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Abstract
Aim: Angolan Miombo woodlands, rich in timber species of the Leguminosae family, 
go through one of the highest rates of deforestation in sub-Saharan Africa. This study 
presents, on the basis of updated information of the distribution of Leguminosae tim-
ber species native to Angola, an integrated index framing the main threats for trees, 
which aims to support new conservation measures.
Location: Sub-Saharan Africa, Republic of Angola.
Methods: The current distribution areas of six Leguminosae timber species (i.e., Afzelia 
quanzensis, Brachystegia spiciformis, Guibourtia coleosperma, Isoberlinia angolensis, 
Julbernardia paniculata, and Pterocarpus angolensis) were predicted through ensemble 
modeling techniques. The level of threat to each species was analyzed, comparing the 
species potential distribution with a threat index map and with the protected areas. 
The threat index of anthropogenic and climatic factors encompasses the effects of 
population density, agriculture, proximity to roads, loss of tree cover, overexploitation, 
trends in wildfires, and predicted changes in temperature and precipitation.
Results: Our results revealed that about 0.5% of Angola's area is classified as of “Very 
high” threat, 23.9% as “High” threat, and 66.5% as “Moderate” threat. Three of the 
studied species require special conservation efforts, namely B. spiciformis and I. an-
golensis, which have a large fraction of predicted distribution in areas of high threat, 
and G. coleosperma since it has a restricted distribution area and is one of the most 
valuable species in international markets. The priority areas for the conservation of 
Leguminosae timber species were found in Benguela and Huíla.
Main conclusions: This study provides updated data that should be applied to inform 
policymakers, contributing to national conservation planning and protection of na-
tive flora in Angola. Moreover, it presents a methodological approach for the predic-
tions of species distribution and for the creation of a threat index map that can be 
applied in other poorly surveyed tropical regions.
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1  | INTRODUC TION

The livelihood of many people in developing countries depends on 
natural resources for subsistence and income. Trees are one of the 
most valuable resources, as sources of food, medicine, wood, fire-
wood, and charcoal (Djoudi et al., 2015).

In Angola, trees of the Leguminosae family, the most diverse 
plant family in the country, have been extensively exploited for dif-
ferent purposes (Catarino et  al.,  2019). They are among the most 
widespread species and are found mainly in Miombo woodlands, 
the dominant ecoregion in Angola and one of the major dry forest—
savannas of the world (Burgess et  al.,  2004; Maquia et  al.,  2019). 
Angola is one of the richest African countries in terms of biodiversity 
and endemism (Goyder & Gonçalves, 2019); however, it also has one 
of the highest rates of deforestation in sub-Saharan Africa (Hansen 
et al., 2003).

Timber species, and Angolan native flora in general, currently 
face many threats. Intensive wood harvest and illegal logging, wild-
fires, clearing lands for agriculture, urban expansion, and climate 
change were identified as the main threats (Catarino et al., 2019). At 
present, it is estimated that native forests occupy ca. 70 million hect-
ares, but only 2.4 million hectares are considered productive forests 
capable of producing commercially valuable timber within a reason-
able length of time (ACOM, 2019). Over the last years, the timber 
industry quickly increased, representing an important sector in the 
country's economy (Mendelsohn, 2019). However, the timber sector 
is still seen as a source of fast income and is dominated by “oppor-
tunistic companies” that do not manage the resource, but harvest it 
for quick profit (ACOM,  2019). Consequently, some native timber 
species are being heavily exploited by private companies without 
proper management and sustainable extraction plans (Chiteculo 
et al., 2018).

Angola is also one of the most vulnerable countries in sub-
Saharan Africa to climate change (Brooks et al., 2005). However, few 
data on the climate of Angola have been collected during the past 
four decades, due to the collapse of the network of weather stations 
maintained during the colonial times (Huntley, 2019). A recent study 
by Carvalho et al. (2017) provides the first analysis based on the cli-
mate change. Their study forecasts temperature changes of up to 
4.9℃ by the end of the 21st century, with high impact in southeast-
ern Angola. In contrast, they project a country-wide mean decrease 
in precipitation of <2% for the same time frame, but the strongest 
change is also predicted for the southeast, with a decrease of up 
to 4% by 2,100. These changes will probably cause more frequent 
droughts, with high impacts on agriculture, water resources, and fire 
regimes (Carvalho et al., 2017).

Although wildfires are an important ecological factor in Miombo 
woodlands, substantial changes in natural fire regimes could be ex-
tremely destructive for native flora (Mendelsohn,  2019). Fire fre-
quency has been increasing in recent years, and many anthropogenic 
fires have occurred in the late dry season, when the trees break dor-
mancy and are more susceptible to damage (Catarino et al., 2020). 

Fires are also used in agriculture, in the traditional slash-and-burn 
technique, which consists of cutting trees and woody plants from 
an area and then burning biomass to fertilize the soil with the ashes 
and clean the area for cultivation and grazing (Schneibel et al., 2016; 
USAID, 2008).

The rapid economic and human population growth in Angola will 
increase the development of urban areas and the pressure on natural 
resources, with negative consequences for biodiversity and natural 
ecosystems (USAID, 2008). Considering that the country has a low 
adaptive capacity (Brooks et al., 2005), the study of ecosystems and 
species vulnerability to anthropogenic threats and climate change is 
critical to support the planning and implementation of conservation 
measures (Fremout et al., 2020).

The sustainable use of native species requires a vast knowl-
edge of their life cycle and ecology, but the biodiversity of Angola 
remains poorly documented (Goyder & Gonçalves, 2019). Technical 
information on the exploited timber species is inexistent, and data 
on their distribution, ecology, and threats are very limited (Romeiras 
et al., 2014). In recent years, it has been possible to study the po-
tential distribution of biodiversity in poorly surveyed countries such 
as Angola, through the application of species distribution mod-
els (SDMs) (Hernandez et al., 2008) These models are useful tools 
for management and conservation planning, including biodiver-
sity assessment, reserve design, and habitat management (Sofaer 
et  al.,  2019). They are numerical techniques that extrapolate the 
potential species distribution in space and time, based on statisti-
cal models that find associations between environmental variables 
and species occurrences (Franklin, 2010). SDMs can perform well to 
characterize the natural distributions of species, particularly when 
relevant environmental variables are analyzed with an appropriate 
model (Elith & Leathwick, 2009).

In this study, we explored the level of threat to six Leguminosae 
timber species, based on their potential distribution in Angola es-
timated by an ensemble modeling approach. Legume species were 
selected as a case study because they are a good proxy for under-
standing conservation issues for useful plants as a whole. They 
belong to the largest plant family in Angola and have diversified 
into almost all terrestrial habitats, being a major component of the 
Miombo woodlands (Catarino et al., 2019; Olson et al., 2001). In ad-
dition, they improve soil fertility by fixing atmospheric nitrogen and 
are explored for a wide range of commercial applications, such as 
timber, charcoal, food, and medicinal products (Catarino et al., 2019).

The species potential distribution was compared with a threat 
index map composed of eight anthropogenic and climatic factors, 
and with the national network of protected areas. More specifically, 
we aimed to (a) provide new data on the distribution and conserva-
tion of the species studied; (b) analyze the spatial distribution of the 
main threats to native timber species of Angola, creating a threat 
map; (c) analyze the level of threat within the suitable area of occur-
rence of each species; and (d) investigate the adequacy and effec-
tiveness of the national protected areas network to safeguard some 
of the most exploited timber species of the Angolan Miombo.
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This study will provide updated information on the distribution 
and conservation of Angolan legume timber species and a geo-
graphic framing of the main threats for Angolan flora, which will 
be able to support new measures to ensure the preservation of the 
country's biodiversity. At the same time, we develop a methodologi-
cal approach to inform conservation and management decisions that 
can be applied in other poorly surveyed countries.

2  | MATERIAL S AND METHODS

2.1 | Study area

The study area corresponds to the Republic of Angola, located be-
tween 05°50′S and 18°02′S and 11°41′E and 24°05′E, excluding the 
northern enclave of Cabinda (Figure S1). The elevation, topography, 
river basins, proximity to the sea, and the cold current of Benguela 
have a strong influence on Angola's climate (Le Houérou,  2009). 
Average annual rainfall decreases from north to south and in-
creases with altitude and distance from the ocean, ranging from ca. 
50 mm in the Namib Desert to more than 1,500 mm in Lunda Norte 
(Huntley, 2019) The most representative ecoregion is the Angolan 
Miombo woodlands, with ca. 620,000 km2, occupying more than 
half of the country's area (Maquia et al., 2019).

Currently, the national protected areas’ network includes 
14 terrestrial protected areas. Their geographic boundaries 
were obtained as GIS shapefiles from the World Database of 
Protected Areas (WDPA,  2020). The most recent protected 
areas are unavailable in WDPA and were vectorized based on the 
Angolan legislation (Diário da República de Angola, Law 38/11 
on 29 December, 2011, p. 6340) using QGIS v.3.4.4 (QGIS & 
Development Team, 2020).

2.2 | Species distribution modeling

2.2.1 | Leguminosae species data

As a case study, we selected timber species from the Leguminosae 
family highly exploited in Angola and widespread in Miombo wood-
lands, namely Afzelia quanzensis Welw., Brachystegia spiciformis 
Benth., Guibourtia coleosperma (Benth.) J. Léonard, Isoberlinia an-
golensis (Welw. ex Benth.) Hoyle & Brenan, Julbernardia paniculata 
(Benth.) Troupin, and Pterocarpus angolensis DC (Figure 1, Table 1). 
Data on taxonomy, native distribution, main uses, and trade of each 
species were collected from recent studies focused on Angola flora 
(Catarino et  al.,  2019; Sanfilippo,  2013) and international data-
bases [e.g., International Legume Database and Information Service 
(ILDIS, 2020), Plant Resources of Tropical Africa (PROTA, 2020), and 
Plants of the World Online (POWO, 2020)].

All of the studied species are native to southern Africa, but 
G. coleosperma is of special concern since it has the most restricted 
distribution, mainly in Angola. From the bibliographic review 
(Catarino et al., 2019; PROTA, 2020; Sanfilippo, 2013), we observed 
that the selected species have several other uses besides timber 
production. For instance, A. quanzensis is used as forage and med-
icine for a wide range of health conditions; G. coleosperma has ed-
ible fruits and seeds, and its bark is a valuable treatment for skin 
diseases; and P. angolensis has several applications in medicine and 
the heartwood of its roots is used to produce a brownish-red dye of 
great importance for tribal communities (Ndembu people in Angola). 
Charcoal production is another significant cause of overexploitation, 
especially for A. quanzensis, B. spiciformis, I. angolensis, and J. panicu-
lata. P. angolensis and G. coleosperma are the most valuable species, 
mainly sold in international markets for construction, carpentry, and 
shipbuilding.

F I G U R E  1   Leguminosae timber 
species highly exploited in Angola: (a) 
Afzelia quanzensis Welw.; (b) Brachystegia 
spiciformis Benth.; (c) Guibourtia 
coleosperma (Benth.) J. Léonard; and (d) 
Pterocarpus angolensis DC. Photographs 
by Luis Catarino
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The occurrence records were gathered from GBIF—Global 
Biodiversity Information Facility (GBIF.org, 2020a, 2020b, 2020c, 
2020d, 2020e, 2020f) and Santos (1982). Despite their limitations, 
the use of these data is justified by the lack of systematic field 
survey research (Elith & Leathwick,  2009). We downloaded the 
occurrence data recorded in all countries of sub-Saharan Africa 
to improve the quality of the datasets and improve the contex-
tual information for the models. Duplicated records (i.e., records 
with the same collector and the same collection number) were de-
leted, and the remaining records were analyzed in terms of qual-
ity and accuracy. For African countries except Angola, we only 
downloaded occurrence records with geographic coordinates, 
these records were projected on the map using Google Earth Pro 
7.3.2.5491 (Serea, 2018), and it was checked whether the descrip-
tion of the collection site corresponded to the location projected 
on the map. When the points were more than 5  km away from 
the described location, they were excluded from the dataset. 
The occurrence data available for Angola are particularly scarce; 
thus, all the records collected in the country were downloaded 
and individually georeferenced, based on locality description and 
following the georeferencing protocol Guide to Best Practices for 
Georeferencing (Chapman & Wieczorek, 2006). Only records with 
less than 5 km of spatial uncertainty, determined as per the proto-
col, were included in the SDM.

As recommended by several studies (Araújo et al., 2019; Boria 
et al., 2014), we applied a 5-km spatial filter to decrease sampling 
bias, reducing overfitting and increasing the models’ performance. 
This filtering method ensures that only one presence record is re-
tained per 5 × 5 km grid cell, keeping the highest possible number 
of localities.

The final dataset, including 1,103 occurrence records 
[A.  quanzensis (n  =  172), B.  spiciformis (n  =  370), G.  coleosperma 
(n = 112), I. angolensis (n = 79), J. aniculata (n = 143), and P. angolensis 
(n = 227) (Figure S2)], fulfilled the quality criteria proposed by Araújo 
et al. (2019) to model species distribution.

2.2.2 | Environmental variables

Based on previous studies and the expert knowledge of the species’ 
habitat and biology, we selected 25 ecological variables as possi-
ble predictors to fit the models, including 19 bioclimatic variables 
(Fick & Hijmans,  2017; Hijmans et  al.,  2005; WorldClim,  2020a), 
two solar radiation variables (Fick & Hijmans,  2017), three vari-
ables characterizing soil (Hengl et al., 2015), and elevation (Jarvis 
et al., 2008).

According to Burke,  2006) and Jinga and Ashley (2019), the 
bioclimatic variables derived from the monthly temperature and 
rainfall values have an important contribution in controlling the 
distribution of the studied species in Africa. Solar radiation is also 
known to play an important role in the distribution of most plant 
species and communities, mainly through photosynthetic activity. 
According to Austin and Van Niel (2011) and Piedallu and Gégout 

(2008), this factor is a necessary component of plant SDMs. 
Bioclimatic variables and mean solar radiation were downloaded 
from WorldClim 2.0 (WorldClim,  2020a) at a resolution of 2.5 
arc minutes (ca. 5 km), as the mean of the years 1970–2000. This 
time frame is consistent with our dataset of occurrence records 
and is adequate for the studied species considering their long life 
span. Daily mean solar radiation data (kJ.m−2 day-1) are available as 
monthly data, so we selected February (the month with the lowest 
values) and July (the month with the highest values) as potential 
predictors.

The distribution of the studied species is strongly associated 
with the Miombo woodlands, with highly leached, well-drained, 
and usually acidic soils with a low organic matter content, and 
this ecoregion presents very specific edaphic conditions (Burgess 
et al., 2004). Thus, soil pH in H2O, and total nitrogen (N), and total 
phosphorus (P) contents of the soil fine earth were included as 
possible predictors for species distribution models. Recent studies 
(Buri et al., 2020; Dubuis et al., 2013) have shown that the geo-
chemical variables of the soil significantly increased the predic-
tive power of plant SDMs, and among the edaphic variables, pH 
and nitrogen content showed the highest effect. Soil data were 
downloaded from World Soil Information at a resolution of 250 m 
(ISRIC, 2020).

The elevation is also an important factor for the distribution of 
plant species in Angola, ranging between sea level and 2,620 m in 
the high mountains, and the omission of this factor would result in 
overpredictions of species suitable area (Oke & Thompson, 2015). 
Elevation data were downloaded from CGIAR-CSI Consortium for 
Spatial Information (CGIAR-CSI, 2020) at a resolution of 90 m. All 
environmental data layers were resampled to a spatial resolution of 
5 km.

First, to avoid overweighting the analysis with bioclimatic vari-
ables, we performed an exploratory modeling exercise to inves-
tigate which ones were more suitable contributors to the SDM 
for each species. After 10 runs of each model technique, we used 
the “variables_importance” function to select the three variables 
related to temperature and the three variables related to precip-
itation that most contributed to the distribution model. Then, 
the variance inflation factor (VIF) (García et al., 2015; Mansfield 
& Helms,  1982) was used to assess and reduce multicollinear-
ity between the remaining predictors, using R version 3.6.0. (R 
Development Core Team, 2020) and “usdm” package (Uncertainty 
Analysis for SDMs) version 1.1–18 (Naimi et  al., 2014). The vari-
able with the higher VIF value was rejected, and new scores were 
calculated until all the predictor variables scored lower than 10 
(Neter et al., 1996). Table 2 presents the initial set of variables and 
the selected predictors.

2.2.3 | Species distribution modeling

The potential distribution of each species was predicted through 
an ensemble modeling approach performed with the “biomod2” 
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TA B L E  2   General description of environmental variables tested to build the species’ distribution models. The variables marked with “X” 
were selected to build the models of a specific species, after applying the variance inflation factor (VIF) to reduce collinearity

Environmental Variables Code

Summary of variablesa  Variables selected by speciesb 

Mean Min Q1 Median Q3 Max AQ BS GC IA JP PA

Annual mean temperature (°C) BIO1 21.6 15.3 20.5 21.4 22.6 28.0 X

Mean diurnal range [mean 
of monthly (max temp - min 
temp)] (°C)

BIO2 14.2 5.9 13.2 14.6 16.0 18.6 X X

Isothermality (BIO2/BIO7) (* 
100) (°C)

BIO3 6.7 4.7 6.3 6.6 7.0 8.4 X X X X

Temperature seasonality 
(standard deviation *100)

BIO4 186.2 28.5 121.1 182.3 254.9 355.6

Max temperature of warmest 
month (°C)

BIO5 31.1 22.5 29.9 31.0 32.2 35.3 X X

Min temperature of coldest 
month (°C)

BIO6 9.5 3.8 6.3 8.4 12.3 20.4 X

Temperature annual range 
(BIO5-BIO6) (°C)

BIO7 21.6 12.5 17.6 21.9 25.8 28.9 X

Mean temperature of wettest 
quarter (°C)

BIO8 22.7 16.3 21.3 22.4 23.9 28.6 X

Mean temperature of driest 
quarter (°C)

BIO9 18.8 12.7 17.0 18.2 20.6 24.9

Mean temperature of warmest 
quarter (°C)

BIO10 23.3 16.7 22.0 23.0 24.5 29.9 X

Mean temperature of coldest 
quarter (°C)

BIO11 18.8 12.5 16.9 18.1 20.5 24.9

Annual precipitation (mm) BIO12 1,020.2 21 751 1,092 1,296 1636

Precipitation of wettest month 
(mm)

BIO13 202.3 14 184 211 228 300 X X

Precipitation of driest month 
(mm)

BIO14 0.5 0 0 0 0 17

Precipitation seasonality 
(coefficient of variation) (mm)

BIO15 94.9 63 82 94 108 144 X X X

Precipitation of wettest 
quarter (mm)

BIO16 523.3 17 451 551 618 770 X X X

Precipitation of driest quarter 
(mm)

BIO17 4.4 0 0 1 4 56

Precipitation of warmest 
quarter (mm)

BIO18 311.2 26 219 288 390 624 X X X

Precipitation of coldest 
quarter (mm)

BIO19 10.6 0 2 4 13 668 X X

Elevation above sea level (m) Elevation 1,077.1 0 963 1,139 1,289 2,318 X X X

Soil pH in H2O pH 5.8 4.6 5.4 5.6 6.0 9.1 X X X X X

Total nitrogen (N) content of 
the soil fine earth fraction in 
mg/kg (ppm)

Nutri_N 725.4 156 532 683 867 3,019 X X X X X X

Total phosphorus (P) content 
of the soil fine earth fraction 
in mg/kg (ppm)

Nutri_P 318.9 14 224 282 363 2,613 X X X X X X

Mean daily solar radiation in 
February (kJ.m−2 day−1)

Radia_02 17,151.4 13,786 15,461 16,773 18,770 21,298 X X X X X X

Mean daily solar radiation in 
July (kJ.m−2 day−1)

Radia_07 16,583.3 9,851 16,108 17,312 17,683 18,453 X X X X

aSummary of variables: Min, minimum; Max, maximum; Q1, first quartile; Q3, third quartile.
bSpecies: AQ, Afzelia quanzensis; BS, Brachystegia spiciformis; GC, Guibourtia coleosperma; IA, Isoberlinia angolensis; JP, Julbernardia paniculata; and PA, 
Pterocarpus angolensis.
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package (BIOdiversity MODelling-Biomod2) version 3.3-7.1 (Thuiller 
et al., 2020), implemented in R version 3.6.0 (R Development Core 
Team,  2020). Biomod2 is a computer platform for ensemble fore-
casting of species distributions, which allows maximizing the pre-
dictive accuracy of SDMs by combining different modeling methods 
(Araújo & New, 2007; Hao et al., 2019). We fitted the SDMs using 
an ensemble of five different modeling algorithms: two regression 
techniques, namely generalized linear models (GLMs) and multivari-
ate adaptive regression splines (MARS); and three machine learning 
methods: generalized boosted models (GBMs), random forest (RF), 
and MaxEnt (detailed description of the model techniques in Elith 
et al., 2011; Franklin, 2010; Phillips et al., 2006). We selected these 
algorithms based on their superior performance during an explora-
tory modeling exercise.

All the selected modeling techniques require records of pres-
ence and absence, except MaxEnt, which is a presence background 
modeling tool. As our data are presence-only, we generated three 
different sets of pseudo-absences, where one-third of the avail-
able background modeling cells were randomly sampled and used 
as pseudo-absences, following the recommendations of Elith 
et al. (2006). The models were processed with the default settings 
for each modeling technique and the following options: equal weight 
of background absences and occurrences; 10,000 maximum inter-
actions; 100 replicate runs for each set of “pseudo-absences” and 
for each model technique; the occurrence data were randomly split 
into 70% training data and 30% test data to evaluate the predictive 
performance of the models; and 10 permutations to estimate vari-
able importance. For each species were produced 1,500 individual 
models. Following the recommendations of Zurell et al. (2020), we 
present the ODMAP protocol with details of the modeling process 
in Data S1.

2.2.4 | Model evaluation

To evaluate model accuracies, we calculated the area under the 
curve (AUC) of the receiver operating characteristic (ROC) and the 
true skill statistic (TSS) using “models.eval.meth” function. The ROC 
curve is a threshold-independent measure, which allows assessment 
of the predictive performance of the models by plotting sensitivity 
as a function of commission error (calculated as 1-specificity), and 
AUC measures the area under this curve, relating the proportions 
of true positives (correctly classified cells) and false positives (in-
correctly classified cells) over a continuous range of threshold lev-
els (Peterson et al., 2008). AUC values range from 0.5 to 1, where 
values lower than 0.7 are considered low, between 0.7 and 0.9 are 
good, and higher than 0.9 are excellent (Manel et al., 2001). The TSS 
is a threshold-dependent evaluation metric that assesses the ability 
of a model to correctly classify presences and absences (calculated 
as sensitivity +specificity - 1), where sensitivity and specificity are 
calculated based on a defined threshold and are independent of spe-
cies prevalence (Allouche et  al.,  2006). TSS ranges from −1 to +1, 
where zero or less indicate a performance no better than random, 

and values above 0.4 indicate a statistically reliable performance 
(Allouche et al., 2006).

The importance of variables was calculated using the “variables_
importance” function that shuffles a single variable of the given 
dataset. It computes a correlation of the model predictions obtained 
with the initial dataset and with the shuffled dataset, and returns a 
result ranging from 0 to 1 (Thuiller et al., 2020). Higher values in-
dicate stronger contribution of the variable to the model, and the 
value 0 indicates variable irrelevance.

2.2.5 | Ensemble models

The main advantage of ensemble methods is to reduce the produc-
tion by the techniques with low predictive performance (Araújo & 
New,  2007). Only single models with AUC ≥0.7 were included in 
uncertainty of predictive single models by combining them and ex-
cluding the results ensemble model building. We chose the “mean” 
consensus method, as it is reported to provide significantly more 
robust predictions than the other consensus methods (Marmion 
et al., 2009). Finally, the predictive performances of ensemble mod-
els were evaluated with AUC and TSS metrics.

The continuous probability maps obtained were converted to 
binary maps of species presence and absence. Each pixel with a 
continuous value between 0 and 1 was reclassified into binary data 
by applying the 10th percentile threshold to define the suitable and 
unsuitable habitats. This threshold is widely used in species distribu-
tion modeling (Vale et al., 2014).

2.3 | Map of threat index

The threat index map was created by combining different factors 
occurring in Angola. This approach was adapted from the terrestrial 
Human Footprint map proposed by Venter et  al.  (2016), following 
the methods originally developed by Sanderson et  al.  (2002). We 
included the same anthropogenic factors as the Human Footprint 
map, except those that have low relevance for the studied species or 
lack of data for Angola. Additionally, other factors related to defor-
estation and climate changes were included considering their high 
impact on timber species conservation. The final threat map includes 
eight factors for which we could assemble a national coverage, that 
is, population density, cropland areas, roads, overexploitation, loss of 
tree cover, increasing trends in burned area, and expected changes 
in temperature and precipitation.

Each threat layer was classified individually, the layers of popula-
tion density and expected changes in temperature and precipitation 
were classified with a continuous scale, and the map cells can as-
sume any value between 0 and 10, with a weighted value according 
to the intensity of the threat. The other layers were classified with 
discrete values, assuming the value of 0 when the threat is absent 
in the cell and the value of 10 when the threat is present (for more 
details, see Table 3).
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Using the Quantum GIS 3.4 (QGIS Development Team,  2020), 
the selected factors were converted in raster files, resampled to 5x5 
km spatial resolution by selecting the method of “Mean Value - cell 
area weighted,” and rescaled with values from 0 to 10 in each cell 
of the grid layer. The resulting standardized factors were summed 
to create an exposure map. For any grid cell, the threat index could 
range from 0 (no threats) to 80 (maximum threats) and was catego-
rized into four quantiles: “Low” (<20); “Moderate” (20–40); “High” 
(40–60); and “Very high” (>60).

Urban areas, obtained from the European Space Agency–Climate 
Change Initiative Land Cover (ESA-CCI-LC) project (ESA,  2020), 
were not included as a threat factor. These areas were excluded 
from species distribution maps and threat index map because they 
completely prevent the growth of natural vegetation.

Considering that the classification of threat layers was based 
on literature and expert opinion, we conducted a sensitivity analy-
sis adapted from Fremout et al. (2020) to measure the effect of our 
methodological decisions on results. For this purpose, we created a 
“highest threat” map and a “lowest threat” map, with different values 
for each threat variable. The highest threat represents a scenario in 
which the threat threshold for the several factors is more restrict 
(lower) to the reference situation, and the lowest threat otherwise. 
These two maps were then compared with the reference map and 
provide a spatial indication of the variation of the impact that these 
factors have on the threat for timber species.

2.3.1 | Population density

Population density is used as a proxy for the pressure that human 
beings exert on the environment where they live. This factor was 
mapped based on the most recent census conducted in Angola 
(INE,  2014), which includes data at the municipality level. For the 

reference threat map, we assumed that the pressure induced by peo-
ple increases logarithmically with increasing population density and 
saturates at a level of 1,000 people per km2, as suggested by Venter 
et al. (2016). The value of each cell was calculated on a logarithmic 
scale up to a maximum of 10, where pressure = 3.333 × log (popula-
tion density + 1).

The saturation levels were adapted in the maps created for the 
sensitivity analysis. In the “highest threat” map, we assumed that 
the pressure saturates at a level of 800 people per km2 and the 
value of each cell was calculated as follows: pressure = 3.247 × log 
(population density + 1). In the “lowest threat” map, we assumed 
that the pressure saturates at a level of 1,200 people per km2 
and was calculated as follows: pressure =3.444 × log (population 
density + 1).

2.3.2 | Cropland areas

We map cropland areas using recent land cover data (2018) obtained 
from the ESA-CCI-LC project (ESA, 2020), which produced annual 
land cover maps at 300-m resolution, combining remote sensing 
products and ground observations. In the reference map, cells with 
≥20% crop cover were classified with a value of 10. In the “highest 
threat” map, the value 10 was assigned to cells with ≥15% crop cover 
to increase the area of maximum threat and, in the “lowest threat” 
map, the value 10 was assigned only to cells with ≥25% crop cover to 
reduce the area of maximum threat.

2.3.3 | Distance from roads

Roads are important drivers of habitat conversion and fragmen-
tation, reducing the extent of suitable habitats, increasing fire 

TA B L E  3   Summary of the eight individual factors used to build an index of threat

Threat factors Years Score Details—reference threat value Data source

Population density 2014 0–10 (continuous) Cell value = 0.333 × log (population density +1) INE (2014)

Cropland areas 2018 0 or 10 Cells with 20% or more covered by crops have the value 1. ESA (2020)

Distance from roads 2018 0 or 10 Cells that buffer the primary and secondary roads up to a 
distance of 20 km have the value 1.

WFP (2018)

Overexploitation 2017 0 or 10 When the value of extraction licensed is higher than the 
adequate value of harvesting, the province has a value of 1.

ACOM (2020)

Tree cover loss 2000–
2019

0 or 10 Cells with 20% or more of loss in the past 20 have a value of 1. Global Forest Watch 
(2020)

Increasing trends in 
burned area

2001–
2020

0 or 10 The significant areas of increasing trends of burned area and a 
buffer of 5 km have the value of 1.

Catarino et al. (2020)

Climatic changes in 
temperature

2041–
2060

0–10 (continuous) The value of each cell range increases linearly with the 
amplitude of changes, reaching the value of 1 when the 
temperature changes by 2℃ or more.

CMIP6 projections 
available on 
WorldClim (2020b)

Climatic changes in 
precipitation

2041–
2060

0–10 (continuous) The value of each cell range increases linearly with the 
amplitude of changes, reaching the value of 1 when the 
precipitation changes by 200 mm or more.

CMIP6 projections 
available on 
WorldClim (2020b)
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frequency, and providing easy access for humans. According to 
Oliveira et  al.  (2007), 75% of the total forest loss was detected 
at 20 km or less from the road. We obtained the map of the main 
roads from OpenStreetMap roads for the World Food Program 
(WFP,  2018). On the reference map, the grid cells that buffer the 
primary and secondary roads up to a distance of 20  km have the 
value 10; on the “highest threat” map, the buffer has 25 km; and on 
the “lowest threat” map, the buffer has 15 km.

2.3.4 | Overexploitation

The overexploitation layer was obtained by comparing the mean vol-
ume of extraction licensed in each province between 2015 and 2017, 
and the adequate value of harvesting estimated by the Angolan 
Institute of Forest Development, taking into account the species and 
their life span in each province (ACOM, 2020). When the value of the 
licensed extraction was higher than the adequate value of harvest-
ing, the province was assigned a value of 10 in the reference threat 
index map. On the “highest threat” and the “lowest threat” maps, the 
province received a value of 10 when the licensed extraction was 
higher than the adequate value of harvesting minus 10% and plus 
10%, respectively.

2.3.5 | Tree cover loss over the last 20 years

The identification of areas with a recent loss of forest cover allows 
to predict the future trend of forest cover and can give an overview 
of how deforestation will occur (Saha et al., 2020). The loss of tree 
cover was gathered from Global Forest Watch (2020), which in-
cludes the forest loss for the years 2000 to 2019. Cells with ≥20% of 
loss reported in their area over the past 20 years were assigned the 
value of 10. On the “highest threat” map and “lowest threat” map, 
cells with a ≥15% and ≥25% loss (respectively) were assigned the 
value of 10.

The inclusion of this factor may represent some redundancy 
with other layers considered in the index, namely cropland areas, 
and overexploitation.

2.3.6 | Increasing trends of burned area

The increasing trends of burned area are strongly related to 
changes in fire regimes. This factor is based on the mapping of the 
positive trend of the area burned annually in Angola, analyzed be-
tween 2001 and 2019 (for more details, see Catarino et al., 2020). 
On the reference map, the significant areas of increasing trends 
of burned area (at a 95% confidence level) and a 5-km buffer were 
classified as 10. On the “highest threat” map, we classified the 
areas of increasing trends and a buffer of 10 km, while the “lowest 
threat” map only includes the areas of increasing trends without 
a buffer area.

2.3.7 | Predicted climatic changes: temperature and 
precipitation

Climate change is expected to increase persistent droughts, heat 
stress, and insect attacks, associated with an increase in tempera-
ture and a decrease in precipitation, which are responsible for sub-
stantial tree mortality and damaging effects on forest ecosystems 
(Anderegg et al., 2015). However, the increase in precipitation can 
also increase the annual burned area, increasing the vegetation pro-
ductivity and, consequently, the fuel available for burning (Andela & 
Werf, 2014).

The predicted changes in annual temperature and precipitation for 
2041–2060 were obtained from the Coupled Model Intercomparison 
Project 6 (CMIP6) downscaling the future climate projections, avail-
able at the WorldClim data website (WorldClim, 2020b). We selected 
the data from Shared Socio-economic Pathways 3-70 (SSP 3-70) be-
cause it is in the middle of the range of baseline results produced by 
energy system models.

The future annual temperature and precipitation were calcu-
lated as the mean values of the climate models BCC-CSM2-MR, 
CNRM-CM6-1, CNRM-ESM2-1, CanESM5, IPSL-CM6A-LR, MIROC-
ES2L, MIROC6, and MRI-ESM2-0, fully available in the WorldClim 
(WorldClim,  2020b) for the years 2041–2060. The amplitude of 
changes was obtained by subtracting the value of current tempera-
tures and precipitation from future values. Finally, we assumed that 
the pressure induced by climate changes is proportional and in-
creases linearly with the increasing amplitude of changes.

In the temperature layer, the value of each cell ranges from 0 
to 10, according to the amplitude of the change, reaching the value 
of 10 when the temperature changes by 2℃ or more. In this case, 
the cells’ values were calculated as follows: pressure = |amplitude 
of change| / 2 × 10. In the “highest threat” map and “lowest threat” 
map, we assigned the value 10 to amplitudes ≥1.5℃ and ≥2.5℃, 
respectively.

Similarly, the pressure of precipitation change increases from 0 
to 10 up to a maximum of 200 mm; thus, the cells’ values were calcu-
lated as follows: pressure = |amplitude of change| / 200 × 10. In the 
“highest threat” and “lowest threat” maps, the value 10 corresponds 
to amplitudes ≥150 mm and ≥250mm, respectively.

3  | RESULTS

3.1 | Species distribution models

The evaluation of SDMs was based on TSS and AUC values. The 
mean AUC values of the individual modeling algorithms ranged from 
0.663 to 0.867, and mean TSS values ranged from 0.292 to 0.621. 
The GBM and RF algorithms had the best evaluations, while the 
GLM and MaxEnt algorithms presented the poorest performances, 
in general (Table S1 and Figure S3). The ensemble models were the 
most accurate for the studied species, as compared with the indi-
vidual modeling algorithms. Ensemble models showed excellent 
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predictive performances, with mean AUC values between 0.889 and 
0.945 and mean TSS values between 0.643 and 0.805 (Figure 2). The 
importance of environmental predictors varied with the species, but 
solar radiation in February was one of the most important explana-
tory variables for five of them (more details in Figure S4).

Figure  3 shows the overlay map for the predicted species dis-
tribution, resulting from the sum of all individual binary maps (pre-
sented in Figure  S5). The highest number of species is found in 
central and western provinces, mainly associated with the region 
of Miombo woodlands. Benguela, Cuanza Sul, Huambo, Huíla, Bié, 
and Cuando Cubango are the most suitable provinces for the studied 
species, in general. These provinces have large areas suitable for the 
simultaneous occurrence of the five species. The northern provinces 
are the least suitable areas.

3.2 | Threat index map

The values of the threat index ranged between 7.2 and 73.6 across 
the country. Based on the index values, the cells were classified into 
four categories, from “Low” to “Very High.” Figure 4 shows the esti-
mated level of threat in each cell of 25 km2. The central regions stand 
out for the high concentration of cells classified as “High” and “Very 
high” threat level, and correspond to the provinces of Benguela, Bié, 
Cuanza Sul, Huambo, Huíla, and Moxico.

In terms of threat level, about 0.5% (ca. 6,820 km2) of the country 
was classified as “Very high,” 23.9% (ca. 295,100 km2) as “High,” 66.5% 
(ca. 827,290 km2) as “Moderate,” and 9.1% (ca. 112,360 km2) as “Low.” 
Most of the protected areas (90.6%) correspond to a “Moderate” level 
of threat, and no cell of "Very High" level was found in these areas.

F I G U R E  2   Evaluation of the species 
ensemble models (mean values) by the 
area under the curve (AUC) of the receiver 
operating characteristic and the true skill 
statistic (TSS)

F I G U R E  3   Overlay map of the 
predicted species distribution, resulting 
from summing all individual binary maps. 
Protected areas: BI, Bicuar; BU, Bufalo; 
KA, Cangandala; CM, Chimalavera; IO, 
Iona; IP, Ilheu dos Pássaros; KM, Cameia; 
KI, Quiçama; LL, Luengue-Luiana; LU, 
Luando; MV, Mavinga; MU, Mupa; NA, 
Namibe
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The sensitivity analysis showed that the threat index map was rel-
atively sensitive to the methodological decisions to create the layers 
of threat. Comparing the “highest threat” map with the reference map, 
13.9% of the grid cells changed from one level of threat to another, 
1.5% decreased the level, and 12.3% increased. On the “lowest threat” 
map, 21.8% of the grid cells changed their level, 1.4% increased, and 
19.6% decreased, as compared with the reference map (Figure S6).

3.3 | Threat level and conservation of Leguminosae 
timber species

The six species studied show different patterns of distribution in 
Angola, resulting in different levels of threat (Figure 5a-f, Table S2). 
Brachystegia spiciformis and I.  angolensis stand out for their larg-
est fraction of suitable area of occurrence in areas of high threat. 
Brachystegia spiciformis (Figure 5b) has almost 47% of its distribution 
in areas of “High” and “Very high” levels of threat, and only 4.2% of 
its total area is under protection. I. angolensis (Figure 5d) has about 
50% of its predicted distribution area under “High” and “Very high” 
levels of threat, and it is the species with the smallest area under 
protection, representing 2.9% of its distribution area. A small frac-
tion of the distribution area of J. paniculata (Figure 5e) is also under 
protection (8.2%); however, this species has a very extensive pre-
dicted distribution area, covering more than 400,000 km2 in Angola. 
A. quanzensis (Figure 5a), G. coleosperma (Figure 5c), and P. angolensis 
(Figure 5f) have more than 70% of their predicted area of occurrence 
under “Moderate” and “Low” threat levels.

Bicuar National Park is the protected area with the highest rich-
ness of the studied timber species, including suitable area for the 

occurrence of A. quanzensis, B. spiciformis, J. paniculata, and P. ango-
lensis. Luengue-Luiana and Mavinga National Parks have great im-
portance for the conservation of G.  coleosperma and P.  angolensis, 
and Luando Integral Nature Reserve and Cangandala National Park 
are of extreme importance for the protection of I. angolensis.

4  | DISCUSSION

We studied six Leguminosae timber species native to Angola, which 
are valuable resources for local populations and have been highly 
exploited for trade in national and/or international markets. All of 
them also have other uses (i.e., medicinal, forage, and fiber), which 
increases the pressure on the species. Previous studies (Catarino 
et  al.,  2019; Romeiras et  al.,  2014) had already warned about the 
increasing exploitation of these trees and the urgent need to take 
more effective conservation measures.

Concerning the conservation status, all the studied species ex-
cept for Guibourtia coleosperma were evaluated as vulnerable in the 
list of threatened plants of Angola (Costa et al., 2019). G. coleosperma 
was classified as least concern in Angola. However, the global con-
servation status does not reflect the current situation in Angola. 
According to the IUCN Red List (IUCN, 2020), all these species were 
classified as least concern except for G. coleosperma, which was not 
evaluated. The category least concern may not show the present 
status of species because the populations of B. spiciformis and P. an-
golensis are reported globally decreasing, as a result of habitat loss 
and overexploitation (Barstow & Timberlake, 2018; Hills, 2019).

Updated data on spatial distribution are essential for the sustain-
able management and conservation of species. As such data are very 

F I G U R E  4   Reference threat index map 
for Angola timber tree species
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F I G U R E  5   Predicted distribution maps for the six species studied [(a) Afzelia quanzensis; (b) Brachystegia spiciformis; (c) Guibourtia 
coleosperma; (d) Isoberlinia angolensis; (e) Julbernardia paniculata; and (f) Pterocarpus angolensis] showing the protected areas and the threat 
level in their suitable area. The color bars on the right of the maps represent the predicted area of distribution (km2) under each threat level
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scarce for Angolan flora, we predicted the suitable areas for the oc-
currence of each species by applying species distribution modeling 
techniques. Based on AUC values, the performance of models devel-
oped with a single algorithm was generally “Good” (between 0.7 and 
0.9), increasing to “Very good” (>0.9) in the ensemble models. We 
also used the TSS evaluation method, which confirmed the reliable 
performance of our models.

Mapping the main threats is also a critical step toward con-
servation of species and their habitats. The threat index map 
presented herein represents the first spatial assessment of the 
main threats to timber species carried out for Angola, which 
has one of the highest deforestation rates in sub-Saharan Africa 
(Hansen et al., 2003). Although this study focused on trees of the 
Leguminosae family, the threat index map could be generalized to 
species from other plant families with functional patterns similar 
to the species analyzed.

We quantified the potential pressure of eight threat factors 
on the native timber species, including two concerning climatic 
change and six related to human activity. The anthropogenic fac-
tors had a greater weight in the index than climatic changes, and 
this is in agreement with other recent studies focused on tree spe-
cies, which suggest that anthropogenic pressures result in greater 
threats to species populations than climate change (Fremout 
et al., 2020; Manchego et al., 2017). Human activities have long 
had a strong impact on Angolan natural resources. Huntley (1974) 
already described the vegetation and soils around Angolan cities 
as degraded areas. The lack of fossil fuels led populations to cut 
down many trees for the production of firewood and charcoal, re-
sulting in large areas of deforested Miombo. Charcoal production 
has replaced food production as a source of income in some rural 
zones, increasing the deforested area, especially in areas with high 
population density in the provinces of Huambo, Bié, and Huíla 
(PNUD, 2012).

Over the last five years, and without monitoring, the trade of 
timber products strongly increased, in part due to the effort to 
find alternative sources of income after the global drop in oil prices 
(Mendelsohn, 2019). In 2016, the Angolan government increased the 
concessions for logging in the country, and Chinese companies have 
massively extracted hardwoods, causing the deforestation of vast 
areas of Miombo woodlands (Huntley et al., 2019). In 2018, an im-
portant conservation measure was taken when Angola banned the 
cutting of G. coleosperma for two years, to relieve pressure caused 
on them by the extraction of volumes above the quotas legally es-
tablished in 2016 and 2017 (Diário da República de Angola, Decreto 
Executivo n. 278/18, 07 August 2018, p. 4108–4109). However, such 
measures are very rare and the conservation of native timber spe-
cies is not the main target of forest management.

Although the Angolan government recognizes that the uncon-
trolled use of wood for commercial purposes led to the loss of key 
forests in the country, resulting in the loss of species diversity and 
the impoverishment of local human communities (PNUD,  2012), 
measures to ensure the sustainable management and forest re-
covery are still very scarce. As revealed by the threat index map, 

the region of Huambo and Angola's central plateau is among 
the areas most exposed to overexploitation and tree cover loss. 
According to Palacios et al. (2015), this region was originally cov-
ered by Miombo woodlands, but between 2002 and 2015 its area 
decreased from 78% to 48% and converted to cropland. Schneibel 
et al. (2013) also documented similar patterns in western Cuando 
Cubango, eastern Huila, and eastern Huambo. The current increas-
ing trends in burned area are also associated with these events 
(Catarino et al., 2020).

According to Morishima and Akasaka (2010), changes in climate 
are already observed in southern Africa since the 1980s, with a 
significant decrease in rainfall from December to March, and an in-
crease in temperature from July to October. Future climate changes 
could be particularly threatening for some of the species studied; 
for instance, a significant reduction in A. quanzensis and B. spiciformis 
distribution areas is expected until 2050 due to climate change 
(Jinga & Ashley, 2019).

Considering the limited resources available in Angola, it is es-
sential to identify priority areas for habitat restoration and species 
conservation. In this study, we identified two main areas of high 
priority:

1.	 Central and eastern area of Benguela province, in the mu-
nicipalities of Caiambambo, Cubal, and Bocoio, where five of 
the studied species occur. This area is mainly classified as of 
“High” threat due to a relatively high population density, large 
areas of cropland, proximity to roads, and overexploitation.

2.	 The bordering zone between Huíla, Huambo, and Bié provinces, 
namely the municipalities of Tchicala-Tcholoanga, Catchiungo, 
Chitembo, and North Kuvango. This area is highly affected by 
overexploitation of timber, proximity from the roads, croplands, 
and predicted temperature changes. The region has large areas of 
“High” and “Very high” threat level but no protected areas.

Angolan protected areas generally have lower levels of threat, 
with more than 90% of the area classified as “Moderate” threat. 
This may indicate that protected areas are being effective in reduc-
ing factors that threaten biodiversity. However, our work suggests 
that their geographical location may not be the most adequate for 
the protection of timber species, since the richness of these spe-
cies within protected areas tends to be low. Most Angolan protected 
areas were established to protect large mammals in colonial times, 
rather than native vegetation (Romeiras et al., 2014). The extended 
war (1975–2002) caused negligent management of the areas, endan-
gering the conservation of many species and their habitats (Huntley 
et al., 2019).

Two main limitations were identified in this study. First, the list 
of potential threats to timber species is not complete. For instance, 
invasive plant species, pollution, and nomadic grazing were not in-
cluded in the threat index map because there is no accurate spatial 
information available on these subjects. Nevertheless, we believe 
that these pressures could be strongly associated with others that 
we included in our study, such as population density and distance 
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from the roads, and consequently, their inclusion would not much 
affect our final results. Second, the map of threat index measures 
the level of pressure at which the studied species could be exposed, 
not the species response to those threats. Thus, further studies on 
species’ vulnerability to threats could be important to predict their 
future distribution area, allowing more efficient planning of conser-
vation measures under the effects of climate change.
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