries were cleaned-up and concentrated
using 1.3X SPRI beads. DNA fragments between 200 bp and 1 kb were size-selected
and recovered after resolving on a 3% NuSieve 3:1 agarose gel. Libraries molarity
concentration calculation was obtained by measuring concentration of double
stranded DNA (Qubit) and quantifying the average library size (bp) using an
Agilent Bioanalyzer. Every 24-cells pool was mixed with the others pool in an
equimolar ratio. All cells from a 96-well plate were sequenced as paired-end on
HiSeq 2500 with 10% PhiX spike-in. Negative controls (empty wells with no cell)
were used to control for non-specific amplification of the libraries.

MscRRBS read alignment. Each pool of 96 cells was first demultiplexed by Illu-
mina i7 barcodes (Supplementary Data 11), resulting in four pools of 24 cells. Each
pool of 24 cells was further demultiplexed by unique cell barcodes (Supplementary
Data 12). Reads were assigned to a given cell if they matched 80% of the template
adapters. Adapters and adapter reverse complements (6 bp) were trimmed from the
raw sequence reads. After adapter removal, reads were trimmed from their 3’ end
for read quality by applying a 4 bp sliding window and removing bases until the
mean base quality of the window had a Phred quality score greater than 15. Read

pairs with a read shorter than 36 bp after trimming were discarded. We aligned
trimmed reads in single-end mode to the hgl9 human genome assembly using
Bismark®? (v.0.14.5; parameters: -multicore 4 -X 1000 --un —ambiguous) running
on bowtie2-2.2.8 aligner®®. Bismark methylation extractor (--bedgraph --compre-
hensive) was used to determine the methylation state of each individual CpG. For
downstream analyses, a site was considered methylated or unmethylated only if
there was 90% agreement of the methylation state for all reads mapped to the site.

Joint MscRRBS and single-cell RNA-seq library construction. Single cells were
sorted by flow cytometry into 2.5 uL of RLT Plus buffer (Qiagen) supplemented with
1 U/uL of RNase Inhibitor (Lucigen). Sorted cells were immediately stored at —80 °C.
Genomic DNA (gDNA) and mRNA have been separated manually. A modified oligo-
dT primer (5'-biotin-triethyleneglycol-AAGCAGTGGTATCAACGCA-
GAGTACT30VN-3', where V is either A, C or G, and N is any base; IDT) was
conjugated to streptavidin-coupled magnetic beads (Dynabeads, Life Technologies)
according to the manufacturer’s instructions. To capture polyadenylated mRNA, we
added the conjugated beads (10 uL) directly to the cell lysate and incubated them for
20 min at room temperature with mixing to prevent the beads from settling. The
mRNA was then collected to the side of the well using a magnet, and the supernatant,
containing the gDNA, was transferred to a fresh plate. Single-cell complementary
DNA was amplified from the tubes containing the captured mRNA according to the
Smart-seq2 protocol®%. After amplification and purification using 0.8x SPRI beads,
0.5 ng cDNA was used for Nextera Tagmentation and library construction. Library
quality and quantity was respectively assessed using Agilent Bioanalyzer 2100 and
Qubit, respectively. Genomic DNA present in the pooled supernatant and wash buffer
from the mRNA isolation step was precipitated on 0.8x SPRI beads and eluted
directly into the reaction mixtures for Msp1 (Fermentas) enzymatic reaction (10 uL
final reaction). MscRRBS protocol was then performed on the digested gDNA after
the restriction enzyme digestion step.

Single-cell RNA-seq gene expression quantification. The sequenced read frag-
ments were mapped against the hgl9 human genome assembly using the 2pass
default mode of STAR? (version 2.5.2a) with the annotation of GENCODE®>
(version 19). The number of read counts overlapping with annotated genes were
quantified applying the “GeneCounts” option in the STAR alignment. We filtered
out poor quality cells when the detected number of genes was below 500 or the
fraction of mitochondrial gene counts was higher than 20%. To compare the cells
in terms of their transcriptional differences, we normalized the read counts by
scaling for the total number of counts per cell. To assess potential confounding
effect due to cell cycle phase, we classified CLL cells into cell cycle phases using
AUCell method implemented in the SCENIC analytical toolkit®. Briefly, AUCell
uses the area under the curve (AUC) to identify cells with active gene sets, by
calculating the proportion of genes in each input gene set that is enriched within
the expressed genes for each cell. Each cell is assigned an AUC score for each gene
set. Cells expressing many genes from the gene set will have higher AUC score than
cells expressing fewer. Last, the highest AUC threshold is used to consider a gene
set “active” in a given cell. The Molecular Signature Database®” (MSigDB; http://
www.broad.mit.edu/gsea/) C2 curated gene sets “BIOCARTA_G2_PATHWAY”
and “BIOCARTA_G1_PATHWAY” were used as input gene sets for this analysis.
We observed that the vast majority of cells are classified as being non-cycling cells
(n = 240; 99.6%), with a negligible number of cells being in either G2/M (n =1;
0.4%; AUC > 0.27) or G1 phase (n = 0; 0%; AUC > 0.18), consistent with the
majority of CLL cells being in a resting non-cycling state%s.

Single-cell DNAme-gene expression Ml analysis. To begin, cells with fewer than
500 detected genes or a proportion of mitochondrial or ribosomal reads above 20%
were removed from the analysis for quality control. Constitutively highly expressed
mitochondrial genes and genes encoding ribosomal proteins across all cells were then
removed. Then, cells in the bottom 10th percentile of total read counts for a given
sample were discarded, and each of the remaining cells was probabilistically down-
sampled to match the number of reads at this cutoff. Subsequently, genes with reads
detected in less than five cells were removed from the analysis. At single-cell reso-
lution, a gene’s promoter methylation rate was represented by the proportion of
methylated CpGs in the region 2500 base pairs upstream and downstream of the
transcription start site. Genes with less than 10 CpG observations in the promoter
region for a given cell were removed. We then computed the mutual information
between promoter methylation rate and gene expression for each cell using a
threshold of zero, implying that any detected methylation or expression for a given
gene was treated as having a value of 1 for that cell, and 0 otherwise. For a gene to be
included in the final analysis, it was required to have at least 10 cells with sufficient
CpG data for a methylation call (10 CpG observations) as well as greater than 10%
non-zero expression across all cells to mitigate the impact of dropout. The approach
was validated by a non-parametric premutation test, in which we randomly permuted
the cell methylation values for each gene while holding the corresponding expression
vector constant (such that RNA and DNAme are no longer linked at the single-cell
level) and computed an unmatched version of the mutual information. This was
repeated as many times as cells were available for a given gene, and the final
unmatched mutual information value provided corresponds to the median of the
result for each of these permutations. We note that the analysis for Fig. 3c was

| (2019)10:1874 | https://doi.org/10.1038/s41467-019-09645-5 | www.nature.com/naturecommunications 9


http://www.broad.mit.edu/gsea/
http://www.broad.mit.edu/gsea/
www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

performed with downsampling to create a balanced dataset by matching the number
of genes between CLL and normal B cells (1 =759 genes).

Gene set enrichment analysis. Gene set enrichment analysis was performed using
GSEA software, and Molecular Signature Database®” (MSigDB; http://www.broad.
mit.edu/gsea/). Specifically, we used the C2 curated gene sets and Benjamini-
Hochberg FDR adjusted P-value cut-off of 0.05.

Chromatin hidden Markov model (HMM). Chromatin states across the genome
were defined using EpicSeg®, which is based on a multivariate HMM, using
H3K4me3, H3K27ac, H3K27me3, whole cell extract, RNA-seq and DNAme (based
on bulk RRBS) datasets as input. ChIP-seq reads were shifted in the 5-3" direction by
100 bp. Reads counts were computed in 200 bp non-overlapping bins. Normalized
raw counts were then modeled with an HMM assuming that the hidden state vector
followed a negative binomial distribution. We trained several HMM models in parallel
mode with the number of states ranging from 5 states to 25 states and chose a 12-state
model as the best model that captures all the key interactions between the epigenetic
marks and cover all possible genomic elements (promoter, enhancer, gene body) that
we expected to resolve given the selection of datasets we used (H3K4me3, H3K27ac,
H3K27me3, RNA-seq, and DNAme). Genomic regions were then annotated with the
state with the maximum posterior probability in the 200 bp bin. State enrichment in
different genomic features was calculated dividing the percentage of nucleotides
occupied by a state in a particular genomic feature by the percentage of nucleotides
that this genomic feature represents in the entire genome.

Chromatin Dirichlet process Gaussian mixture model. Infinite mixture model
with the Dirichlet process was used to model the normalized signal count matrix
and to derive a segmentation of the chromatin tracks. The scikit-learn Python
library (sklearn.mixture.BayesianGaussianMixture v0.19) was used to generate an
independent model for each sample. Cross-validation for each sample was per-
formed training on a random 1/10 of the genome, applying the cross-validation
model to the sample and repeating this procedure 100 times. Subsequently, a leave-
one-out procedure was implemented to assess the contribution of each chromatin
and transcriptome track independently. Unsupervised hierarchical clustering of
state emission was performed to identify unique states.

Single-cell entropy analysis. To test for significance of association of chromatin
state status with expression heterogeneity in Figs. 3f and 4g, single cell RNA-seq read
counts observed in each cell were normalized by the effective library size and tran-
script length, and the fraction of positive cells (fpc) was calculated per gene (a cell is
defined as positive if > 0 reads aligned to the gene). Subsequently, Shannon’s infor-
mation entropy (ent) was calculated for each gene as followed:

ent = [71>< (fpc x log, (fpc) + (1 — fpc) x log, (1 — fpc))] (1)
The association with chromatin state status was tested using a generalized additive
model (implemented by gam R package). The following type of model was tested:

ent ~ s(population average expression) + chromatin state status

where s() indicates local regression. The population average expression values were
entered into the model on a log;, scale.

Statistical methods. Statistical analysis was performed with Python 2.7.13 and R
version 3.4.2. Categorical variables were compared using the Fisher’s Exact test.
Continuous variables were compared using the Mann-Whitney U-test, Welch’s ¢-
test, paired t-test, non-parametric permutation test or Kolmogorov-Smirnov test as
appropriate. P-values were adjusted for multiple comparisons by Benjamini-
Hochberg FDR procedure, as appropriate. All P-values are two-sided and con-
sidered significant at the 0.05 level unless otherwise noted.

Reporting summary. Further information on experimental design is available in
the Nature Research Reporting Summary linked to this article.

Data availability

ChIP-seq, RNA-seq, and DNAme datasets have been deposited to the NCBI Gene
Expression Omnibus’? (GEO) under accession number GSE119103. MscRRBS and
single-cell Smart-seq2 datasets have been deposited to the NCBI GEO under accession
number GSE109085. The dbGaP accession number for the whole-exome sequencing data
reported in this paper is phs000435.v2.p1. H3K27me3 ChIP-seq data for primary human
tonsillar naive B cells and tonsillar germinal center B cells were downloaded from NCBI
GEO under accession number GSE45982%0. Previously published CLL and normal B cell
ChIP-seq and RNA-seq datasets were downloaded from the Blueprint DCC portal under
accession number EGAC00001000135.

Received: 4 October 2018 Accepted: 22 March 2019
Published online: 23 April 2019

References

1.

10.

11.

12.

14.
15.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

Puente, X. S. et al. Whole-genome sequencing identifies recurrent mutations
in chronic lymphocytic leukaemia. Nature 475, 101-105 (2011).

Schuh, A. et al. Monitoring chronic lymphocytic leukemia progression by
whole genome sequencing reveals heterogeneous clonal evolution patterns.
Blood 120, 4191-4196 (2012).

Landau, D. A. et al. Evolution and impact of subclonal mutations in chronic
lymphocytic leukemia. Cell 152, 714-726 (2013).

Fabbri, G. et al. Genetic lesions associated with chronic lymphocytic leukemia
transformation to richter syndrome. J. Exp. Med. 210, 2273-2288 (2013).
Burger, J. A. et al. Clonal evolution in patients with chronic lymphocytic
leukaemia developing resistance to btk inhibition. Nat. Commun. 7, 11589
(2016).

Oakes, C. C. et al. Evolution of DNA methylation is linked to genetic aberrations
in chronic lymphocytic leukemia. Cancer Discov. 4, 348-361 (2014).

Kulis, M. et al. Epigenomic analysis detects widespread gene-body DNA
hypomethylation in chronic lymphocytic leukemia. Nat. Genet. 44, 1236-1242
(2012).

Oakes, C. C. et al. DNA methylation dynamics during b cell maturation
underlie a continuum of disease phenotypes in chronic lymphocytic leukemia.
Nat. Genet. 48, 253-264 (2016).

Landau, D. A. et al. Locally disordered methylation forms the basis of
intratumor methylome variation in chronic lymphocytic leukemia. Cancer Cell
26, 813-825 (2014).

Landan, G. et al. Epigenetic polymorphism and the stochastic formation of
differentially methylated regions in normal and cancerous tissues. Nat. Genet.
44, 1207-1214 (2012).

Flavahan, W. A., Gaskell, E. & Bernstein, B. E. Epigenetic plasticity and the
hallmarks of cancer. Science 357, eaal2380 (2017).

Liau, B. B. et al. Adaptive chromatin remodeling drives glioblastoma stem cell
plasticity and drug tolerance. Cell Stem Cell 20, 233-246 (2017).

Damle, R. N. et al. Ig V gene mutation status and CD38 expression as novel
prognostic indicators in chronic lymphoctyic leukemia. Blood 94, 1840-1847
(1999).

Pott, S. & Lieb, J. D. What are super-enhancers? Nat. Genet. 47, 8-12 (2014).
Wang, L. et al. Somatic mutation as a mechanism of wnt/B-catenin pathway
activation in cll. Blood 124, 1089-1098 (2014).

Robertson, L. E. et al. Bcl-2 expression in chronic lymphocytic leukemia and
its correlation with the induction of apoptosis and clinical outcome. Leukemia
10, 456-459 (1996).

Kosmaczewska, A. et al. Ctla-4 overexpression in cd19 +/cd5+ cells correlates
with the level of cell cycle regulators and disease progression in b-cll patients.
Leukemia 19, 301-304 (2004).

Adams, D. et al. Blueprint to decode the epigenetic signature written in blood.
Nat. Biotechnol. 30, 224-226 (2012).

Beekman, R. et al. The reference epigenome and regulatory chromatin
landscape of chronic lymphocytic leukemia. Nat. Med. 24, 868-880 (2018).
Gutierrez, A. J. et al. LEF-1 is a prosurvival factor in chronic lymphocytic
leukemia and is expressed in the preleukemic state of monoclonal B-cell
lymphocytosis. Blood 116, 2975-2983 (2010).

Qu, Y. et al. Cancer specific changes in DNA methylation reveal aberrant
silencing and activation of enhancers in leukemia. Blood 129, 13-25 (2016).
Ziller, M. J. et al. Targeted bisulfite sequencing of the dynamic DNA
methylome. Epigenet. Chromatin 9, 55 (2016).

Baylin, S. B. & Jones, P. A. A decade of exploring the cancer epigenome —
biological and translational implications. Nat. Rev. Cancer 11, 726-734 (2011).
Kulis, M. et al. Whole-genome fingerprint of the DNA methylome during
human b cell differentiation. Nat. Genet. 47, 746-756 (2015).

Berman, B. P. et al. Regions of focal DNA hypermethylation and long-range
hypomethylation in colorectal cancer coincide with nuclear lamina-associated
domains. Nat. Genet. 44, 40-46 (2012).

Timp, W. et al. Large hypomethylated blocks as a universal defining epigenetic
alteration in human solid tumors. Genome Med. 6, 61 (2014).

Vargova, K. et al. MYB transcriptionally regulates the miR-155 host gene in
chronic lymphocytic leukemia. Blood 117, 3816-3825 (2011).

Ernst, J. et al. Mapping and analysis of chromatin state dynamics in nine
human cell types. Nature 473, 43-49 (2011).

Lim, E. et al. Transcriptome analyses of mouse and human mammary cell
subpopulations reveal multiple conserved genes and pathways. Breast Cancer
Res. 12, R21 (2010).

Wong, D. J. et al. Module map of stem cell genes guides creation of epithelial
cancer stem cells. Cell Stem Cell 2, 333-344 (2008).

Timp, W. & Feinberg, A. P. Cancer as a dysregulated epigenome allowing
cellular growth advantage at the expense of the host. Nat. Rev. Cancer 13,
497-510 (2013).

Mu, P. et al. Sox2 promotes lineage plasticity and antiandrogen resistance in
tp53- and rbl-deficient prostate cancer. Science 355, 84-88 (2017).

10 | (2019)10:1874 | https://doi.org/10.1038/s41467-019-09645-5 | www.nature.com/naturecommunications


http://www.broad.mit.edu/gsea/
http://www.broad.mit.edu/gsea/
www.nature.com/naturecommunications

ARTICLE

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

Delgado, M. D. & Leon, J. Myc roles in hematopoiesis and leukemia. Genes
Cancer 1, 605-616 (2010).

Hoffmann, A. et al. Switch-like roles for Polycomb proteins from
neurodevelopment to neurodegeneration. Epigenomes 1, 21 (2017).
Reddington, J. P. et al. Redistribution of H3K27me3 upon DNA
hypomethylation results in de-repression of Polycomb target genes. Genome
Biol. 14, R25 (2013).

Gal-Yam, E. N. et al. Frequent switching of Polycomb repressive marks and
DNA hypomethylation in the PC3 prostate cancer cell line. PNAS USA 105,
12979-12984 (2008).

Rehimi, R. et al. Epigenomics-based identification of major cell identity
regulators within heterogeneous cell populations. Cell Rep. 17, 3062-3076
(2016).

Landau, D. A. et al. The evolutionary landscape of chronic lymphocytic leukemia
treated with ibrutinib targeted therapy. Nat. Commun. 8, 2185 (2017).
Landau, D. A. et al. Mutations driving cll and their evolution in progression
and relapse. Nature 526, 525-530 (2015).

Shaffer, S. M. et al. Rare cell variability and drug-induced reprogramming as a
mode of cancer drug resistance. Nature 546, 431-435 (2017).

Byrd, J. C. et al. Ibrutinib in relapsed chronic lymphocytic leukemia. N. Engl J.
Med. 369, 1278-1279 (2013).

Béguelin, W. et al. EZH?2 is required for germinal center formation and
somatic EZH2 mutations promote lymphoid transformation. Cancer Cell 23,
677-692 (2013).

Rassenti, L. Z. et al. Relative value of zap-70, cd38, and immunoglobulin
mutation status in predicting aggressive disease in chronic lymphocytic
leukemia. Blood 112, 1923-1930 (2008).

O’Geen, H. et al. in Epigenetics Protocols (ed. Tollefsbol, T. O.) 265-286
(Humana Press, Totowa, NJ, 2011).

Li, H. & Durbin, R. Fast and accurate short read alignment with
burrows-wheeler transform. Bioinformatics 25, 1754-1760 (2009).

Zhang, Y. et al. Model-based analysis of chip-seq (macs). Genome Biol. 9,
R137 (2008).

Heinz, S. et al. Simple combinations of lineage-determining transcription
factors prime cis-regulatory elements required for macrophage and b cell
identities. Mol. Cell 38, 576-589 (2010).

Ott, C. et al. Enhancer architecture and essential core regulatory circuitry of
chronic lymphocytic leukemia. Cancer Cell 6, 982-995.e7 (2018).

Love, M. L. et al. Moderated estimation of fold change and dispersion for
RNA-seq data with DESeq2. Genome. Biol. 15, 550 (2014).

Dobin, A. et al. Star: ultrafast universal rna-seq aligner. Bioinformatics 29,
15-21 (2013).

Patro, R. et al. Salmon provides fast and bias-aware quantification of transcript
expression. Nat. Methods 14, 417-419 (2017).

Li, H. et al. Mapping short DNA sequencing reads and calling variants using
mapping quality scores. Genome Res. 18, 1851-1858 (2008).

Xi, Y. & Li, W. Bsmap: whole genome bisulfite sequence mapping program.
BMC Bioinform. 10, 232 (2009).

Sun, D. et al. Moabs: model based analysis of bisulfite sequencing data.
Genome Biol. 15, R38 (2014).

Robinson, J. T. et al. Integrative genomics viewer. Nat. Biotechnol. 29, 24-26
(2011).

Akalin, A. et al. Methylkit: a comprehensive r package for the analysis of
genome-wide DNA methylation profiles. Genome Biol. 13, R87 (2012).
Quinlan, A. R. & Hall, I. M. Bedtools: a flexible suite of utilities for comparing
genomic features. Bioinformatics 26, 841-842 (2010).

Illingworth, R. S. et al. Orphan cpg islands identify numerous conserved
promoters in the mammalian genome. PLoS Genet. 6, 1001134 (2010).
McLean, C. Y. et al. Great improves functional interpretation of cis-regulatory
regions. Nat. Biotechnol. 28, 495-501 (2010).

Carter, S. L. et al. Absolute quantification of somatic DNA alterations in
human cancer. Nat. Biotechnol. 30, 413-421 (2012).

Hayes, G. M. et al. Isolation of malignant B cells from patients with chronic
lymphocytic leukemia (CLL) for analysis of cell proliferation: validation of a
simplified method suitable for multi-center clinical studies. Leuk. Res. 34,
809-815 (2010).

Krueger, F. & Andrews, S. R. Bismark: a flexible aligner and methylation caller
for bisulfite-seq applications. Bioinformatics 27, 1571-1572 (2011).
Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with bowtie 2. Nat.
Methods 9, 357-359 (2012).

Picelli, S. et al. Full-length rna-seq from single cells using smart-seq2. Nat.
Protoc. 9, 171-181 (2014).

65. Harrow, J. et al. Gencode: the reference human genome annotation for the
encode project. Genome Res. 22, 1760-1774 (2012).

66. Aibar, S. et al. SCENIC: single-cell regulatory network inference and
clustering. Nat. Methods 14, 1083-1086 (2017).

67. Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based
approach for interpreting genome-wide expression profiles. Proc. Natl Acad.
Sci. 102, 15545-15550 (2005).

68. Herndon, T. M. et al. Direct in vivo evidence for increased proliferation of
CLL cells in lymph nodes compared to bone marrow and peripheral blood.
Leukemia 31, 1340-1347 (2017).

69. Mammana, A. & Chung, H.-R. Chromatin segmentation based on a
probabilistic model for read counts explains a large portion of the epigenome.
Genome Biol. 16, 151 (2015).

70. Edgar, R. et al. Gene expression omnibus: Ncbi gene expression and
hybridization array data repository. Nucleic Acids Res. 30, 207-210 (2002).

Acknowledgements

‘We thank members of Landau and Abdel-Wahab labs for constructive discussion, and
the Integrated Genomics Operation (IGO) at Memorial Sloan Kettering and Epigenomics
Core Facility at Weill Cornell Medicine for technical help. A.P. is supported by Mildred-
Scheel Postdoctoral Research Fellowship of the Deutsche Krebshilfe e.V.. SX.L. is sup-
ported by an AACR fellowship. R.C. is supported by LRF and Marie Sklodowska-Curie
fellowships. A.G. is supported by Broad Institute SPARC funding. C.J.W. and O.A.-W.
are Scholars of the Leukemia and Lymphoma Society (LLS). D.A.L. is supported by the
Burroughs Wellcome Fund Career Award for Medical Scientists, ASH Scholar Award,
Pershing Square Sohn Prize for Young Investigators in Cancer Research, and NIH
Director’s New Innovator Award (DP2-CA239065). This work was also supported by the
Starr Foundation, the Max Planck Society, LLS Translational Research Program, National
Cancer Institute (R01-CA229902), and Stand Up To Cancer Innovative Research Grant
(SU2C-AACR-IRG-0616).

Author contributions

AP, FG, O.A.-W. and D.A.L. conceived and designed the project. SX.L, R.C, H.G.,
EKS., WB, Y], AA,]NA, RRF, and A.G. performed patient selection and prepared
samples for sequencing. R.C., H.G., A.G., and A.M. designed the joint single-cell RRBS
and RNAseq protocol. A.P., F.G., RM.B,, S.K,, KY.H, RS, and K.T.K performed the
computational genomics analyses. F.G., A.P., A.G, CJW.,, AMM., AM, BEB., O.A.--
W. and D.A.L. wrote the manuscript with comments and contributions from all authors.

Additional information
Supplementary Information accompanies this paper at https://doi.org/10.1038/s41467-
019-09645-5.

Competing interests: The authors declare no competing interests.

Reprints and permission information is available online at http://npg.nature.com/
reprintsandpermissions/

Journal peer review information: Nature Communications thanks the anonymous
reviewers for their contribution to the peer review of this work.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in

published maps and institutional affiliations.
Open Access This article is licensed under a Creative Commons
BY Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2019

| (2019)10:1874 | https://doi.org/10.1038/s41467-019-09645-5 | www.nature.com/naturecommunications 1


https://doi.org/10.1038/s41467-019-09645-5
https://doi.org/10.1038/s41467-019-09645-5
http://npg.nature.com/reprintsandpermissions/
http://npg.nature.com/reprintsandpermissions/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications
www.nature.com/naturecommunications

	Corrupted coordination of epigenetic modifications leads to diverging chromatin states and transcriptional heterogeneity in CLL
	Results
	Super-enhancer and associated DNAme alteration in CLL
	Decreased epigenetic-transcriptional coordination in CLL
	Corrupted coherence across layers of the CLL epigenome

	Discussion
	Methods
	Human subjects, sample collection, and genotyping
	Antibodies
	ChIP-seq and motif analysis
	RNA-seq
	Reduced representation bisulfite sequencing (RRBS)
	Targeted bisulfite sequencing capture assay
	Whole-exome DNA sequencing (WES)
	Multiplexed single-cell RRBS (MscRRBS) library construction
	MscRRBS read alignment
	Joint MscRRBS and single-cell RNA-seq library construction
	Single-cell RNA-seq gene expression quantification
	Single-cell DNAme-gene expression MI analysis
	Gene set enrichment analysis
	Chromatin hidden Markov model (HMM)
	Chromatin Dirichlet process Gaussian mixture model
	Single-cell entropy analysis
	Statistical methods
	Reporting summary

	References
	References
	Acknowledgements
	Author contributions
	Competing interests
	ACKNOWLEDGEMENTS




