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A non‑invasive method 
for concurrent detection 
of early‑stage women‑specific 
cancers
Ankur Gupta1,3, Ganga Sagar1,3, Zaved Siddiqui1, Kanury V. S. Rao1,2, Sujata Nayak1,2, 
Najmuddin Saquib1* & Rajat Anand1,2*

We integrated untargeted serum metabolomics using high-resolution mass spectrometry with data 
analysis using machine learning algorithms to accurately detect early stages of the women specific 
cancers of breast, endometrium, cervix, and ovary across diverse age-groups and ethnicities. A 
two-step approach was employed wherein cancer-positive samples were first identified as a group. 
A second multi-class algorithm then helped to distinguish between the individual cancers of the 
group. The approach yielded high detection sensitivity and specificity, highlighting its utility for the 
development of multi-cancer detection tests especially for early-stage cancers.

Cancer remains one of the most pervasive causes of death worldwide, and the incidence continues to rise 
globally1–3. In females, cancer is the second most important cause of death, with about 7 million new cases, and 
over 3.5 million deaths, being recorded each year4. The leading female-specific cancers are breast cancer, cervi-
cal cancer, uterine or endometrial cancer, and ovarian cancer4,5. Of these, breast cancer is the most frequently 
diagnosed and accounts for 25% of cancer cases, along with 15% of cancer-related deaths among women across 
the world6. In comparison, cervical cancer is the fourth most frequently diagnosed cancer in women, with an 
estimate of over 500,000 cases worldwide7. Endometrial cancer accounts for about 5% and 2% of global cancer 
incidence and mortality among women8, whereas ovarian cancer accounts for about 4% of the women cancers9.

Poor prognosis in female-specific cancers is often a result of late-stage presentation, with additional factors 
such as diagnostic uncertainties and/or diagnostic errors also contributing10–12. Significant improvements in 
treatment outcome can, however, be accomplished if the cancer is accurately detected at the earliest possible stage. 
This ensures that cures are more achievable, and the treatment is less morbid13. Unfortunately, though, effective 
screening paradigms exist only for a restricted subset of cancers and these include colonoscopy14, prostate spe-
cific antigen15, mammography16, and cervical cytology17. However, the impact of these tests too has been limited 
because the efficacy of some of them remain questionable 18, and also the fact that many patients fail to comply 
with screening guidelines19. Similarly, biomarkers based either on DNA or proteins have also not yet yielded 
accurate tests for early-stage cancer detection. Low penetrance in the risk groups, and/or low concentrations of 
the cancer markers, have proven to be the confounding factors in this regard20–24. Indeed, diagnoses for most 
cancers are still prompted by symptoms that only become apparent at the later stages. As a result, development 
of effective, non-invasive, screening methods for early cancer detection remains one of the foremost challenges 
facing modern cancer research.

The last decade has seen considerable interest in employing ‘omics’-based approaches for early-stage cancer 
diagnosis. Attempts have been made to capture cancer-specific molecular alterations though interrogation of 
either the genome, epigenome, transcriptome, proteome, metabolome, or the lipidome. Of these approaches, 
metabolomics best reflects changes in phenotype and—therefore—offers the most promising possibilities for 
translation to clinical application25. Metabolites represent proximal reporters of disease, and the idea that the 
metabolite composition of biological fluids reflects the health of an individual is now generally accepted26. The 
application of metabolomics for cancer diagnosis is especially relevant given that cancers are known to possess 
unique metabolic phenotypes due to altered metabolism. Consequently, the patterns of metabolites that are 
produced likely encapsulate ‘signatures’ that correlate with either emergence, presence, or behavior of a cancer25. 
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Using biological fluids such as urine, saliva, or serum, metabolite biomarkers have been identified for several 
cancers27. For example, mass spectrometric studies have identified metabolite changes that are characteristic of 
breast cancer in blood of patients28,29. Similarly, studies have revealed that metabolomics of saliva and urine may 
also be used to distinguish cancer patients from healthy individuals30.

Despite these recent advances in metabolomics-based cancer detection, however, reliable methodologies for 
accurate diagnosis of early-stage disease are still lacking. In this context, the majority of studies have focused on 
identifying discrete metabolites, or sets of discrete metabolites, that are either up- or down-regulated in a specific 
cancer. What has been less explored are approaches that treat metabolome data as analog outputs, from which 
patterns that characterize a given disease—and its stage—can be extracted. Untargeted metabolomics by liquid 
chromatography coupled with mass spectrometry (LC–MS) provides for maximal coverage of metabolite spe-
cies in a sample31,32. While the resulting data is complex it is, nonetheless, very information rich33. Such data is 
readily amenable to analysis using pattern recognition algorithms and, therefore, has the potential for accurately 
diagnosing the health state of an individual.

In the present report, we describe an integrated method for the simultaneous detection of early stages of 
the four most prominent women-specific cancers. These cancers are breast cancer, endometrial cancer, cervical 
cancer, and ovarian cancer (BECO). Our method combines untargeted serum metabolomics with data analysis 
using a machine learning algorithm to capture the complex metabolite signatures that specifically characterize 
early stages of the individual cancers. The detection accuracy obtained with this method is significantly superior 
to that of other existing methods. Additionally, it enables simultaneous screening for all the four cancers in a 
single analysis.

Results
Characteristics of samples employed for the study.  Table 1 details the sample set employed for the 
present study. The number of samples for each of the target cancers is shown, along with the number of normal 
control samples. Majority of the samples were from women between the ages of 30–80 years, although a few 
samples from women in the 20 to 30- and 81 to 90-year age groups were also included (Table 1). Donors were 
predominantly Caucasian women (87%), with a lesser number of non-White donors, which included African 
American, Hispanic, and Asian women (Table 1). Thus, the cumulative number of samples employed for the 
present study was 1369, of which 1119 were derived from the cancers of interest (i.e. breast, endometrial, cervical 
and ovarian cancer), while the remainder (n = 250) were the normal controls.

Data generation and analysis.  Positive ion mode UPLC-MS/MS interrogation of the serum metabolome 
of samples described in Table 1 resulted in the detection of > 20,000 spectral features (Rt, m/z pairs). The untar-
geted metabolomics approach (Fig. 1) generated a large metabolites list, which was further divided into subset 
of normal control, endometrial cancer, breast cancer, cervical cancer, and ovarian cancer with 5895, 5971, 5982, 
6300 and 6336 metabolites respectively. The total number of unique metabolites identified in our study was 7596 
in number. Distribution of the number of unique metabolites identified in samples from the normal control, and 
individual cancer types, as a function of the age groups, is shown in Fig. 2. Subsequent processing of this data 

Table 1.   Demographic, ethnicity, and BMI group of the sample set used in the study.

Parameter

Individual cancers and controls

Demographic and clinical data

Normal control 
(n = 250)

Endometrial cancer 
(n = 304) Breast cancer (n = 303)

Cervical cancer 
(n = 250)

Ovarian cancer 
(n = 262)

Age (years)

20–30 18 0 2 20 6

31–40 40 6 41 79 43

41–50 92 48 80 76 72

51–60 69 156 111 48 72

61–70 21 76 53 21 60

71–80 10 14 14 6 6

81–90 0 4 2 0 3

BMI (kg/m2)

10 to 30 119 130 270 90 86

 > 30 8 172 24 22 50

Ethnicity

White 153 302 246 233 256

Non-white 97 2 57 17 6

Cancer stage

0 0 0 36 70 19

I 0 304 267 180 243
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through our in-house pipeline, which sequentially involved normalization, gap filling, data transformation, and 
feature filtering and selection (“Methods”, Fig. 3), resulted in a matrix consisting of 2764 features across 1369 
samples.

Out of total 1369 samples, 304 samples were of Endometrial Cancer, 303 Breast Cancers, 250 Cervical Cancer, 
262 Ovarian Cancer and 250 Normal Control samples. To determine whether there is any difference in these 
samples based on metabolite data, the matrix generated above was used. A PLSDA plot was made using the matrix 
as shown in Fig. 4. The figure shows that cancer samples can be clearly distinguished from the normal control 
samples. Additionally, encouraging separation was also obtained between the individual cancer subsets (Fig. 4). 

Figure 1.   Ion chromatograms of representative samples from the normal control and the individual cancer 
groups. The total run time for the LC resolution was 14 min, with every sample run being alternated with a 
blank run. For the blank run involved injection of a 1:1 mixture of methanol and water. Comparatively, spectra 
in each case were following a trend with major changes seen from 200 to 600 m/z with the time ranging from 3 
to 11 min.
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Figure 2.   Age-wise detection of detected metabolites. Figure provides a graphical representation of the 
number of metabolites detected across the individual age groups, for the normal control set as well as the 
individual cancer groups. The cumulative unique metabolites detected in normal control samples were 5895. 
While, endometrial, breast, cervical and ovarian cancer samples were found to have 5971, 5982, 6300 and 6336 
respectively.
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To quantify how well these can be distinguished, an AI analysis was done on the data as described below to find 
common patterns in metabolite variations within cancer samples which is different from normal control samples. 
Briefly, keeping in mind clinical applications of the AI model, a layered approach was used here in which first, 
an AI model was developed to differentiate the breast, endometrial, cervical, and ovarian (BECO) cancers from 
normal controls, and then between the individual cancers.

Distinguishing women‑specific cancer samples from controls.  To distinguish breast, endometrial, 
cervical, and ovarian cancers as a group (BECO cancers) from normal controls, the data was randomly parti-
tioned into training and test datasets in comparable proportion between the individual BECO cancers and the 
normal controls. This resulted in 562 BECO Cancer samples and 126 Controls in training set. And 557 BECO 
Cancer samples and 124 Controls in test set. The AI model was applied on the training set (Supplementary 
Table S1, Fig. 5A) and tested in the test set to obtain Accuracy, Sensitivity and Specificity values. The logistic 
regression function was applied on the training data to find a function separating BECO Cancer samples versus 
Normal Control samples. Class balancing parameters were configured in the model to deal with the imbalance 
of classes in the training dataset. The trained algorithm finds a score for each of the sample according to the 
formulae below:

Here, × 0 is a constant number, Ii (1 ≤ i ≤ 2823) is the intensity of metabolite i present in the respective sample. 
Supplementary Figure S1 gives the value of coefficient xi (1 ≤ i ≤ 2823) for each metabolite.

The evaluation of the trained model as applied on test set for a single partition of data is shown in Fig. 5B. The 
scatter plot shows the Model Score for Normal Controls and BECO Cancer cases. The model scores are clearly 
seen to be different between Normal Controls and BECO Cancer samples where on applying a threshold of 5 
to differentiate between two types results in a confusion matrix as shown in Fig. 5B. Sensitivity, Specificity and 
Accuracy were calculated from formulae given in “Methods”, and this resulted in Sensitivity of 98%, Specificity 
of 98.3%, and an Accuracy of 98%.

Differentiating endometrial, breast, cervical, ovarian from each other.  In the second step, 
another multiclass AI model was layered on top of the first model, which acted on the predicted cancers samples 
from the first model (breast, endometrial, cervical or ovary) and gave a multiclass score to each sample: one score 
for each disease class denoting the probability of the sample belonging to the respective disease class.

y_score = x0+ x1 ∗ I1 + x2 ∗ I2 + x3 ∗ I3 + · · · + x2823 ∗ I2823

Data alignment 
across samples 

via VLM 
approach

Data 
normaliza�on

KNN based 
imputa�on

Data for AI 
modelsIon Filtering

Data Preprocessing Pipeline

Figure 3.   Data processing pipeline. The data preprocessing pipeline used to render the data amenable to AI 
modeling is depicted here (details are given in the text).

Figure 4.   PLSDA plot distinguishes between the individual cancers and also the normal controls. Figure 
presents a PLSDA plot of the matrix of sample-specific metabolites versus metabolite intensity for normal 
controls and the individual women-specific cancer sets. The separation obtained between the individual groups 
is shown. The R2 and Q2 values obtained are given.
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Here, out of a total of 1119 BECO samples, 304 samples were Endometrial Cancer, 303 were Breast Cancer 
samples, 250 were Cervical Cancer samples, and 262 were Ovarian Cancer samples. The data was randomly par-
titioned into training and test datasets in equal proportion as shown in Fig. 6 and Supplementary Table S2. This 
resulted in 152 Endometrial Cancer samples, 152 Breast Cancer samples, 127 Cervical Cancer samples and 131 
Ovarian Cancer samples in the training set, and in 152 Endometrial Cancer samples, 151 Breast Cancer samples, 
123 Cervical Cancer samples, and 131 Ovarian Cancer samples in the test set. In addition, a set of 124 normal 
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Figure 5.   AI workflow for distinguishing BECO cancers from normal controls and its application. Panel A 
depicts the AI workflow employed to test the AI model for distinguishing between the women-specific cancer 
group (BECO) from the Normal controls. Panel B depicts the results from testing of the trained model for 
distinguishing women-specific cancers (BECO) from normal controls showing clear separation of disease. The 
separation achieved between the cancer and the control group is shown in the form of a confusion matrix, with 
the resulting sensitivity and specificity values also given.
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Figure 6.   Partitioning of training and test data sets for the multiclass AI model. (A) shows the segregation 
of the individual cancer sets for training and testing of the multiclass AI model-2 (see text) for distinguishing 
between the individual cancers of the BECO group.
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control samples were added to the test set. Then, a one versus rest (OVR) classifier multiclass classification model 
was made using the training samples to give AI model—2. Following this, a two layered modeling scheme was 
applied on the test set. That is, firstly, AI model—1 differentiating BECO versus normal samples was applied on 
the test set. Then, AI model—2 was applied on the resulting predicted BECO samples. This resulted in four scores 
for each sample, with each score defining probability of the respective sample belonging to one of the four classes.

For the multi class model: AI model—2, a one versus rest (OVR) classifier multiclass classification model 
was made using the training samples. The trained algorithm finds 4 scores for each of the sample according to 
the formulae below:

Here, y0, z0, a0, b0 are constant number, Ii (1 ≤ i ≤ 2823) is the intensity of metabolite i present in the respec-
tive sample. Supplementary Figures S2 gives the value of coefficient yi, zi, ai, bi (1 ≤ i ≤ 2823) for each metabolite.

To determine how well our multiclass model differentiates between the individual disease categories of the 
BECO group of samples, as well as from normal control, we plotted the scores obtained from multiclass model. 
As shown in Fig. 7A, we plotted the multiclass model Endometrial Score for Endometrial Cancer samples and 
set of Breast, Cervical and Ovarian (BCO) Cancer samples. The model scores are clearly seen to be different 
between Endometrial and BCO Cancer samples where on applying a threshold to differentiate between the two 
sets results in a confusion matrix as shown in Fig. 7A. Here, the normal samples were also included in the control 
group to get the sensitivity, specificity values for Endometrial cancer versus the rest of the groups. Sensitivity, 
Specificity and Accuracy were calculated from formulae given in “Methods”, which resulted in Sensitivity of 87%, 
Specificity of 93%, and an Accuracy of 91.6%.

We next plotted multiclass model taking Breast Cancer Scores for Breast Cancer Samples versus the scores 
from the combined set of Endometrial, Cervical and Ovarian (ECO) Cancer samples (Fig. 7B). The model scores 
are clearly seen to be different between Breast Cancer and ECO Cancer samples where on applying a threshold 

y_score1 = y0+ y1 ∗ I1 + y2 ∗ I2 + y3 ∗ I3 + · · · + y2823 ∗ I2823

y_score2 = z0+ z1 ∗ I1 + z2 ∗ I2 + z3 ∗ I3 + · · · + z2823 ∗ I2823

y_score3 = a0+ a1 ∗ I1 + a2 ∗ I2 + a3 ∗ I3 + · · · + a2823 ∗ I2823

y_score4 = b0+ b1 ∗ I1 + b2 ∗ I2 + b3 ∗ I3 + · · · + b2823 ∗ I2823
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Figure 7.   Testing the multiclass model for its ability to distinguish the individual cancer groups. Panel (A) 
shows the results of specifically testing the multiclass trained model for separation of endometrial cancer 
samples from the other cancers (breast, cervical, ovarian) based on model’s Endometrial scores. The resulting 
confusion matrix on applying a threshold shows good accuracy, sensitivity and specificity. Panel (B) shows the 
results of specifically testing the multiclass trained model for separation of breast cancer samples from the other 
cancers (endometrial, cervical, and ovarian) based on model’s Breast scores. The resulting confusion matrix 
on applying a threshold shows good accuracy, sensitivity and specificity. Panel (C) the results of specifically 
testing the multiclass trained model for separation of cervical cancer samples from the other cancers (breast, 
endometrial, ovarian) based on model’s Cervical scores. The resulting confusion matrix on applying a threshold 
shows good accuracy, sensitivity and specificity. Panel (D) shows the results of specifically testing the multiclass 
trained model for separation of ovarian cancer samples from the other cancers (breast, endometrial, cervical) 
based on model’s Ovarian scores. The resulting confusion matrix on applying a threshold shows high accuracy, 
sensitivity and specificity.
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to differentiate between two sets results in a confusion matrix as shown (Fig. 7B). Here, the normal samples are 
also included in the control group to get the sensitivity, specificity values for Breast cancer versus the remaining 
groups. Sensitivity, Specificity and Accuracy were calculated from formulae given in “Methods”: AI modeling of 
the data. This results in Sensitivity of 93%, Specificity of 95%, and an Accuracy of 94.4%.

Figure 7C, shows a plot of the multiclass model where the Cervical Score for Cervical Cancer were compared 
with the scores from the combined set of Endometrial, Breast and Ovarian (EBO) Cancer samples. The model 
scores are clearly seen to be different between Cervical and EBO Cancer samples where on applying a thresh-
old to differentiate between two sets results in a confusion matrix as shown. Here, the normal control samples 
were also added in the control group to get the sensitivity, specificity values for Cervical versus rest. Sensitivity, 
Specificity and Accuracy were calculated from formulae given in “Methods” as Sensitivity of 87%, Specificity of 
90%, and an Accuracy of 87.6%.

Figure 7D shows a plot of the multiclass model taking the Ovarian Score for Ovarian Cancer Samples versus 
scores from the combined set of Endometrial, Breast and Cervical (EBC) Cancer samples. The model scores are 
clearly seen to be different between Ovarian Cancer and EBC Cancer samples where on applying a threshold to 
differentiate between two sets results in a confusion matrix as shown. Here, the normal samples are also added 
to the control group to get the sensitivity, specificity values for Ovarian versus rest. Sensitivity, Specificity and 
Accuracy were calculated from formulae given in “Methods”, which resulted in Sensitivity of 86%, Specificity of 
93%, and an Accuracy of 92%.

Feature ranking and literature validation of select features.  Since our matrix features identify 
named metabolites from the HMDB database, the resulting model becomes explainable in terms of extracting 
mechanistic and other relevant insights related to the women-specific cancers. To enable this, we performed 
feature ranking, where the weights of the individual features from the model were first sorted. Following this, 
an adding of one feature at a time approach was used until the desired sensitivity–specificity was obtained. The 
top 100 metabolites obtained for both AI models, AI model—1 and AI model—2 are present in Supplementary 
Table S3.

Table 2 gives a list of twenty-five metabolites from the top 100 metabolites identified in AI model-1, which 
contribute to distinguishing the women-specific cancer (BECO) group from normal controls. It is evident that list 
comprises of diverse classes of metabolites that include lipids, nucleosides/nucleotides, amino acids and modified 
amino acids, acylcarnitines, steroids and dipeptides. While all of these metabolites have been implicated either in 
tumor growth or progression (Table 2), it is evident that they span a multiplicity of both anabolic and catabolic 
pathways (Table 3). This is consistent with emerging evidence that tumor cells have highly complex metabolic 
requirements, and that numerous pathways are required to complement glucose- and glutamine-dependent bio-
mass production38. Representative metabolites that comprise the signature that helps to distinguish the individual 
cancers (i.e. breast, endometrial, cervical, or ovarian cancer) are listed in Supplementary Tables 4–7.

Discussion
With the increasing burden of cancer mortality in women39,40, early detection to improve treatment outcomes 
has now become a priority. Unfortunately, however, reliable and accurate methods for early detection of most 
cancers are still not available. The problem is further exacerbated, particularly in middle- to low-income set-
tings, by the relatively high costs of cancer screening, especially because current methods largely allow only for 
diagnosing one cancer at a time. As opposed to this, any method that can simultaneously detect multiple cancers 
at the early stage would find greater applicability simply because of the fewer number of diagnostic procedures 
that will need to be undertaken, and also the associated reduction in cost that it will entail. The utility of such 
a multi-cancer detection test would be further enhanced if it involved a non-invasive procedure, and if the test 
accuracy were to be high.

In the present report we describe an integrated method that can simultaneously detect Stage 0/I of all four of 
the women-specific cancers with high sensitivity and specificity. The cancers detected are breast, endometrial, 
cervical, and ovarian cancers. Our approach combined an untargeted UHPLC-MS/MS analysis of the serum 
metabolome, with the subsequent interrogation of the data using machine learning algorithms. A key aspect of 
our data analysis pipeline was the generation of a matrix wherein spectral features from the mass spectrometry 
profiles of the samples were translated into known metabolites identified using the HMDB database. A PLSDA 
plot revealed that the information content in the matrix was sufficient to clearly distinguish the cancer groups 
from the normal control group, and also achieve at least a reasonable degree of resolution between the individual 
cancer subsets. Consequently, this matrix provided the basis for developing an AI algorithm for early-stage cancer 
detection. For this, we employed a two-step strategy. In the first step we developed an algorithm (AI model—1) 
for distinguishing between the cancer samples and normal control samples. As our results show, we were indeed 
successful in identifying the BECO group of samples with high sensitivity and specificity. Subsequent to this, a 
second AI model (AI model—2) was developed in order to distinguish between the individual cancers of the 
BECO group. For this a one-versus-rest (OVR) classifier multiclass classification model was developed and as 
shown here, this model yielded a reasonably high accuracy in terms of identifying the identifying the tissue 
of origin of the cancer in samples of the BECO group. Efforts are currently underway to further improve the 
accuracy of AI model – 2.

Thus, our studies show that combining untargeted metabolomics with machine learning approaches for data 
analysis provides an attractive way forward for developing highly accurate multi-cancer detection approaches. 
Furthermore, especially noteworthy about our results is the high detection accuracy obtained for early-stage 
cancers, which is significantly superior to that of the other approaches being explored to date42–45. It will of inter-
est to determine if the scope of this approach can be expanded to include simultaneous detection of additional 
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cancers. In addition, a more extensive sampling of patients across a wider diversity of racial and ethnic groups 
would also help in determining the robustness of the approach.

Methods
Study design and sample collection.  All samples used in this study were purchased from three sepa-
rate commercial biobanks: Dx Biosamples (San Diego, CA), Reprocell USA Inc. (Beltsville, MD), and Fidelis 
Research AD (Sofia, Bulgaria). From these sources, we obtained serum samples that were derived from treat-
ment-naïve women patients with Stage 0 or Stage 1 of either breast, uterine, cervical, or ovarian cancer. Clinical 
profile information on the donors included histological stage and grade, along with TNM classification of the 
cancer. Further, the HPV status of donors with uterine, cervical, and ovarian cancers was also provided; along 
with results of the CA-125 tumor marker determination for uterine and ovarian cancer patients. Finally, the 
breast cancer samples were also provided along with information on presence or absence of the Ki-67, ER, PR, 

Table 2.   List of select metabolites involved in the signature for distinguishing the BECO cancer group from 
normal controls. Literature references for the individual metabolites are listed in Supplementary Information. 
The mean m/z and retention time (RT) values for each metabolite are given.

S. no Metabolite name Involvement in cancer m/z RT (min)

1. 2-[(5Z,8Z,11Z,14Z,17Z)-eicosapentaenoyl]-sn-glycerol One of the sixteen diagnostic metabolites that are able to identify early-stage ovarian 
cancer with high accuracy [1] 376.259 9.238

2. Varanic acid A bile acid that has been identified as a potential biomarker in the serum of ovarian 
cancer patients [2] 436.317 9.589

3. Serotonin A known growth factor for human tumor cells of different origins; implicated in cancer 
cell migration, metastatic dissemination, and tumor angiogenesis [3] 176.094 1.696

4. Pyridoxamine 5’-phospate A vitamin B6 phosphate. Vitamin B6 and its derivatives are inversely associated with 
cancer risk [4] 248.056 3.847

5. L-Proline Proline availability influences collagen synthesis and maturation and the acquisition of 
cancer cell plasticity and heterogeneity [5] 115.063 0.709

6. Lewis X Lewis X is a type II Lewis antigen, representing a fucosylated epitope that is overex-
pressed on the surface of cancer cells [6] 529.198 4.726

7. 17-beta-Estradiol Plays a key role in breast cancer and regulates cancer/immune cell interactions in the 
tumor microenvironment [7] 272.176 7.829

8. 7-Ketodeoxycholic acid It was identified as a potential biomarker during the metabolic profiling of serum in ovar-
ian cancer patients [8] 406.27 10.176

9. PAF C-18:1 Platelet activating factors are frequently induced in cancer cell through the action of 
Epidermal Growth Factor [9] 549.377 9.374

10. Leukotriene F4 Leukotrienes play intricate roles in promoting tumor growth and metastasis through 
shaping the tumor microenvironment [10] 496.258 10.236

11. Leukotriene D4 Leukotriene D4 plays an intricate roles in promoting tumor growth and metastasis 
through shaping the tumor microenvironment [11] 496.258 10.236

12. N-Acetyl-DL-Histidine Identified to correlate with colorectal cancer in an analysis of the fecal metabolome [12] 197.079 10.16

13. 6-Sulfatoxymelatonin Present in the urine of women with breast cancer, although the question of whether they 
correlate with cancer risk remains uncertain [13] 328.071 3.215

14. Androstenedione Is associated with increased risk for endometrial cancer in postmenopausal women. They 
likely influence endometrial carcinogenesis via estrogen metabolism [14] 286.192 5.219

15. Nisinic acid While Nisinic acid itself has not been well studied, there is increasing evidence that 
PUFAs play a role in cancer risk and progression [15] 356.27 8.176

16. Formiminoglutamic acid An intermediate in the degradative metabolism of histidine, elevated levels of this 
metabolite have been found in urine of patients with neoplastic disease [16] 174.063 1.21

17. Androsterone glucuronide A conjugated steroid and, along with other conjugated steroids, has been implicated in 
risk of developing hormone-dependent breast cancer [17] 466.254 8.517

18. 3-Methoxytyramine A prognostic biomarker that associates with high-risk disease and poor clinical outcome 
in neuroblastoma patients. Role in women-specific cancers yet unknown [18] 167.094 1.43

19. Dipeptides: Pro-Tyr, Asp-Gln, Lys-Tyr, Lys-Arg
Dipeptides with either Ala, Asp, or Ile at the C-terminus, and dipeptides with Lys, Arg, 
Pro, and Tyr at the N-terminus were found to be overabundantly present in the liver of 
patients with Hepatocellular carcinoma [19]

278.125 3.961

20. LysoPC(P-18:0) Prospective case-cohort studies have revealed that higher levels of LysoPC(P-18:0) were 
consistently related to lower risks of breast, prostate, and colorectal cancer [20] 507.366 11.098

21. Platelet-activating factor PAF has been implicated in development, growth, and metastatic manifestations of cancer 
cells [21] 523.361 11.205

22. 5-Methylcytidine Its constituent base, 5-methylcytosine is a sensitive marker of progress of the tumor 
formation induced by the oxidative damage reactions [22] 257.1 0.849

23. 1-Methylinosine Modified nucleosides such as 1-methylinosine represent accurate tumor markers for 
clinical diagnosis of cancer [23] 282.095 3.562

24. L-Glutamine Glutamine is essential for tumor growth and host glutamine depletion is a hallmark of 
progressive tumor growth [24] 199.095 5.672

25. O-heptadecanoylcarnitine One of the acylcarnitines that are increased in cancer patients, and in those patients with 
higher cancer grades [25] 413.348 9.052
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and HER2 markers in the donors. To serve as controls in our assay, we also procured additional sera that were 
from normal volunteers. The total number of samples across all groups was 1369, and they were stored at − 20° C 
for the short term prior to use.

Sample accessioning.  Samples were inventoried and immediately stored at − 80 °C after receipt. Each sam-
ple received was allotted a unique identifier number. This identifier was used to trail all sample handling, tasks, 
results, etc. The samples (and all derived aliquots) were tracked by the identifier. All samples were maintained at 
− 80 °C until processed.

Extraction of metabolites from serum samples.  Metabolite extraction from serum was achieved as 
previously34. Briefly, all the serum samples were thawed on ice and mixed properly. 10 µl of each serum sample 
was taken in microfuge tube (1.5 ml), (Genaxy, Cat No. GEN-MT-150-C. S) and then 30 µl of chilled Methanol, 
(Merck, Cat.No.1.06018.1000) to the sample, vortexed briefly and then kept at − 20 ℃ for 60 min.

The sample was then centrifuged (Sorvall Legend Micro17, Thermo Fisher Scientific, Cat.No. Ligend Micro 
17) at 10,000 rpm for 10 min. After centrifugation 27ul supernatant was collected in separate microfuge tube 
without disturbing the pellet and dried using Speed Vacuum, (ThermoFisher Scientific, Cat.No. SPD1030-230) 
at low energy for 30–35 min. Samples pellets were then re-suspended using 30 ul methanol: water (1:1, water: 
methanol) mixture for injection.

Ultrahigh performance liquid chromatography‑tandem mass spectroscopy (UHPLC‑MS/
MS).  Untargeted metabolomics were performed using Dionex LC system (Ultimate 3000) coupled online 
with QExactive Plus (Thermo Scientific). Each extracted metabolite sample was injected (10ul for positive 
ESI ionization) onto Acquity UPLC HSS T3 from Waters (1.8 micron, dimensions – 2.1 × 100 mm, Part No. 
186003539), which was heated to 370 C. The flow rate was 0.3 ml/min. Mobile phase A was (water + 0.1% formic 
acid), and mobile phase B was (methanol + 0.1% formic acid). The mobile phase was kept isocratic at 5% B for 
1 min, and was increased to 95% B in 7 min and kept for another two min at 95% B, the mobile phase composi-
tion returned to 5% B in 14 min. The ESI voltage was 4 kV. The mass accuracy of QExactive mass spectrometry 
was less than 5 ppm and calibrated at recommended schedule prior to each batch run. The mass scan range is 
from 66.7 to 1000 Da, and resolution was set to 70,000. The maximum inject time for orbitrap was 100 ms while, 
AGC target was optimized with 1e6.

Quality assessment and quality control.  Several types of controls were analyzed in concert with the 
experimental samples: blank gradient runs were provisioned at every alternate sample run; a pooled QC sample 
generated by taking a small volume of each experimental sample, served as a technical replicate throughout 
the data set; also allowed instrument performance monitoring and aided chromatographic alignment. Mass 
accuracy of the instrument was checked on every 3rd day using the vendor specific calibrant (Thermo Fisher 
Scientific, Breda, The Netherlands). Overall process variability was determined by calculating the median RSD 
for all endogenous metabolites (i.e., non-instrument standards) present in 100% of the pooled matrix samples. 

Table 3.   Diverse biological processes are influenced by the perturbed metabolites specific for the BECO 
cancer group. Metabolanalyst software (https://​www.​metab​oanal​yst.​ca/) was used for extracting the list of 
biological processes associated with metabolites of interest. Briefly, the set of 25 metabolite names were added 
to the metaboanalyst software which cross referenced it to KEGG pathways database and HMDB database to 
get KEGG and HMDB ids respectively of input metabolites. Following this, the associated biological processes 
were extracted.

Metabolic pathways

Nitrogen metabolism

Glutamine/glutamate metabolism

Aminoacyl-t-RNA biosynthesis

Arginine biosynthesis

Histidine metabolism

Steroid hormone biosynthesis

Ether lipid metabolism

Alanine, aspartate, and glutamate metabolism

Glyoxalate and dicarboxylate metabolism

Arachidonic acid metabolism

Glycerophospholipid metabolism

Arginine and proline metabolism

Pyrimidine metabolism

Tryptophan metabolism

Tyrosine metabolism

Purine metabolism

https://www.metaboanalyst.ca/
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Experimental samples were randomized across the platform run with QC samples spaced evenly (every 50th 
sample) among the injections (Fig. 8).

Data processing.  The mass spectrometry data was first subjected to preprocessing as shown schematically 
in Fig. 3. The individual steps were as follows:

Incorporating mass errors in the data.  Mass errors are known to be present in metabolomics data35. This means 
that the same identified metabolite in different samples would have slightly different mass. This creates problems 
when intensity of same metabolite has to be compared across samples. This intensity comparison is required in 
the downstream AI based analysis. Usually, a fixed window size of mass is used to align the samples, but here, 
we have used a sophisticated approach of using a parts per million (ppm) error-based approach. Briefly, we have 
adapted the virtual lock mass (VLM) based approach35. This is based on the principle that mass errors are known 
to increase with mass35. This, approach was used and adapted according to our datasets. This was done by com-
bining the traditional VLM based approach with metabolite identification from HMDB database. Specifically, 
the VLM boxes were defined using the masses of metabolites identified by HMDB database search across mul-
tiple samples. This resulted in an initial matrix of 6893 metabolites or features. From this, we next removed all 
features that corresponded to either plant products, or drug and their metabolites. The total number of features 
in the resultant matrix were reduced to 5558.

Metabolite ions filtering.  The metabolite ions were filtered based on their frequency of presence in the individ-
ual samples. A 20% cutoff was used, wherein those metabolites that were present in less than 20% of the samples 
were excluded. This resulted in a final matrix size of 2764 features, which was then taken for our subsequent 
analysis.

Data normalization.  Owing to the variations in the metabolic data across various conditions of the mass spec-
trometer, normalization methods are needed to minimize the variations in the data36. Different normalization 
methods were tried such as Quantile Normalization, Variance Stabilization Normalization, Best Normalization, 
Probabilistic Quotient Normalization. Quantile Normalization (QN) was selected as the one performing best 
across various conditions of the experiment. QN method was further adapted to our datasets to enable normali-
zation of new samples with respect to training datasets and testing of one sample at a time.

Missing value imputation.  Missing values in untargeted metabolomics data is known to be problematic37. A 
k-nearest neighbors (KNN) approach was applied to impute the missing values in the data to make the data more 
homogenous and amenable to AI based analysis.

AI modeling of the data.  Now with the above data, AI models were made to differentiate cancers from nor-
mal and then between the individual cancers. Keeping in mind clinical applications of our AI model, a layered 
approach was used here in which first, an AI model was developed to differentiate BECO cancers from normal 
controls and then individual cancers. Briefly, logistic regression models were applied on the training data and 
tested on test data to give accuracy, sensitivity and specificity values according to formulae below:

Figure 8.   Preparation and scheduling of QC and samples for UHPLC-MS/MS. A small aliquot of each 
sample (coloured cylinders) was pooled to create a QC sample (multi-coloured cylinder), which was then 
injected periodically (every 50th injection) throughout the batch run. Variability among consistently detected 
metabolites was used to estimate overall process and batch variability. Every sample injection was followed by a 
blank injection to prevent carryover between the sample runs.
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