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The full range of biopsychosocial complexity is mind-boggling, spanning a vast range

of spatiotemporal scales with complicated vertical, horizontal, and diagonal feedback

interactions between contributing systems. It is unlikely that such complexity can be

dealt with by a single model. One approach is to focus on a narrower range of

phenomena which involve fewer systems but still cover the range of spatiotemporal

scales. The suggestion is to focus on the relationship between temperament in healthy

individuals and mental illness, which have been conjectured to lie along a continuum of

neurobehavioral regulation involving neurochemical regulatory systems (e.g., monoamine

and acetylcholine, opiate receptors, neuropeptides, oxytocin), and cortical regulatory

systems (e.g., prefrontal, limbic). Temperament and mental illness are quintessentially

dynamical phenomena, and need to be addressed in dynamical terms. A meteorological

metaphor suggests similarities between temperament and chronic mental illness and

climate, between individual behaviors and weather, and acute mental illness and frontal

weather events. The transition from normative temperament to chronic mental illness

is analogous to climate change. This leads to the conjecture that temperament and

chronic mental illness describe distinct, high level, dynamical phases. This suggests

approaching biopsychosocial complexity through the study of dynamical phases, their

order and control parameters, and their phase transitions. Unlike transitions in physical

systems, these biopsychosocial phase transitions involve information and semiotics.

The application of complex adaptive dynamical systems theory has led to a host of

markers including geometrical markers (periodicity, intermittency, recurrence, chaos) and

analytical markers such as fluctuation spectroscopy, scaling, entropy, recurrence time.

Clinically accessible biomarkers, in particular heart rate variability and activity markers

have been suggested to distinguish these dynamical phases and to signal the presence of

transitional states. A particular formal model of these dynamical phases will be presented

based upon the process algebra, which has been used to model information flow in

complex systems. In particular it describes the dual influences of energy and information

on the dynamics of complex systems. The process algebra model is well-suited for

dealing with the particular dynamical features of the continuum, which include transience,

contextuality, and emergence. These dynamical phases will be described using the

process algebra model and implications for clinical practice will be discussed.
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INTRODUCTION

The concept of a conjoining of biological, psychological, and
sociological domains into a single framework for understanding
the origins, developmental courses, and established trajectories
of various forms of mental illness has been around for
several decades. It provided the fundamental framework for
conceptualizing and managing mental illness during the author’s
residency training. Its rather simplistic application in those days
belied the extraordinary complexity involved in the interactions
between these three domains. Nowadays the focus has shifted
toward the notion of biopsychosocial complexity highlighting
the specific contribution that the presence of complexity brings
to understanding mental illness. Complex systems theory (1–
3) as a separate domain of inquiry emphasizes the roles of
non-linearity, chaos, intrinsic randomness, self-organization,
emergence, criticality, self-organized criticality, fluctuations,
power laws, non-normal probability distributions, among many
others. These stand in stark contrast to simple, linear systems
theory (4) where the emphasis is on stability, equilibrium, normal
probability, noise.

It is odd that the DSM describes states of mental illness
without reference to the transitions into and out of illness.
In the DSM, a person is either normal, or ill. There is no
reference to becoming ill, or becoming well. This absence may
have contributed to the conflict that the author noted between
psychiatrists and general practitioners during his residency
training. General practitioners would often send patients to the
outpatient psychiatry clinic with a diagnosis of depression, only
to have the patient rejected by the clinic, and then re-appearing
some weeks or months later to be diagnosed with depression.
In retrospect it was apparent that the general practitioner was
observing a patient in evolution, transitioning from normality
into depression. They were seeking early intervention, which
never happened because the only reference point for the
psychiatrist was a well-established depressive state.

The physical sciences have been dominated by the
conservation laws, particularly conservation of energy, which
became viewed as the dominant currency of the natural world.
In recent years there has been increasing recognition of the
role that information plays in the dynamics of physical systems
(5). Within the neurosciences, research into information flow
within neural systems (6) has demonstrated the presence
of additional dynamical features which are important in
understanding biopsychosocial complexity. These include
transience, fungibility, generativity, contextuality, and deep
emergence. These pose deep problems for the modeling of
biopsychosocial interactions.

Attempts to understand mental illness have all too often been
directed at a single ontological level, with the focus shifting
from biological (Hippocrates) to psychological (Freud, Jung,
Adler) to sociological (Durkheim) back to biological (serotonin-
noradrenaline) to psychological (cognitive behavior theory) to
sociological (transactional analysis) and so on. There have
been far fewer attempts to develop a truly integrative, multi-
level, multi-scale, multi-system theory, whether of normative
function or of mental illness. The focus on biopsychosocial

complexity provides an important starting point toward such
theory building.

Why does this matter? Truth be told, psychiatry has made very
little real progress over the past decades. Newer antidepressants
(apart from the promise of Ketamine) are simply variants on
the same old paradigm (stimulate noradrenaline or serotonin)
and psychotherapy has become replaced by psychoeducation,
teaching people a collection of useful cognitive tricks to
correct so-called biases or distortions, with no real meaning,
understanding or healing attached to it. Psychoanalysis appeared
to be all heart with a flawed theory, while modern treatments
appear to be mostly technology with an empty heart. The study of
biopsychosocial complexity embraces the totality of the human
experience, seeking integration, understanding and ultimately
a path to healing. It takes the proverbial blind men, having
examined the elephant, and brings them together to create a
synthesis of perceptions and conceptions and to integrate them
into a whole which ultimately may lead to healing.

The sheer complexity of human experience, however, suggests
the need to focus upon a smaller range of phenomena and
systems in an effort to make the process of theory building more
tractable without sacrificing the inherent complexity. The goal of
this paper is to motivate one particular focus for study, that of the
temperament-mental illness continuum. The rationale for this
suggestion will be provided in the next section, followed by a brief
discussion of some experimental, theoretical and clinical forays
into this subject. A particular model, the Process Algebra model,
will be presented and one particular model of the continuum as
a space of higher order dynamical phases and transitions will
be described.

THE TEMPERAMENT-MENTAL ILLNESS
CONTINUUM

Several authors have suggested that temperament and mental
illness can be viewed as lying along some form of continuum (7–
14). This idea can be traced back to Hippocrates who suggested
that temperament and mental illness can be understood as being
caused by different levels of four humors within the body.
Modern views of this continuum also involve neurochemistry
and neuroanatomy (both structural and functional) but more
importantly they have moved beyond simple quantitative or
dimensional factors to consider the role of dynamics and its
structure and symmetries.

Temperament refers to biologically based, consistent,
enduring, patterns of normative behavior. Mental illness, on
the other hand, refers to consistent, enduring, dysfunctional
or pathological patterns of behavior. In these definitions the
emphasis is on temporal patterns. Both temperament and mental
illness describe distinct long term patterns of behavior. Here,
behavior is to be understood in a broad sense as referring to
temporally organized sequences of motor acts, or of cognitive
or affective states, which appear in specific contexts (which
may be internal or external) and to which can be attributed
some semiotic, functional or ecological value. Temperament and
mental illness are not defined by single (or even a few) individual
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behavioral acts; rather, it is the long term temporal patterning of
a range of acts, together with their contextual linkages, which
is important. This is strikingly illustrated by the seminal work
of Gottschalk et al. (15), who showed that subjects with bipolar
disorder and control subjects were distinguished, not merely by
the intensity of reported moods but by the temporal patterning
of mood shifts. The mood changes of control subjects over the
course of a year proved similar to white noise, while those of
bipolar subjects showed a wide diversity of temporal patterning,
sometimes noisy, sometimes ordered, sometimes persistent,
sometimes intense, sometimes normative; recurrent, but not
truly periodic.

Neither temperament nor mental illness has been seriously
studied with this dynamical patterning in mind. For the most
part, both have been studied through self-report questionnaires
which ask subjects to reflect upon and assess the average
occurrence of some behavior or characteristic of behavior. The
time interval might be the life span, or the interval between
therapy sessions. The nuances associated with these behaviors
are lost. In spite of this it has been recognized that temperament
and mental illness share a number of features which support the
notion that they lie along some continuum.

First of all, temperament and many chronic mental illnesses,
particularly the affective disorders, share the same underlying
neurobehavioral regulatory systems (NBRS). These include
neurochemical behavioral regulatory systems (NCRS) (such as
monoamine, acetylcholine, GABA, Glutamate, opiate receptor,
neuropeptide, oxytocin, and hormome systems) and cortical
regulatory systems (CRS) (such as prefrontal, frontal, and
limbic systems) (7, 8, 16–20). These diverse regulatory systems
are organized across multiple spatiotemporal scales, possess
complex feedback relationships, and are capable of expressing a
remarkable diversity of behavioral patterns.

Second, many DSM symptoms of illness bear a similarity to
certain temperament traits, particularly those comprising the
Functional Ensemble of Temperament (FET) model (12, 14,
21–26). Most models of temperament have been based upon
the lexical approach, whose source material consists of verbal
descriptors of behaviors (27, 28). Most of these descriptors relate
to emotionality and sociability. The FET, on the other hand,
is based upon research into neurobiology, neurophysiology,
psychophysics and neuropsychology and divided traits along two
lines: the domain of activity (intellectual, physical, social) and the
dynamics of activity (endurance, variability, orientation). This
results in 9 traits which are supplemented by 3 emotionality
amplifier traits (neuroticism, self-confidence, impulsivity). Every
trait within the FET model is associated, not with a single
neurotransmitter system, but with a specific, distinct ensemble
of NCRS (7).

Temperament traits linked to NCRS include impulsivity,
sensation seeking, neuroticism, endurance, plasticity, and
sociability (7, 8). DSM symptoms linked to these NCRS include:
psychomotor retardation [shown to be regulated mostly by
dopaminergic systems (25), modulated by mu-opioid and delta-
opioid receptor systems], fatigue [linked to serotonin systems
(26) which are linked to depression (29–31) and to endurance
(26, 31)], impulsivity [linked to interactions between delta opioid,

mu-opioid and dopamine systems (32)], dysphoria [linked
to mu-opioid receptor systems (33, 34)], anxiety [linked to
impairment in the regulation of kappa opioid receptor systems
by mu opioid receptor systems, arising due to effects on GABA
(35–37), noradrenaline and the HPA axis (38)].

Third, it has been conjectured that if temperament andmental
illness lie along a continuum, and if the temperament model is
sensitive to changes in activity in NCRS, then, in the presence of
at least some forms of mental illness, there should be differential
impacts on temperament traits in the presence of these illnesses.
Standard temperament models such as Big Five (39), positive-
negative affect (40) or TCI (18) have shown no or at best modest
differential effects and appear unable to distinguish between
major depression and generalized anxiety disorder. Affective
temperament models such as Akiskal’s Affective Temperament
Scale (41) or the AFECT model (42), are promising in so far
as mood disorders are concerned but have not yet been shown
to possess differential sensitivity in the presence of a broad
range of illnesses. On the other hand, the FET has shown
differential effects in the presence of several categories of mental
illness and in particular, differentiates between major depression,
generalized anxiety disorder, comorbid depression and anxiety,
and several personality and psychotic disorders (12, 21–24).
This result showing differential effects in the presence of illness
makes the FET model the most promising model currently
for exploring the temperament-illness continuum and the value
of basing a model on neurophysiological evidence rather than
lexical descriptors (7, 8, 13, 14, 21–24).

It is important point to note that temperament is normative,
even in the presence of mental illness. Temperament scores may
shift in the presence of mental illness but seldom extremize.
A simplistic dimensional model of the temperament-illness
continuum is not supported. Nevertheless, there do indeed
appear to be linkages between temperament and mental illness,
but a more nuanced approach appears to be required. The
main conjecture of this paper is that an understanding of
the temperament-mental illness continuum is to be found in
the dynamics of NCRS and NBRS. An understanding of the
continuum could play an important role in individualized
diagnosis and treatment planning (as temperament is a core
source of individual differences), and an understanding of the
dynamics involved could pave the way for new biomarkers for
states of illness but also for transitions between such states, which
is important for treatment monitoring.

DYNAMICAL SYSTEMS THEORY IN
PSYCHIATRY

Like its sister discipline psychology, psychiatry is all about
behavior, in particular behavior that occurs because of damage
to or dysfunction of the nervous system. Behavior refers to sets
of ecologically homologous behavioral acts. A behavioral act
is a finite duration sequence of states, which may be motoric,
cognitive or affective, carried out by an organism, usually on
a short time scale of seconds to minutes, which express some
ecologically valid biological, vocational or social function in
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a specified context. Behavior, by definition, is dynamic, as it
involves changes over time. Behaviors are generally organized
into sequences, or temporal patterns, which take place over
minutes to hours, are correlated with environmental stimuli and
possess a functional character. These sequences of behaviors
(termed activities) make up a larger tapestry of patterns which
persist over weeks, months or years. These long term patterns
comprise temperament and mental illness.

Dynamical systems theory is the formal study of systems
that change in time. The study of dynamical systems has been
primarily a subject of mathematics and physics, but its adoption
in fields such as psychology and psychiatry is long overdue.
Nevertheless, a small but growing number of researchers have
been attempting to apply the methods of dynamical systems
theory at both theoretical and clinical levels (43–55).

Dynamical systems theory seeks out symmetries and universal
characteristics of dynamics in general. The classification of
trajectories forms the basis for the geometrical approach to
dynamical systems. Trajectories may be described in terms
of their final destination, their attractors. The most common
attractors are (1) fixed point, (2) periodic, (3) quasiperiodic, (4)
strange (chaotic). Trajectories which do not trend toward an
attractor may be divergent, transient, recurrent or ergodic (56).
There has been a great deal of interest in characterizing behaviors
which occur at the boundaries between differing patterns
of behavior, in particular that between laminar and chaotic
patterns. One of the most studied transitional patterns is that of
intermittency (alternations of periodic and chaotic patterns) (57–
59), of which several distinct types have so far been described
(I,II,II, on-off, eyelet, ring) (60, 61). Intermittency has been
studied mostly for a single dynamics in which certain trajectories
bounce between regions of laminar dynamics and chaotic
dynamics. Ansmann, Lehnertz and Feudel (62) studied such self-
induced switchings on a complex network, showing spontaneous
transitions between low-amplitude oscillations, non-linear waves
and extreme events, which appeared random, but were due to
the presence of a chaotic saddle. Both short and long range
connections played a role but short dominated. A similar
chaotic saddle has been observed underlying intermittency in
wave motion in fluids (60). Interestingly, it is possible to have
intermittent intermittency (alternation of two different types of
intermittency) (63, 64). Intermittency is widespread and has been
observed in EEG signals (61, 64). Somemeasures of intermittency
such as the reinjection probability density has been developed
or short time series, and thus possibly suitable for clinical
applications (59).

The analytical approach has been effectively applied to the
analysis of time series data (65–67). Analytical tools, currently in
widespread use and suitable for studying behavioral data include:
(1) Fluctuation spectroscopy, (2) Fluctuation distributions (these
tend to be power law rather than Gaussian), (3) Lempel-
Ziv complexity, (4) Hurst exponent, (5) Lyapunov exponent,
(6) Shannon and Renyi entropy, (8) Ap entropy, (9) Mutual
information, (10) Recurrence and dwell times, (11) Recurrence
plots, (12) Orbital Decomposition, (13) Correlation, Hausdorff
and Box dimensions, (14) Scaling, (15) Order parameters. The
list continues to grow as techniques advance.

There have been several attempts at formal modeling relevant
to psychiatry [see also (14) for a more detailed survey],
particularly related to serotonin and dopamine dynamics (68–
75). The earliest work on the continuum between temperament
and mental illness is that of Mandell and Selz (76), who proposed
perhaps the first formal model of the temperament-mental illness
continuum, though strictly speaking they focused on personality
disorders (borderline and obsessive compulsive) which straddle
the gray middle ground. They focused on dynamical patterning
in behavior, using an attractor based model, finding that spatial
entropy and largest Lyapunov exponent appeared to distinguish
these disorders. Remarkably little subsequent work has been
carried out though a few papers have explored models of
personality (77), temperament (78). A great deal of attention
has been paid to mood disorders (79–95). Other topics studied
include psychosis and cocaine addiction (96, 97).

Time series methods have been used widely in both basic
science (98) and are gaining importance in clinical research
where they have been applied to the study of bipolar disorder
(99–103), schizophrenia (104), obsessive compulsive disorder
(98), generalized anxiety disorder (105–110) among others. Data
for these time series are taken from a wide variety of sources
including heart rate, gait monitors andmost commonly, personal
ratings of mood.

An important application of these ideas has been to the theory
and monitoring of treatment progress. Two distinct theoretical
approaches have been a continuous time model based on ideas
from synergetics (111) and an empirically motivated discrete
time model (112). Patterns of change in psychotherapy have
been examined from a dynamical systems perspective (113).
Time series have been used to study mood fluctuations, which
is important for understanding the course of treatment (99–101,
114–116).

In the case of bipolar disorder, formal models have tended
toward cartoon stereotypes, either exhibiting toomuch regularity
or periodicity (like a sine wave) (81, 82) or too much variability
(83) resembling noise. For example, a complex systems model
positing winnerless competition between two recurrent maps,
one for GABA and one for Glutamate reproduced several features
seen in bipolar patients, particularly intermittency (84) but they
appear too noise-like, and none have reproduced the prolonged
dwell times, recurrence and persistence, intermittency, slow wave
and long wave patterning observed in Gottschalk et al.’s bipolar
subjects (15).

Two interesting papers touch on matters relevant to the
temperament-mental illness continuum and the FET model.
A network analysis was used to assess the centrality of DSM
vs. non-DSM symptoms and somewhat surprisingly found
little difference between them (92). A causal network analysis
examined the relationship between symptoms of depression
and anxiety, finding that symptoms were more closely related
within each disorder rather than between disorders (93). This
is in keeping with the FET model which showed that major
depression, while affecting 9 temperament traits, nevertheless
had a greater effect on the physical traits, whereas generalized
anxiety disorder, which affected 5 traits, had a greater impact on
the social traits. In addition the authors found that “low energy”

Frontiers in Psychiatry | www.frontiersin.org 4 January 2021 | Volume 11 | Article 614982

https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychiatry#articles


Sulis Temperament-Illness Continuum

had high centrality for major depression, again consistent with
the FET finding of significantly lower physical endurance and
tempo in the presence of major depression.

Additional support for the FET model comes from research
into various aspects of movement such as gait (117), and
activity (118, 119). Radovanovic et al. (117) found that subjects
with major depression had slower speed and decreased gait
variability compared to controls, consistent with the FET finding
of decreasedmotor tempo among subjects withmajor depression.
Kim et al. showed that in the presence of major depression,
patients exhibit reduced mean activity levels punctuated by
occasional burst of activity (increased intermittency) (119).

Prior applications of dynamical systemsmethods in psychiatry
have mostly focused on the use of attractors to model various
psychiatric states but mostly as metaphors (48–50). Complex
systems theory has been used to explore the idea of depression
as a “stuck state” of emotional processing (85). Stochastic cellular
automata have been used to model the interaction between
symptoms and mood states and their transitions (86). These are
essentially qualitative models at the symptom level.

Transitions into and out of clinical states have traditionally
been studied through the lens of epidemiology, looking for
correlations with rather coarse risk factors such as age, sex,
family history, premorbid history, and genetics. Such studies
have examined transitions into depressive or anxious states (120–
127) or among bipolar states (113, 128–131). One formal study
examined the pattern of survival rates for patients transitioning
out of an episode of major depression, modeling it as a diffusive
Ornstein-Uhlenbeck stochastic process (132). The transition
from pathological to normal mood was treated like a diffusion
or infective process, one mood state gradually transitioning to
the other.

Interest has been growing in recent years, particularly within
the psychotherapy community, in identifying biomarkers or
physiological signals/signs which could be used to track progress
in psychotherapy. Such knowledge is vitally important to the
clinician so that appropriate interventions can be undertaken
to either ameliorate the risk or facilitate on-going change. Gait
(117–119), sleep, (133) and functional connectivity (134) have
been proposed as possible biomarkers. However, the choice of
effective biomarkers depends upon our knowledge of the nature
of the states and of their transitions, to which we now turn.

DYNAMICAL PHASES, PHASE
TRANSITIONS, AND THE CONTINUUM

Everyone is familiar with the fact that water, at different
temperatures, possesses distinct phases which are distinguished
by a number of intrinsic characteristics such as density,
conductivity, tensile strength, specific heat, compressibility,
viscosity, and so on. These characteristics persist over a
range of contexts described by (controllable) variables
such as temperature, volume, pressure etc. Likewise,
particular characteristics of behavior persist across a range
of environmental, social and occupational contexts. These
persistent characteristics constitute the behavioral equivalent

of a phase of matter. When normative, they are referred to as
temperament. When maladaptive (pathological) they become
expressions of chronic mental illness. Physicists have long
been interested in understanding not only the structure of
these distinct phases but also the transitions which take place
between them as the controllable parameters are varied (135).
Likewise, therapists have been interested in the transitions
between normative temperament and pathological illness and
vice versa. Physical phase transitions have turned out to exhibit
some remarkable properties—universality being perhaps the
most striking. It has been found that for many transitions,
the functional form of the relationship between the internal
characteristic of interest, say specific heat, and the controllable
parameters, is universal in the region of the controllable
parameters surrounding the point at which the transition occurs
(136, 137). Moreover, in the region surrounding a transition,
measurements of various attributes may fluctuate, and these
fluctuations often follow particular distributions, in particular
power law distributions. This has allowed physicists to identify
several markers to indicate when a transition is at hand (138).

A comparable notion of phase and phase transition in
neurobiology and psychiatry is much more challenging. Matter
phases are static. However, time and dynamics are fundamental
to the concept of behavior, requiring a concept of dynamical
phase and dynamical phase transition. Behavioral systems are by
their very nature, open systems, and contextuality also plays a
fundamental role. Matter phases are stable, and behaviors too are
generally stable, at least relative to the specific functionality being
expressed by the behavior. A behavioral response should remain
more or less the same over a wide range of conditions. It does
an organism no good if it can only respond correctly if it is in
precisely one physiological state (139, 140).

The iterated logistic map is a simple discrete time dynamical
system which illustrates the notion of a dynamical phase. The
logistic map is defined asf (x) = µx(1− x) where x lies in the real
interval [0, 1] and µ lies in the real interval [0, 4]. The dynamical
action is generated by iterating this map, so that a trajectory
with initial state x is given as x, f (x), f (f (x)), f (f (f (x))), . . . The
parameter µ is a control parameter, held fixed for a given
trajectory. Changing its value results in a new dynamical system.
It can be thought of as representing the internal conditions
of the system. Figure 1 shows the points that make up the
limiting trajectory as a function of µ. As µ increases from
0 to 4 this limiting trajectory changes from a single point,
to two points (period 2), to four points (period 4) and so
on indefinitely (called a bifurcation sequence). In the initial
stages, there is a range of values of µ over which the limiting
set has the same structure, although as µ increases these
intervals become ever smaller until eventually they become single
points and chaos ensues. Each non-zero interval represents a
dynamical phase, a region over which the character of the
dynamics remains constant. The specific trajectories change, but
the qualitative form of the trajectory (here, periodicity) remains
constant. After the transition to chaos is crossed there are
regions in which there are no longer dynamical phases, although
there are still dynamical states, each corresponding to a given
value of µ.
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FIGURE 1 | Bifurcation diagram for the logistic map. The diagram exhibits the attracting set as a function of the control parameter µ.

Unfortunately there is another meaning of phase which has
been used to define dynamical phases in neurodynamics and
which must be distinguished so as not to cause confusion.
The second definition of phase derives from the study of
waves. If one compares two waves of identical frequency it
may appear that the time course of one wave seems to be
delayed by a certain amount relative to the other. This delay is
called a phase difference. Describing the first wave as A sin(ωt),
the second wave can be described as B sin(ωt + φ) where
φ is the phase (or phase difference). Surface recordings from
large neural ensembles display oscillating patterns that resemble
waves. Wave-like synchronization of the activity of collections
of neurons has long been proposed as fundamental to neural
information processing (141, 142). Freeman was one of the
first to suggest that phase relationships in EEG signals could
be used to define a concept of dynamical phase in the brain
and that such phases could be fundamental to information
processing. Individual dynamical phases could be recognized
by the phase cones (143) associated to a collection of neurons.
Within a phase, the phase cones are narrow, suggestive of
highly synchronized neural activity, while during transitions
between phases they expand. Freeman showed such changes

in surface EEG recordings of the olfactory system and showed
that different phases corresponded to different odorants with
transitions between them associated with a divergence in the
phase cones.

Freeman developed these ideas into a theory of mind (143–
146) and introduced the idea of patterned attractors (143).
A more general form of synchronization has been observed
between complex systems and their environments, without the
need for synchronization among the individual elements of the
systems. This has been termed transient induced global response
synchronization (TIGoRS) (147–150) and is particularly relevant
to open dynamical systems.

The identification of dynamical phases naturally leads to
the study of transitions between dynamical phases and their
signatures (151, 152). One approach to such transitions is
through the study of intermittency and edge states (58–60,
153). Evidence for phase transitions can often be found in the
distribution of fluctuations and rare events (138). Fluctuations
within dynamical phases should not alter the geometry of
the trajectories, and so are expected to appear like simple
noise, typically following a Gaussian distribution. At the point
of transition between dynamical phases, fluctuations can be
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expected to take the system into distinct dynamical phases,
transiently generating distinct dynamical signatures rather than
simple noise. Under such conditions, fluctuations will often
follow a power law distribution, suggested by the occurrence of
black swan or extreme events and heavy tails.

Critical points or regions are of interest because distinct
dynamical phases lie close to one another in the control
parameter space, and thus small perturbations can shift the
system quickly from one dynamical phase to another. Freeman
suggested that brains utilize homeostatic mechanisms which keep
them functioning nearby to a critical region, which permits rapid
shifts between dynamical phases in response to environmental
contingencies (154). This has spawned research to identify
signatures of criticality which could be used as markers of
transitions (155–159). There have been attempts by clinicians to
try to use some of these markers to provide an “early warning
sign” for when a patient is at risk of transitioning into a clinical
episode. Some candidate early warning signs are critical slowing
down in depression (160) and sudden gains and transient spikes
in PTSD (161) and OCD (162). Schiepek and Strunk (163)
described twomeasures useful for identifying critical fluctuations
and phase transitions in clinical time series data (Fluctuation
intensity F, Distribution D, and Dynamic Complexity FD). The
idea of criticality has been applied in psychotherapy (162, 164),
Alzheimer’s disease (165, 166), chronic disease (167). In addition
there have been attempts to use biomarkers of transitions to assist
in the prediction of transitions (167, 168).

The characteristics of criticality in the nervous system may
not follow the standard profile. In Beggs and Timme (169),
cortical motor neurons revealed surprisingly weak correlations
but wide dispersion, contrary to standard models of criticality
(170). This suggested a second form of criticality dominated by
inhibition yet nearly unstable due to heterogeneous connectivity
(170). The idea of a subcritical state has been proposed to allow
for information processing flexibility while avoiding pathologies
such as seizures (171).

An animal model of OCD exhibited dynamical phases (98).
Single injections of the D2/D3 agonist quinpirole increased
locomotor activity while repeated injections over the long term
resulted in several persisting changes: rats returned to two sites
in the environment approximately five times more often than
controls, the recurrence time to these two sites was ∼1/20th
that of the controls and the dwell time increased, Lempel-Ziv
complexity declined [0.95 ± 0.16 (subjects) vs. 1.20 ± 0.01
(controls), p < 0.001], and entropy declined [0.709 ± 0.005
(subjects) vs. 0.888 ± 0.003 (controls)]. Chronic quinpirole
injections appears to induce a distinct dynamical phase. This
appears in keeping with the FET model which attributes a
role for dopamine in motor tempo, plasticity and orientation
to probabilities.

Mental states have often been modeled as dynamical
attractors. The attractor approach, however, explicitly ignores the
initial transient behavior and only focuses upon asymptotic or
very long term behavior (i.e., where it ends up after it settles
down). The bifurcation diagram shown in Figure 1 depicts the
attractors for the logistic map as a function ofµ (not trajectories).
In the conception of dynamical phases of Freeman and many

others (144–146), these attractors play the role of dynamical
phases, and transitions occur as a result of perturbations of the
states, resulting in the system transitioning to a new trajectory.

The fundamental flaw in the attractor approach as applied
to behaving systems, particularly neural systems, is that the
dynamic, that is, the function f from which the time evolution
is generated, is not isolated. Indeed a fundamental characteristic
of neural systems is that they are dispositional, meaning that the
dynamic itself changes as a result of changes in environmental
conditions, both internal and external. The classic example of this
is the lobster stomatogastric ganglion, a 30 or so neuron network
which undergoes functional rewiring as a result of changes in the
hormonal environment as food is processed through the lobster
gut (172). This single network is able to carry out the roles of
many different networks through this functional rewiring. These
dispositional interactions are ubiquitous in nervous systems. The
majority of receptors are of the g-protein coupled variety, which
alter membrane or receptor responsiveness to depolarizations
induced by neurons coupled through ligand channels. Thus,
neurons which act upon g-protein coupled receptors alter the
dynamical response of their target neuron, thereby altering its
disposition to respond to stimuli (19).

The phase transitions which now occur can come in many
forms: transitions between attracting states of a fixed dynamics,
transitions between attracting states of different dynamics, a
combination of both types, or in the worst case, transitions
between dynamics without relaxation to an attracting state of
any of the individual dynamics, instead being transitions between
attractors on a space of dynamics or possibly even higher level
emergent structures. The complexity of this problem can be
illustrated with a simple example. Let us return to the simple
logistic map and consider three situations in which two logistic
maps are coupled to one another. In the first case (forcing), the
output of onemap serves as a perturbation of a state of the second
map. This can be described as

System 1: f (x) = µx(1− x)
System 2: g(y) = νy(1− y)+ ε(x)

In the next two scenarios (dispositional), the output of one
map alters the control parameter of the second map, thus
dispositionally driving the dynamics of the second system. This
can be described as

System A: h(w) = λw(1− w)
System B:k(z) = g(w)z(1− z)

The map g can be multiplicative (g(w) = kw) or additive (g(w) =
a + hw). In Figures 2, 3 the driving system is an autonomous
logistic map. The values (3.5, 3.55, 3.6) refer to the value ofµ used
to simulate the driving system. µ = 3.5 corresponds to a period
4 system, µ = 3.55 is also a period 4 system but more widely
spread on the interval [0, 1], while µ = 3.6 is approximately
a noisy period 14 system. In Figure 2, the upper two graphs
illustrate multiplicative dispositional interactions for λ= 3.5, 3.6,
respectively and k = 4. The bottom two graphs illustrate forcing
interactions with ν = 4 and ε = 0.1. The upper shows a µ = 3.6
system being driven by a µ = 3.5 system, while the lower shows
a µ = 3.5 system being driven by a µ =3.6 system. Note that
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FIGURE 2 | Time series for a logistic map with different couplings. (A) Multiplicative dispositional map f(x)=4yx(1-x) where y is the output from g(y)=3.5y(1-y).

(B) Multiplicative dispositional map f(x)=4yx(1-x) where y is the output from g(y)=3.6. (C) Forced map f(x) =3.6x(1-x)+0.1y where y is the output from g(y)=3.5y(1-y).

(D) Forced map f(x) =3.5x(1-x)+0.1y where y is the output from g(y)=3.6y(1-y).
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when the central system is periodic [multiplicative 3.5 and forced
(3.5, 0.1, 3.6)], the resulting time series appears to be periodic
or nearly periodic. Likewise when the central system is noisy
the resulting time series appears noisy. However, Figure 3 shows
that this is not necessarily the case. The top graph shows the
time series for an autonomous system with µ = 3.55, a 4 period
system. The second and third graphs illustrate multiplicative
dispositional interaction (k = 4) and additive interaction (a =

3, h= 1). All three show periodic behavior. However, the bottom
graph illustrates an additive interaction with a= 3.5 and h= 0.5.
This time series is clearly not periodic. The reason is that the
driving function g now takes the control parameter well into the
chaotic range for at least part of the time, introducing an intrinsic
stochastic element into the dynamics.

The point of these illustrations is to show that knowledge of
the time series alone will not yield insights into the nature of
the underlying dynamics without an underlying model. In multi-
scale, multi-level systems it is necessary to examine the system at
all dynamically relevant levels if reasonable and effective models
of the dynamics are to be obtained. There needs to be an on-going
interaction between theory and experiment, so each can guide the
other into a deeper understanding.

Another fundamental issue, which has received scant
recognition in the literature, is the presence of contextuality. At
its most basic level, this is a recognition that the behavior of
a system depends in part upon the behavior of its immediate
environment. At a deeper level, it reflects the fact that
behavior is generated, not elicited. There is no fixed internalized
representation or program which is activated in response to
some event in the environment. Instead, every response must
be generated “on the fly,” often using different neural systems
to do so. At best, internalized information acts like a play;
it broadly specifies the outcome but not the participants. The
generative and interactive nature of behavior results in a deeper
form of contextuality which was recognized in physics nearly a
century ago in the probability structure of quantum mechanics
(173–175). It was also observed in psychology, particularly in
decision theory, but only recently recognized as contextuality.
In recent years it has been recognized as contextuality (176–
178). In fact contextuality of a form similar to that observed
in quantum mechanics has been observed in psychological
experiments at both the social (179) and the individual level
(180). This is a profound observation, because it demands
a re-thinking of the use of probability theory in describing,
modeling and analyzing behaving systems. Problems in the naïve
application of Kolmogorov probability theory to biomedical
phenomena have already been noted (181). The recognition of
contextuality demands a shift toward the use of non-Kolmogorov
probability theory such as Khrennikov’s contextual probability
theory (173) or Dzhafarov’s contextuality by default model (176).
A failure to take contextuality into account means that inferences
drawn from the use of statistical analysis risk being erroneous,
particularly in any situation in which assessments involving
multiple conditions are carried out, something which is common
in the biomedical sciences. There are several excellent books on
the subject of non-Kolmogorov probability as its applications in
psychology, economics and physics (174, 175).

DUAL DETERMINANTS OF BEHAVIOR:
ENERGY AND INFORMATION

Formost of its history, the physical sciences have been dominated
by the concept of energy. In ancient times this was represented by
the phenomenon of fire. By the time of Leibnitz it had become vis
viva, the live force. In theNineteenth century themodern concept
of energy began to emerge along with its various manifestations,
transformations and constancy. These ideas became formalized
in the laws of thermodynamics, the Hamiltonian function (total
energy), the Lagrangian (difference between kinetic and potential
energy) and the principle of least action (the time integral of the
Lagrangian along a trajectory takes an extremal, usually minimal,
value) (182).

In the latter half of the Twentieth century a new
construct arose: information. Several disparate areas
of research contributed to this—ethology, semiotics,
biosemiotics, computation theory, semantics, automata theory,
communication theory (5, 183, 184). Shannon’s concept of
information (183) played a crucial role, and its intimate
connection to the notion of entropy in physics brought it to the
attention of mathematicians and physicists. The development of
the digital computer subsequently led to the information age.

Physical systems are described almost entirely by either
their Hamiltonian or Lagrangian and follow the principle of
least action. Biopsychosocial systems, however, are only partly
determined by energy. Indeed most biopsychosocial systems are
open systems, continuously interacting with their environment
while maintaining a fairly constant throughput of energy
sufficient to carry out any necessary behavior. Instead, the
behavior of biopsychosocial systems is also determined by
information, usually in the form of patterned interactions.

Biopsychosocial systems exhibit dynamical features that
render simplistic, energy dominant, deterministic models at best
cartoon stereotypes. Gerstein and Mandelbrot (185) showed
that the release of neurotransmitters was a stochastic process,
and Shadlen and Newsome (186) showed that the neural spike
train response to a given stimulus was also stochastic. They
suggested that a collective of neurons provided, at best, only a
noisy estimate of a wave. This suggests that the “waves” that
are considered essential to neural information processing do
not actually exist at the level of individual neurons but instead
represent emergent phenomena at the level of neural populations.
Moreover, the individual neurons taking part in the processing
of some particular information, such as spatial location (187)
or long term memory (188, 189) are fungible, meaning that
they may take part at one time when processing information
but a different collection of neurons will take part when the
same information is processed at a later time. Any dynamic
serves more as a play, with individual neurons serving as players.
The generative nature of neuronal dynamics has already been
mentioned. A crucial issue is how to keep such a system stable.

Energetic systems are stable by virtue of being in a local energy
minimum. An information system is in continuous interaction
with a dynamic environment, resulting in adaptations over
time. There is no analog of energy, no minimum principle.
Instead one observes a consistent coupling of environment and
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FIGURE 3 | Time series for a logistic map with different couplings. (A) Autonomous logistic map f(x)=3.55x(1-x). (B) Multiplicative dispositional map f(x)=4yx(1-x)

where y is the output from g(y)=3.55y(1-y). (C) Additive dispositional map f(x)=(3+y)x(1-x) where y is the output from g(y)=3.55y(1-y). (D) 2nd additive dispositional

map f(x)=3.5 +0.5y)x(1-x) where y is the output from g(y)=3.55y(1-y).
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system responses. One may think of one pair of system (S)
and environment (E) transients as giving rise to the next pair.
Formally this can be written as (S1 :E1) → (S2 :E2). Such a
relation, sometimes called a production rule, bears a similarity
to an if-then statement in formal logic.

In mathematical logic, the logical equivalent of a dynamical
trajectory is a sequence of formal deductions from a fixed set
of axioms. The axioms are analogous to the initial conditions
of a dynamical system. The rules of inference are analogous
to specifying the dynamics of the system. Logical consistency,
requiring that deductions do not lead to contradictions, is akin
to dynamical stability, since inconsistency means that anything
can be derived. For an information driven system, consistency
must be supplemented with additional criteria—the behaviors
must generally follow some kind of script, schema, expectation,
functionality, or ecological validity. The rules of mathematical
logic can be expressed as production rules. This idea can be
expanded to consider production rules more generally and
require that these rules satisfy additional criteria relevant to the
particular information setting.

Dynamical systems can also be described in terms of
production rules. For example consider a field f which satisfies
a differential equation of the form

∂L

∂f
−

n∑
i=1

∂

∂xi

∂L

∂(∂f /∂xi)

where L is the Lagrangian for the system. Such a partial
differential equation may be converted into a production rule by
first transforming it into an integral equation using the method
of Green’s functions. For suitable boundary conditions one can
construct a propagator K(t, x : t0, x0) which can be thought of as
propagating an effect (energy, information etc.) from one spatio-
temporal point to another. The function f can be constructed
from an integral equation

f (t, x) =

∫
K(t, x : t′, x′)f (t′, x′)dt′dx′

The propagator labels edges in a causal graph which represents
information flow in this system. For example we have edges

of the form 9(t, x)
K(t1,x1 : t,x)

→ 9(t1, x1). In a continuous system
there would be an infinitude of such edges but as one will
see, the Process Algebra approach described below replaces the
continuous system with a finite, discrete system while effectively
generating more or less the same function.

Dynamical systems concepts have generally focussed on
autonomous systems, that is, systems that are isolated from
their environment (although there is a rich engineering literature
on control theory and a subfield within physics dealing with
open systems). Autonomous and open systems behave in
distinctly different ways. Understanding these differences is
vitally important for understanding behavior. To illustrate this in
the context of behavior, consider a classical dynamical systems
model, the cellular automaton, in which a discrete and finite
collection of interacting cells, capable of expressing a finite
set of states and following a fixed set of rules can generate a

variety of spatiotemporal patterns. These automata have been
subdivided into 4 classes according to the symmetries exhibited
by their (autonomously) generated patterns: fixed point, periodic,
complex and chaotic. In the presence of external perturbations
(akin to sensory inputs), entirely novel behavior emerges
(147, 148, 190, 191). One striking phenomenon, important
for understanding neural information processing, is transient
induced global response synchronization (TIGoRS) (148, 191).
In this paradigm, a fixed spatio-temporal pattern (whose spatial
extension matches that of the automaton and temporal extension
is arbitrary) is sampled randomly at a low fixed frequency, usually
5–20% of the pattern cells. These pattern samples are then fed
into the cellular automaton at corresponding spatio-temporal
points, thereby perturbing the state of each cell (for simplicity,
most often changing the state of the input cell to match that of
the pattern sample—called recognition mode).

For example, a cocktail party automaton is an adaptive cellular
automaton in which the rules of each cell are allowed to adapt
at each time step depending upon the response of a majority of
cells having the same neighborhood state. Figure 4 illustrates this
for a 100 cell automaton simulated for 450 time steps. From left
to right the figure shows the output of the automaton from two
different initial conditions and under two different samples at the
same frequency (here 10%), followed by the discordance between
the two outputs followed by that between the first output and
the pattern, and then the rule configurations and then end of
the two runs. Note the very low discordance between the output
and the pattern. A random 10% sample of the pattern enabled the
automaton to reproduce the pattern to nearly 93% accuracy.

Several things can be noticed in this situation. First of all, there
is, in general, no apparent relationship between the trajectory
of one cell and that of any other cell. In particular, the kind of
synchronization of trajectories of individual cells suggested in
neural systems seldom occurs. Second, the symmetries of the
autonomous system are generally broken, sometimes to the point
that the subsequent global trajectory of the automaton appears
random. Third, depending upon the manner in which the input
sample alters the local state of a cell, the global output of the
automaton may appear similar to the pattern being sampled.
This may occur across a broad range of initial conditions (191),
and even under conditions in which the rules which govern the
transitions of the individual cells are allowed to adapt over time
(147, 190), and it is important to note that the input sample
varies each time. Indeed the presence of fast adaptation appears to
facilitate this synchronization between the sampled pattern and
the global automaton trajectory.

TIGoRS refers to the appearance of synchronization between
the global trajectories of a system, across multiple initial states
and local rule configurations, irrespective of any synchronization
between individual cells. TIGoRS results in a stable coupling
between sets of environmental transients and sets of system
responses. This kind of response is much more robust than
that necessary for phase-locked synchronization of trajectories of
individual cells and more reflective of the fungibilty, generality,
transience and emergence which characterize neural systems.

TIGoRS can be described using production rules. One may
think in terms of a stimulus-response system, and describe the
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FIGURE 4 | One hundred cells cocktail party automaton simulated with two distinct 10% random samplings of a fixed pattern (100 cells × 450 time steps). Run A and

Run B shows the automaton outputs. Out-Out shows discordance between Runs A and B. Out-pat shows discordance between Run A and the pattern. Rule A and

B show the distribution of rules across the automaton at end of runs A,B respectively. The individual rules are numbered from 0 to 255.

relationship as S
k
→Rwhere S is the stimulus transient originating

in the environment, k is the sampling rate and R is the response
of the system. In the presence of TIGoRS it is possible to replace
both S and R with sets of stimuli and responses (thus replace
individual behavioral acts with behaviors) and preserve the
production rule structure. More precisely, one should consider
pairs (S,R) and production rules of the form (S1,R1) → (S2,R2),
which one will recognize as meta-level production rules, that is,
production rules over collections of production rules.

The phenomenon of TIGoRS is important for several reasons.
First it suggests that, from an information point of view, the
important object for study is not the individual state but rather
the collection of global spatio-temporal transients, corresponding
to the environmental and system behaviors. Second, it shows
that information processing and response generation can occur
“on the fly” and be generated through interactions; it does not
need to be specified in advance as some kind of internalized
representation or response script/program. Third, it establishes
a meta-level relationship between environmental transients and
system transients. This higher level relationship takes the form of
a stimulus-response relationship. A consequence of this is that an
aspect of information flow is now introduced into the dynamics
of the system-environment complex.

Most of the focus in neural and network dynamics has
been on the synchronization of activity of individual agents
within the system. As described previously, this idea formed
the core of Freeman’s work on dynamical phases (142–146)

and has been extensively studied in the neuroscience literature,
becoming a dominant paradigm. Synchronization, however, is
not so relevant at the macroscopic level. Workers in ant colonies
do not synchronize their behavior, they cooperate. Workers
in a factory too do not synchronize, they cooperate. Mass
action appears to be important in both neural and ant behavior
(142, 192, 193) but amplitude-phase synchronization is not
necessary for its implementation, only cooperation with coherent
timing. Natural patterns do not exhibit global synchronization
of elements, rather they exhibit regions of local homogeneity
within global heterogeneity organized in a coherent pattern. Just
as periodicity and recurrence are different, but related constructs,
so are notions of synchronization and cooperation/coherence.
In TIGoRS, information is expressed through global cooperation
and coherence, not amplitude-phase synchronization.

The idea of transient in the definition of TIGoRS should not
be equated to the concept of transience. In the study of dynamical
systems, many phenomena exhibit transience, meaning that they
exist for a finite duration and then disappear, possibly to return
at a later time, possibly never. Intermittency is characterized by
its transience. So is the concept of transient chaos (194–196). In
the study of these phenomena, the central object, a state of the
dynamical system, represents a configuration of its elements at
a single point in time. Transients, on the other hand, are finite,
non-zero duration trajectories of dynamical systems. This has the
effect of temporally discretizing the original dynamical system
and making spatio-temporal patterns the central object of study,
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rather than individual states. The study of synchronization in
networks advances (58, 197, 198) even if it should be thought of
as a special case.

This intriguing aspect formed the basis for defining a class
of dynamical systems called dynamical automata (147, 199)
and what Lumsden and Dufort called Sulis machines (200).
These are essentially automata which act on sets of suitably
defined spatio-temporal transients. However, the dynamics of the
automaton itself is defined upon a set of more primitive states
and the spatio-temporal transients are defined upon these states.
The dynamical automaton is actually an emergent dynamical
system which supervenes upon the lower level state dynamics.
Its existence hinges upon the relationship between these spatio-
temporal transients, which serve as inputs or perturbations to the
underlying automaton and as the subsequent transient dynamical
responses of the automaton. At the higher level its behavior can
be described via production rules. At the lower level one has
the usual cellular automaton rules. The existence of TIGoRS
provides one mechanism through which a simple automaton
such as a cellular automaton or neural network can become a
dynamical automaton at a higher spatio-temporal scale. Thus,
one obtains a dual systemwhich has a physical or energetic aspect
at the lower level and an informational or semantic aspect at the
higher level. This is valuable because it not merely allows for the
modeling of multi-scale, multi-level, multi-component systems,
but it provides for the unification of two seemingly disparate
modes of describing reality, the physical and the psychological.
These two domains move us to the study of process.

PROCESS AND THE PROCESS ALGEBRA
APPROACH TO THE CONTINUUM

It should be evident that the dynamics of the continuum
between temperament and mental illness, and that underlying
biopsychosocial complexity, will not be faithfully addressed using
models based upon the traditional dynamics of structurally
stable, closed physical systems. Instead there is an urgent need
to develop new mathematics, new physics, new experimental
paradigms, in order to proceed into the depths of these systems.
The previous sections have described many of the characteristics
of the dynamics underlying biopsychosocial complexity—
transience, emergence, contextuality, interactions, generativity,
fungibility, openness, and a fundamental role of information.

Conceptual thinking derives great benefit from the use of
metaphors—using similarities between the system of interest
and a second, presumably simpler or at least better understood
system—to provide guidance in creating conceptual and
predictive models and designing experiments. Two metaphors
appear promising for understanding the dynamics of the
continuum. The first comes from meteorology (43), a field
which deals with dynamics across multiple time scales (very
short, short, and long duration), across multiple spatial scales
[from that of a few meters, to that of a political county
and up to that of the entire earth (and sometimes beyond)],
and involving systems of varying scale and complexity (from
waterspouts to thunderstorms to frontal systems to climate

zones). The dynamics of meteorological systems possess most of
the characteristics of the continuum except, perhaps, for a role
for information. In forming the metaphorical linkage, note that
behavior and behavioral acts occur locally and over relatively
short time scales. They form the basic phenomenological element
of the continuum. They thus bear a similarity to small, local
weather systems, which are the fundamental entities studied in
meteorology and which are also of relatively small physical and
temporal scale, and local. Note that both types of entities are
transient, emergent, contextual, interactive, generative, fungible
and open. They differ primarily in the role of information, which
is fundamental to behavior but not so for meteorological systems
(so far as we know). Nevertheless, meteorological systems display
many of the same characteristics at least in so far as the flow of
energy through these systems is concerned. Indeed, intermittency
has been studied in climate models in shifts between the snowball
climate and the warm climate (153). Moreover, the metaphor
goes both ways, with climate modelers describing transitional
states as “Melancholia” states (in homage to the eponymous film
which is itself a meditation on despair) (201).

In this metaphor, therefore, one can associate behavior and
behavioral acts to local weather. Continuing the metaphor,
temperament, which is normative and refers to long duration
patterns of behavior extending across a range of different
contexts, can be associated to climate, which describes long
duration patterns of local weather across a range of seasonal
contexts. Acute mental illness, which consists of short to medium
duration patterns of maladaptive, dysfunctional, pathological
patterns of behavior can be associated to frontal systems
and storms, which are short to medium duration patterns
of dysfunctional, pathological weather. Chronic mental illness,
which consists of long duration patterns of altered or
dysfunctional, pathological behavior can be associated to climate
change (13, 14). The purpose for exploiting this metaphor is not
to draw on the specifics of the formal models, the differential
equations and such used to describe these meteorological
phenomena, which are clearly inappropriate, but rather to draw
on the qualitative dynamical constructs and in particular various
time series methodologies for identifying various dynamical
phases and their transitions, and in particular, identifying
markers of critical states.

There is a deeper layer of complexity in this metaphor which
can also be exploited. The study of weather and of climate is not
merely a study of atmospheric parameters such as temperature,
pressure, humidity, wind sheer and so on. It also depends
upon non-atmospheric parameters such as terrain, distribution
of water and vegetation, albedo, ozone and greenhouse gas
distribution and composition, solar cycle and so on. In the
parlance of dynamical systems theory, the atmospheric variables
are the state variables, the observables. The non-atmospheric
variables collectively form the boundary conditions, or the
control parameters. In dynamical systems theory the dynamic
is typically described by either a differential or an integral
equation and trajectories are functions of time which satisfy
these equations. However, in general, such equations cannot
be solved without first specifying the initial and the boundary
conditions. The initial condition refers to a specification of the
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form of the t=0. The boundary conditions generally refer to
specifying the form of the solution as t, x → ∞ and sometimes
on other spatiotemporal regions as well. However, there are
often additional parameters which form part of the equation,
explicitly or implicitly, which can vary depending upon local
circumstances, and which determine the ultimate landscape of
trajectories. These boundary conditions may themselves change
over time but usually at a time scale which is much longer than
that of the phenomena of interest. One boundary condition, one
that is subtle and frequently ignored, is the choice of the geometry
of the space of dependent variables. This is the mathematical
analog of the terrain in meteorology. This space is generally
made explicit in the integral equation specification since it defines
the region of integration, but it frequently is left implicit in the
differential equation form. Usually this space is taken to be a 3-
dimensional Euclidean space, which in the meteorological setting
means a flat Earth.While that may appeal tomodelers and certain
members of the public, it makes a rather poor fit to reality.

Either the differential or integral equation formulation can be
represented mathematically as a functional, that is, a function of
functions, in the form. This can be expanded by making explicit
the internal parameters and the boundary conditions and write
this as

F(f |a1, . . . , an; g1, . . . , gk|α1, . . . ,αj;X) = 0

where the ai are tunable constants, gi are forcing functions (such
as potentials and external forces), αi are external distributions
(such as water, vegetation) and X is the space of the dependent
variables (terrain). For example the Schrödinger equation can be
written as,

ih̄∂9/∂t +
h̄2

2m
∇29 + V9 = 0

or as F(9|m;V|X) = 0 where m is a tunable constant (mass), V
is a forcing function and the space X is implicit.

Temperament and mental illness have been suggested to
represent different degrees of dysbalance among the NBRS. One
should not misconstrue this to imply that there are simple
dimensional scales along which one can define temperament
for low values and mental illness for high values. The use
of the term dysbalance is meant to suggest changes in the
dynamics of the interactions among the various NBRS. In other
words, temperament and mental illness are thought to represent
different regions in the landscape of all possible dynamics linking
the NBRS to one another. They are to be viewed as distinct
dynamical phases. Logically, therefore, there should exist distinct
types of dynamical phase transition linking them. There is an
additional subtlety, which is that temperament does not cease
in the presence of mental illness. One does not supplant the
other, as a simplistic dimensional model might suggest. Instead
temperament persists, but as the results of the FET studies
(12, 21–24) illustrate, distinct patterns in temperament profiles
seem to appear in the presence of mental illness. This suggests
that although temperament and mental illness may supervene
upon the same set of NBRS, they are manifesting subtly different
dynamical characteristics.

In the meteorological metaphor, temperament and acute
mental illness are considered analogous to climate. However,
climate has many determinants which make up the boundary
conditions for the meteorological equations—terrain, surface
constitution, vegetation cover, albedo and so on. Some of
these are more enduring than others. Some are more readily
altered than others. Since temperament exists from birth, prior
to socialization and in the absence of illness, particularly
intracerebral trauma and endocrinological disorders, it persists
relatively unchanged throughout the life span. This suggests
that temperament may have more to do with the enduring
boundary conditions such as terrain, surface constituents,
perhaps vegetation cover and the like. Chronicmental illness may
affect those, but since in many cases it may be ameliorated or
even reversed, this suggests that it may be related more to the
more changeable boundary conditions such as vegetation cover,
albedo, ozone and greenhouse gases concentration and so on.
The questions now becomes whether it is possible to observe in
the structure and dynamics of the NBRS, characteristics which
play the role of dynamical boundary conditions, and whether it is
meaningful to separate them out into enduring and ephemeral
categories. These are important considerations because it is
highly likely that such characteristics will determine distinct sets
of biomarkers. The search for appropriate biomarkers which may
be used to develop a taxonomy of temperament and mental
illness is of pressing concern (202).

Of course what makes this so challenging is that these
boundary conditions do not reside in the structure of the space
of dependent variables, such as the space-time structure, or the
solution space, but rather temperament and mental illness are
expressions of higher level dynamics, so that their underlying
spaces are landscapes of dynamical systems, each of which
possesses its own set of boundary conditions. The boundaries for
these higher order dynamical systems are thus space of lower level
dynamical systems which possess particular kinds of structure.
The study of such complexity has barely begun, but it clearly
presents a wealth of opportunity for the development of novel
forms of mathematics, physics, biology, psychology, psychiatry,
neuroscience and so on. A multidisciplinary collaboration
is essential.

The meteorological metaphor captures only the energetic
aspects of the continuum. For the informational aspects there
is a second metaphor worthy of consideration. This is collective
intelligence, the archetypal example of which is the social insect
colony (192, 193, 203). At first glance one might think that social
insect colonies and NBRS have little in common. But for the
point of view of the dynamics of information processing there
are striking similarities which may be exploited in developing
theoretical frameworks and models.

The ability of a social insect colony to engage in ecologically
meaningful behaviors beneficial to the well-being of the
colony depends critically upon the effectiveness of interactions
between the members of the colony in communicating
information about the environment, followed by actions upon
that environment which serve to preserve or amplify that
information. Communication between ants takes several forms.
There can be direct contact between individual ants, such as
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rubbing antennae on each other’s bodies, or the carrying of one
ant by another. The bodies of workers may be used to form
temporary structures, such as nests in army any (Eciton burchelli)
colonies or bridges in left cutter (Atta sexdens) colonies, which
in turn enable other works to carry out essential functions. They
may emit local pheromones which are used to signal colony
membership and perhaps other roles. Then there are global
pheromones which are released into the environment which are
used to shape foraging and defensive active. A more subtle form
of communication is those stigmergic products, patterned local
structures which are used to stimulate specific activities in the
construction of nests for example. Honey bees are famous for
the waggle dance, used to communicate information about the
location of food sources.

One of the main NCRS underlying both temperament and
mental illness is the monoamine system. In spite of its relatively
small size (having around 250, 000 neurons in the raphe nuclei),
the serotonin system plays a fundamental role in structural
maintenance and neuroplasticity (204). When the serotonin
system is active, it results in a tonic production of serotonin,
which binds to 5-HT1A receptors on glial cells resulting in
the production of a glial neurite extension factor called S100B.
This factor stabilizes the microtubular structure which forms
for the cytoskeleton of neurons and astrocytes. During sleep,
when the serotonin system is inactive, production of this factor
ceases. The result in a reorganization of microtubular structures
leading to dendritic reorganization. Every single night, dendrites
retract, and the following day extend, giving rise to local
neuroplasticity. Azmitia has suggested that the serotonin system
plays a holistic role, regulating the function of the nervous
system as a whole, even if doing so through local activity (204).
It helps to maintain the integration and dynamic stability of
the brain as a whole. It is also a plastic system in its own
right, adapting to various sensory inputs and glial cell activity,
so as to maintain a dynamic homeostasis in response to an
ever changing environment. The important point in so far as
information processing is concerned, is the dynamic nature
of dendritic connections. These are thought to be the site at
which information processing takes place within the central
nervous system. They form the fine structure of the wiring
of the brain. Yet, if this local wiring potentially changes each
night, how is it that behavior remains stable at the macroscopic
level? Social insect colonies are able to repeat ecologically salient
behavior at the macroscopic level even though each time they
do so it involves different workers behaving in different ways.
Nevertheless, the end result serves the same function for the
colony as a whole.

The standard teaching regarding information transmission
within the nervous system is that it takes place at the synapse.
Ligand gated synapses, which result in direct alteration of the
neuronal membrane potential, and G-coupled protein receptors,
which alter membrane responsiveness, have been discussed
previously (19). Information transmission may occur as a result
of mass action, when large number of neurons initiate action
potentials in a more or less synchronized manner and impinge
on a receiving neuron. This is analogous to quorum threshold
decision making in social insect colonies, in which collective

behavior on the part of the colony is initiated whenever
eliciting behavior on the part of individual workers exceeds a
critical threshold.

The volatility of these two forms of synaptic transmission
make them poor candidates for the source of the dynamics
underlying temperament at least, and possibly for many forms
of chronic mental illness as well. In recent years, however,
it has been realized that there are many non-synaptic modes
of information transmission in the nervous system as well.
Volume transmission, the release of neurotransmitters or
neuropeptides into the extracellular space which can then diffuse
to distant neurons, has been shown to play a prominent
role in neurodynamics (205–209), particularly in long duration
phenomena such as mood (205). This may be the central means
by which serotonin acts (204). Another mode of transmission
which has received insufficient attention in psychiatry is via gap
junctions, where two neurons (or cells generally) are directly
coupled (206). A third mode of transmission which has not
been recognized much at all is ephaptic transmission, which
occurs between cells which are physically adjacent but not
synaptically coupled (209). All of these processes are independent
of the dynamics associated with dendrites. As such they may
be much less sensitive to fast adaptive changes and learning,
and thus present themselves as more likely candidates for the
dynamical mechanisms underlying temperament (and perhaps
some chronic mental illnesses). These additional forms of
information transfer all have counterparts within social insect
colonies. Volume transmission is directly analogous to global
pheromone secretion. Gap junctions have an analogy in direct
touching of individual workers with one another. Ephaptic
transmission is analogous to information transfer when large
numbers of workers have joined their bodies together to form
structures like nests and bridges. Stigmergic artifacts play a role
akin to tools, construction artifacts and sociocultural memes in
that they involve a feedback interaction between the environment
and behavior. Thus, when exploring specifically information flow
in NBRS there is much in common with that within collective
intelligence systems. The fundamental difference between a
collective intelligence such as a social insect colony and NBRS
is that the individual agents with the collective intelligence are
freely mobile. There is mobility within neuronal assemblies but
it takes place over vastly smaller spatial scales and over relatively
longer time scales, and mostly at the dendritic level, although a
case might be made for mobility of a similar kind occurring at
the receptor level, and perhaps the axonal level, albeit there only
over quite long time scales. This kind of mobility may play a role
in neuroplasticity (and therefore potentially in mental illness) but
less so in short term information processing.

The most important implication from all of this is that models
of behavior that are based upon analogies to computational
theory and thus to digital computers, or to formal logic, or
to networks, neural or otherwise, just as models based upon
structurally stable, closed dynamical systems, will all fail to
capture the deeper levels of dynamics. It bears repeating that
the dynamics of NBRS (and of behavior more generally) is
transient, contextual, emergence, generative, fungible, open (at
a minimum).
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Thus, there are two very different metaphors which can
provide some inspiration in research into the continuum between
temperament and mental illness. They are the meteorological
metaphor, which addresses energetic issues, and the collective
intelligence metaphor, which addresses informational issues.
Linking both metaphors is the concept of process. A.N.
Whitehead (210) pioneered the modern concept of process,
which he called a “philosophy of organism.” Whitehead
considered a process to be a sequence of events having a coherent
temporal structure in which relations between the events are
more fundamental than the events themselves. In Whitehead’s
view, process comes first, and material objects are emergent from
process. Contrary to the physical world view, becoming, and thus
transience, is considered as fundamental to process. Events have
a transient existence, coming into being, manifesting briefly, then
fading away. The fundamental entities in Whitehead’s theory
are actual occasions, which exist just long enough to prehend
the previous occasions and form a response, following which
they pass out of existence and become data for subsequent
events. Information plays a fundamental role and in particular,
meaning is necessary to create coherence among events (147–
149, 199, 211). Behavior has long been known to be generated “on
the fly” by an organism (212). Behavior can thus be considered
to be generated by process. On the other hand, behavior itself
also generates, and thus behavior itself can be viewed as being
a process, which in turn is generated by processes. This is
another example of the subtlety associated with the concept
of behavior and why a multi-scale, multi-level, multi-system
approach is necessary.

Processes per se exist outside of space-time, serving instead
as generators of space-time and the events within (199, 211,
213). Like the actual occasions that they generate, processes do
not move. They instead shift between periods of activity and
inactivity, and interact with one another. While active, processes
express a propensity to determine differences, manifesting in
distinct attributes and functionality, thus according to at least one
definition, they are real (211). Processes interact with one another
according to their attributes and functionalities and the actual
occasions that they manifest, and these interactions are triggered
by the manifesting of particular actual occasions.

Trofimova (214–216) has proposed several process
algebra based formalisms for describing the principles of
transience which govern processes in functional constructivism.
Her approach to process algebra uses several functional
differentiation classes, a concept of “performance” and several
universal process-trends. It applies particularly to complex,
adaptive, multiscale systems. In (214, 215) and in particular,
(216), Trofimova describes in detail the various functional
processes involved in the construction of actions: maintenance,
context processing, orientation/expansion of possibilities,
emotional dispositions, integration of programming and of
experience, storage of “habits.” She describes the dynamic
interplay that exists among these different functional “blocks”
and then explores the linkages between these different functional
blocks and the underlying NCRS that determine them at the
neurophysiological level. In particular she demonstrates the
ensemble relationships that were proposed in her functional

ensemble of temperament model. Functional constructivism
provides a promising approach to the identification of relevant
biomarkers suitable for understanding and describing the
continuum between temperament and mental illness.

A second, complimentary approach is based upon the Process
Algebra. It seeks out universal formal characteristics of high
level dynamical systems, dynamical phases and dynamical phase
transitions. It aims to examine generic mechanisms of energy
and information flow in complex adaptive systems. It is not a
particular model but instead provides a specific general formal
language for describing the actions of processes and their
interactions. For the interested reader, mathematical details have
been provided in the Appendix. The Process Algebra approach
has been applied to problems in the foundations of quantum
mechanics and is now being applied to neuronal and collective
intelligence systems. The Process Algebra was inspired by
combinatorial games (217–219), which also provide an example
of the generation of a system. In the Process Algebra language,
processes generate discrete and finite sets (causal tapestries)
of primitive elements called informons (short for informational
monads, or actual occasions) from which continuous systems
arise through emergence. A process P generates a set of
informons I = {n} (called a causal tapestry). Each informon n is
associated with a causal manifold interpretation mn (which can
represent a space-time location or a stave value), a local Hilbert
space interpretation φn(mn : z) (which serves as an interpolation
function) and a local coupling effectiveness Ŵn (which can
represent a state value or a probability value). A global state
function for the system is then constructed via interpolation as:

9(z) =
∑
n

Ŵnφn(mn : z)

The evolution of the behaving system consists of a succession of
generation cycles, each governed by a process. To each process
Pi there is a global state function 9i(z). An evolution of the
behaving system P1,P2,P3 . . . gives rise to a global history
function 91(z),91(z) + 92(z),91(z) + 92(z) + 93(z), . . . The
behaving system can be described by a collection of processes {Bi}

and its environment can also be described by its own collection
of processes {Ej}. These couple together, which can be described
by some formula in the Process Algebra Fij(Bi, Ej).

Now the processes for the behaving system and its
environment can be decomposed into component subprocess.
At a minimum they be expanded into a coupling of three
distinct subprocesses:

Ak, corresponding to afferent processes
Tl, corresponding to information transport processes
Mm, corresponding to efferent processes
Thus, each main process can be decomposed
as (A1,A2, . . . ,Ak)⊗̂(T1, T2, . . . , Tl)⊗̂(M1,M2, . . . ,Mm).
The behaving system—environment coupling can then be
written rather loosely as:

(AB

i ) ⊗̂(T B

l
)⊗̂ (MB

m)
) )

(ME

i ) ⊗̂(T E

l
)⊗̂ (AE

m)
(1)
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Note that each subprocess in the above block can be replaced
by an interactive block of subprocesses, corresponding to
reducing the scale. Likewise, each block can be replaced by a
single process identifier, as can contiguous concatenations of
processes, corresponding to increasing the scale. The inherent
fractal structure of these spatio-temporally nested processes
should be evident. Since each concatenation corresponds to the
implementation of a production rule, the flow of information
starts to become more evident. Moreover, each process can be
interpreted in terms of the informons and causal tapestry that it
generates and its associated global history function and thus its
links to energetic considerations (linked to its propagator) can be
made evident.

Dynamical phases and phase transitions can now be
considered according to a variety of different perspectives. They
can be sought in terms of geometric attractors at different levels.
They can be sought in energetic terms as local minima of a
global potential, assuming that the configuration of interactions
is conducive to such a generalization. They can be sought
in information theoretic/semantic terms in coherent sets of
production rules constraining local interactions. Moreover,
markers for phases and transitions can be sought as a function
of spatio-temporal scale.

Notions of phase at one level may become irrelevant as
one moves to higher or lower levels. At the every least the
Process Algebra formalism allows for bookkeeping when tracking
interactions and levels. However, it is more than that since each
process can be replaced by the global Hilbert space interpretation
that it generates, which can then be used to carry out specific
calculations depending upon the system of interest.

In seeking out biomarkers and statistics, the Process Algebra
formalism makes explicit the coupling between the behaving
system and its environment and the inherent contextuality
involved at every level. This is an essential step in order to move
beyond the limitations of current methods.

CONCLUSIONS

Complex systems methodologies offer much to the study of
biopsychosocial complexity, whether at the research or the
clinical level. Early forays into the use of complex systems
methods at the clinical level have already begun to reap some
rewards in terms of mood prediction and the prediction of
change in psychotherapy. The realization that the dynamics of
the biopsychosocial hierarchy is radically different from that
suggested by traditional mathematics and physics has yet to reach
themajority of clinicians and researchers. Concepts of transience,
generativity, fungibility, metastability, emergence, contextuality,

non-Kolmogorov probability, information, semiotics are not
yet part of the basic teaching into biopsychosocial complexity,
yet they are fundamental to its structure. To move forward
it is essential that theories and methodologies which explicitly
recognize and embrace these concepts be developed and applied
both at the research and at the clinical level. The dual
structure of biopsychosocial complexity as both energetic and
informational has yet to be fully exploited. The continuum
between temperament and mental illness is suggested as an
area for focus as it embraces the whole of the biopsychosocial
continuum, yet is still circumscribed. The Process Algebra is
presented here as both a language for describing biopsychosocial
complexity and a tool for modeling representative systems. The
lack of a direct application of these ideas to psychology is a
limitation of this review, but any such application would be
purely speculative at this time. It is hoped that this review
will underscore the limitations of current methodologies and
foster further research. The study of the dynamics of dynamics
and of the parallels between neuronal networks and collective
intelligence using the Process Algebra is an active focus of
research in the Collective Intelligence Laboratory.
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