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Abstract

Rats are highly social creatures that produce ultrasonic vocalizations (USVs) during social

interactions. Brattleboro rats, a Long-Evans derived rat that lacks vasopressin (AVP) due to

a mutation in the Avp gene, exhibit atypical social behavior, including fewer USVs with

altered spectrotemporal characteristics during social interactions. It is unclear why Brattle-

boro rats produce atypical USVs, but one factor could be differences in auditory acuity

between them and wild-type Long Evans rats with functional vasopressin. Previous studies

have suggested a link between increased levels of AVP and auditory processing. Addition-

ally, few studies have investigated sex differences in auditory perception by Long-Evans

rats. Sex differences in auditory acuity have been found throughout the animal kingdom, but

have not yet been demonstrated in rat audiograms. This study aimed to measure auditory

brainstem response (ABR) derived audiograms for frequencies ranging from 1 to 64 kHz in

male and female homozygous Brattleboro (Hom), heterozygous Brattleboro (Het), and wild-

type (WT) Long-Evans rats to better understand the role of AVP and sex differences in audi-

tory processing by these rats. We failed to detect significant differences between the ABR

audiograms of Hom, Het, and WT Long-Evans rats, suggesting that varying levels of AVP

do not affect auditory processing. Interestingly, males and females of all genotypes did differ

in their ABR thresholds, with males exhibiting higher thresholds than females. The sex dif-

ferences in auditory acuity were significant at the lowest and highest frequencies, possibly

affecting the perception of USVs. These are the first known sex differences in rat

audiograms.

Introduction

Vocal communication is thought to serve a key role in facilitating or suppressing different

behaviors, such as approach behaviors and play. In order for vocal communication to occur,

there are two roles that need to be present: a sender (the animal producing the vocalization)
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and a receiver (the animal perceiving and processing the vocalization). In order for vocal com-

munication to be effective, the sender needs to be able to perceive and decipher the auditory

signals being produced. Theories describing the co-evolution of communication signals and

sensory systems involve exploiting the environment in which animals live to send conspicuous

signals or exploiting the latent preferences of certain signals [1,2]. A key aspect of communica-

tion systems is a drive to maximize the signal to noise ratio for the receiver of the signal. This

maximization can be accomplished by increasing a signal’s intensity or amplitude, producing

vocal signals that degrade at a certain rate based on distance from the receiver, or by producing

signals in environments with little ambient noise. Additionally, the signal to noise ratio can

also be maximized by biological considerations such as auditory tuning of spectral (frequency)

or temporal (duration) features of the signal and the ability to average a signal over time [1].

Regardless of how signals evolve, and whether the evolution is sender driven or receiver

driven, the design of signals is not arbitrary and the differences between signals are important

[3].

Rats (Rattus norvegicus domesticus) are highly social creatures that emit ultrasonic vocaliza-

tions (USVs) during social interactions such as rough-and-tumble play behavior [4–8]. These

USVs likely serve a communicative function within different social contexts. Rat USVs have

been broadly classified into two categories: 22 kHz and 50 kHz [5,6]. The 22 kHz USVs are

monotonous vocalizations ranging from 20–30 kHz, and are thought to communicate distress,

an aversive state [5,9], or alarm (reviewed in [10]). The 50 kHz USVs are short in duration and

are thought to communicate positive, appetitive states, and are considered prosocial [5, 11–

13].

In order for USVs to serve a role in social interactions, it is imperative that rats are able to

perceive the incoming signals. Wild-type Long-Evans rats have a peak auditory sensitivity

between 8 and 16 kHz for pure tones [14,15]. This is comparable to other rat strains such as

Fischer 344, Wistar, Sprague-Dawley, and Hooded Norway rats (reviewed in [16]). Auditory

thresholds for different frequencies often vary between different strains of rats [16,17]. Addi-

tionally, the peak frequency of vocalizations often correlates with peak auditory sensitivity

within a species [18–20]. For example, peak auditory sensitivity corresponds to the peak/domi-

nant frequency in songs of Belgian Waterslager canaries (Serinus canaria [20]), calls of the

orange-fronted conure (Aratinga canicularis [21]) vocalizations from four Australian pygopod

geckos (Delma desmosa, Delma fraseri, Delma haroldi, Delma pax [19]), vocalizations of several

anabantoid fishes (Trichopsis vittata, Trichopsis pumila, Colisa lalia, Macropodus opercularis,
Trichogaster trichopterus [22]), vocalizations from Lusitanian toadfish (Halobatrachus didacty-
lus [23]) and vocalizations from Chinese webbed-toed geckos (Gekko subpalmatus [24]).

There is some evidence that vasopressin (AVP) plays a role in auditory perception. Vasoto-

cin, the non-mammalian homolog of AVP, is found in auditory processing regions of bullfrogs

(Rana catesbeiana [25]) and plainfin midshipman fish (Porichthys notatus [26–28]). Singing

mice (Scotinomys teguina and Scotinomys xerampelinus) have vasopressin 1a (V1a) receptor

expression in the medial geniculate nucleus, an area that plays a key role in auditory processing

in mammals [29]. In Lincoln’s sparrows (Melospiza lincolnii), vasotocin-immunoreactivity is

correlated with the quality of songs they hear [30]. AVP could also impact sensitivity in the

inner ear, where it binds to V2 receptors to increase water permeability [31–35]. Altered water

permeability can lead to excess water in the inner ear, which can negatively impact hearing

[31,34,36].

AVP also regulates several social behaviors, including play, social recognition, parental

behavior, aggression, and vocal communication in several strains of Wistar, Sprague-Dawley,

and Long-Evans laboratory rats, singing mice, Syrian hamsters (Mesocricetus auratus),
house rats (Rattus rattus), prairie voles (Microtus ochrogaster), meadow voles (Microtus
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pennsylvanicus), European hamsters (Cricetus cricetus), garden dormice (Eliomys quercinus),
wild house mice (Mus domesticus), guinea pigs (Cavia porcellus), and the Greater Egyptian jer-

boa (Jaculus orientalis) [37–40]. Central injections of AVP increase maternal separation

induced USVs of laboratory rat pups [41]. Conversely, pharmacological or genetic disruptions

to AVP decrease maternal separation induced USVs of infant CD and Brattleboro strain rat

pups [42–44], 50 kHz USVs of juvenile Brattleboro and Wistar rats emitted during affiliative

behaviors, and USVs of adult female vasopressin 1b knockout mice emitted during aggressive

interactions [45–47].

The Brattleboro rat is an ideal laboratory model to study the impact of lifelong disruptions

to AVP. Brattleboro rats have a mutation in the Avp gene and lack AVP throughout life [48].

This mutation has been maintained on the Long Evans background strain of laboratory rat.

Consistent with AVP’s role in social behavior, Long Evans rats homozygous for the Brattleboro

mutation (Hom) exhibit atypical social behaviors characterized by decreased social interac-

tions (including juvenile social play), decreased 50 kHz USVs, but increased huddling com-

pared to both heterozygous (Het) siblings that have one copy of the Brattleboro mutation and

wild-type (WT) siblings that do not carry the mutation (i.e., have two copies of the functional

AVP gene) [46,49,50]. Furthermore, the spectrotemporal characteristics of their 50 kHz vocali-

zations differ from the vocalizations of their Het and WT littermates. Brattleboro rats’

upward-ramp, flat, step-up, and complex USVs had lower integrated frequencies than the

other two genotypes, while step-up calls and trills differed in durations across the three geno-

types [46]. Adult Brattleboro rats have deficits in their event-related potentials to auditory sti-

muli [49] suggesting that the Brattleboro mutation may also impact auditory processing and/

or perception. Altered acoustic communication in the Brattleboro rats could contribute to

their atypical social phenotype.

Males have higher levels of AVP expressing cells in the bed nucleus of the stria terminalis

and medial amygdala, as well as denser projections to fore-, mid-, and hindbrain regions than

females [51]. The sex difference in this pathway is driven by organizational actions of perinatal

androgens, activational actions of adult gonadal steroids, and direct effects of genes on the sex

chromosomes [52]. Sex differences in AVP are thought to regulate sex differences in some

behaviors, such as social behaviors, and manipulations of AVP can have different, sometimes

opposite, actions. For example, septal infusion of a V1a receptor antagonist increases social

play in juvenile male rats, but decreases social play in females [53,54]. Similarly, septal AVP

infusion enhances social recognition in juvenile male rats, but has no effect in females [55].

For these reasons, it is important to determine whether AVP manipulations (e.g., lack of AVP

in Brattleboro rats) have a similar impact in males and females.

Females and males often differ in their sensory processing due to differing genetic material

and exposure to gonadal hormones during development [56,57]. Female mammals tend to

have more sensitive auditory thresholds than males, and females tend to retain their hearing

for longer over their lifespan [58,59]. There are sex differences in the audiograms of many

strains of mice, and these sex differences are often compounded by noise exposure and age

(reviewed in [60]). The heightened sensitivity and longer retention of auditory acuity in

females is believed to be due to the protective actions of estradiol [58]. In humans, menopausal

women given hormone therapy demonstrated better auditory acuity relative to control women

who had received no hormone therapy [61]. This was similar to findings from ovariectomized

rats that received estrogen replacement [62].

In the present experiment, we tested whether there are sex differences in the auditory acuity

of Long-Evans laboratory rats. We further asked whether lifelong disruptions in AVP impact

auditory sensitivity or potential sex differences in auditory acuity, i.e., whether ABRs of Long

Evans rats carrying the Brattleboro mutation would differ from WT Long Evans rats. We
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reasoned that if AVP plays a critical role in sensitivity, Hom rats would have higher auditory

thresholds (lower acuity) than WT rats, or would exhibit a shifted peak sensitivity to frequen-

cies that match the lower frequency of their USVs. To test these hypotheses, auditory brain-

stem responses (ABRs) were measured in male and female Hom, Het, and WT littermates.

ABRs demonstrate how the cochlea and auditory pathways are working when presented with

different frequencies at different intensities. The waveforms that are produced allow us to

determine both hearing thresholds and peak sensitivity, which can then be compared across

sexes and genotypes.

Materials and methods

Ethics statement

All procedures were approved by the University at Buffalo, SUNY’s Institutional Animal Care

and Use Committee [IACUC] and were in accordance with the Guide for Care and Use of Lab-
oratory Animals.

Subjects

Male and female wild-type Long-Evans rats (WT; n = 10; 5 males, 5 females) and those homo-

zygous (Hom; n = 10; 5 males, 5 females) or heterozygous (Het; n = 10; 5 males, 5 females) for

the Brattleboro mutation were obtained from our breeding colony maintained at the Univer-

sity at Buffalo, State University of New York, which were derived from rats obtained from the

Rat Resource and Research Center (University of Missouri, Columbia, MO). Breeding pairs

consisted of Het males and Het females in order to produce subjects from all three genotypes

within the same litters. Offspring were ear punched on postnatal day (P)14, and ear tissue was

used for genotyping (see genotyping procedures below). Rats were weaned into same-sex,

same-genotype pairs on P21. All rats were housed in plastic cages (44 cm X 22.5 cm X 20.5 cm)

with corn cobb bedding (Envigo) and had ad libitum access to food and water.

Genotyping

Genotyping was performed using the method described in Paul et al. [46]. This procedure has

been validated by sequencing [46] as well as behavioral phenotyping of water intake [63].

Briefly, ear tissue was digested and DNA extracted using Extraction Solution and Neutraliza-

tion Solution B from the REDExtract-N-Amp Tissue PCR Kit (Sigma-Millipore). DNA sur-

rounding the Brattleboro mutation was amplified by PCR using GoTaq Green Master Mix

(Promega), the forward primer GACGAGCTGGGCTGCTTC, and the reverse primer, CCTCAG
TCCCCCACTTAGCC. Samples were subsequently incubated overnight at 37˚C with the restric-

tion endonuclease, Bcg1 (New England BioLabs), which cuts the Brattleboro allele, but not the

wild-type allele. Samples were run on a 2% agarose gel for visualization of DNA fragments cor-

responding to the Hom, Het, and WT genotypes. Samples from WT rats exhibit a single

222-bp band, whereas those of Hom rats exhibit a single 95-bp band (the two fragments do not

separate on a 2% agarose gel). Samples from Het rats exhibit both WT and Hom bands.

ABR procedure

Auditory brainstem responses were collected one month apart from each other from two

groups of rats. Thirty rats were tested between 50 and 60 days of age. Rats were anesthetized

with a mixture of 90 mg/kg ketamine and 10 mg/kg xylazine. All rats were anesthetized at a

dose between 60–100% of their body weight in order to keep them fully sedated for the dura-

tion of the procedure.

Sex differences in ABR audiograms of Long-Evans derived rats
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Rats were placed on a heating pad kept at 37˚C inside a small sound-attenuated chamber

(interior dimensions 55 x 33 x 36 cm) lined with 4 cm thick Sonex sound-attenuating foam

(Illbruck Inc., Minneapolis, MN). The ABR system was manufactured by Tucker-Davis Technol-

ogies (TDT, Alachua, FL). The test chamber contained the needle electrodes (ELE-N), a speaker

(MF1), a 4-channel preamplifier (RA4PA), a 4-channel low impedance headstage (RA4LI), a

heating pad, and the test subject. The speaker was placed three inches away from the ear being

stimulated. Subcutaneous needle electrodes were placed on the bulla of alternating ears (approxi-

mately half on the left bulla, half on the right bulla, randomly assigned), on the vertex of the

skull, and a ground electrode was inserted into the opposite leg of the bulla being stimulated.

The experiments were controlled by a WS4 Windows computer running an Optibit inter-

face on a TDT driver using BioSigRZ. The stimuli used in this experiment were generated by a

Multi I/O Processor with optic port (RZ6-A-P1) and sent to the speaker. Digitized data from

the preamplifier were sent back to the RZ6 processor. The noise floor for each subject was

obtained prior to testing by placing the electrodes and recording activity in with no stimulus

presentation.

Broadband sounds 0.1 ms in duration (defined as “clicks”) were first tested to verify elec-

trode placement and a clearly observable response. The clicks were presented at a rate of 21

presentations per second. A total of 512 responses were averaged at each sound pressure level.

Sounds were calibrated using a quarter-inch free field microphone (PCB-378C01) placed at

the location of the rat’s head using TDT software. Clicks were presented at 90 dB SPL,

descending in 5 dB steps. Tones were then presented in ascending order from 1 to 64 kHz. Fre-

quencies tested were 1, 2, 4, 8, 16, 24, 32, 42, and 64 kHz. Each tone was presented at a rate of

21 presentations per second. A total of 512 responses were averaged for each frequency at each

sound pressure level. The tones were 5 ms in durations, and were cosine-gated tones. Tones

were then presented beginning at 90 dB SPL, descending in 10 dB steps. Testing lasted approx-

imately 45 minutes, after which rats were placed on a heating pad until they regained con-

sciousness and then returned to their home cage.

Data analysis

ABR waveforms were bandpassed between 500 Hz and 3 kHz. Thresholds were quantitatively

determined as the average value between the lowest intensity where a waveform response is still

qualitatively present and the intensity where no waveform response is qualitatively present.

A three-way mixed analysis of variances (ANOVA) was conducted on the final thresholds,

with sex and genotype as between-subject factors and frequency as a within-subjects factor. All

possible post hoc tests were conducted using the Bonferroni correction. Significance was

assumed when p< .05. Statistical analyses were conducted using SPSS software, Version 24.

Five males and five females for each of the three genotypes were included in the statistical anal-

yses, resulting in 10 rats for each genotype, for a total of 30 rats. These results were graphically

compared to previous results from Popelar et al. [15] to demonstrate similar ABR thresholds

across studies. Post-hoc power analyses were conducting using G�Power, version 3.1.9.4.

Results

ABR audiograms were constructed for male and female mice across the three genotypes sepa-

rately (see Fig 1). Thresholds differed across the six groups by as little as 6 dB at 8 kHz and by

as much as 24 dB at 42 kHz. Thresholds for the click stimuli were exactly the same for all six

groups: 25 dB. Peak sensitivity for all six groups was between 8 and 16 kHz, with higher thresh-

olds at higher and lower frequencies. Fig 2 illustrates the mean audiograms for males and

females collapsed across the three genotypes as well as ABR audiograms from juvenile male

Sex differences in ABR audiograms of Long-Evans derived rats
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wild-type Long-Evans rats (from [15]). The patterns of ABR audiograms across frequencies,

including frequencies of peak sensitivity and overall acuity, were similar between the current

study and the previous one from Popelar et al. [15].

There were significant main effects of frequency and sex, but not genotype (main effect of

frequency: F(8, 27) = 151.00, p< .001, ηp2 = .863; main effect of sex: F(1, 27) = 8.81, p = .007,

ηp2 = .269; main effect of genotype: F(2, 27) = 1.13, p = .340, ηp2 = .086). There was a signifi-

cant interaction between frequency and sex (F(8, 27) = 2.11, p = .037, ηp2 = .081). No signifi-

cant interaction between frequency and genotype was found (F(16, 27) = 1.02, p = .442, ηp2 =

.078). There was no significant three-way interaction between sex, genotype, and frequency

(F(16, 27) = 1.47, p = .113, ηp2 = .109) (see Fig 1). Bonferroni post-hoc tests revealed significant

mean differences amongst several frequencies. These results are outlined below in Table 1.

Bonferroni post-hoc tests were conducted to probe the significant interaction between sex

and frequency. These tests revealed that males and females significantly differed in threshold

values for 1 kHz (p = .002), 4 kHz (p = .046), 32 kHz (p = .046), and 42 kHz (p< .001). Females

and males did not differ in threshold values for 2, 8, 16, 24, and 64 kHz (p> .05) (see Fig 2).

A post-hoc power analysis using a repeated-measures within-subjects design was conducted

on the main effect of frequency and yielded a power of 1.00. Post-hoc power analyses using a

repeated-measures between-subjects design were conducted on the main effects of sex and

Fig 1. Auditory brainstem thresholds across genotype and sex. Mean ABR thresholds for each genotype and sex for

tones ranging from 1 to 64 kHz and clicks. Error bars are standard error of the mean (Males = white fill,

Females = black fill, wild-type = squares, heterozygotes = circles, and Brattleboro homozygotes = triangles).

https://doi.org/10.1371/journal.pone.0222096.g001

Sex differences in ABR audiograms of Long-Evans derived rats

PLOS ONE | https://doi.org/10.1371/journal.pone.0222096 August 30, 2019 6 / 14

https://doi.org/10.1371/journal.pone.0222096.g001
https://doi.org/10.1371/journal.pone.0222096


genotype and yielded a power of 0.99 and 0.46, respectively. Post-hoc power analyses using a

repeated-measures within-between interaction design were conducted on the interactions

between frequency and sex, frequency and genotype, and frequency, sex, and genotype. Both

the interaction between sex and frequency and the interaction between genotype and fre-

quency yielded a power of 0.99. The three-way interaction between frequency, sex, and geno-

type yielded a power of 0.96.

Discussion

The goals of this study were to determine whether there are sex differences in the auditory acu-

ity of Long-Evans rats and whether the ABR thresholds are altered by the Brattleboro

Fig 2. Auditory brainstem thresholds across sex. Mean ABR thresholds for males and females across all three

genotypes for tones ranging from 1 to 64 kHz (error bars are standard error of the mean) compared to Popelar et al.

[15] ABR thresholds from 1 month old male Long-Evans rats (Females = black squares, Males = white circles, and

Popelar et al. (2006) = gray diamonds). �p< .05, ��p< .01, ���p< .001.

https://doi.org/10.1371/journal.pone.0222096.g002

Table 1. Mean thresholds (M), differences between thresholds (dB SPL, Cell Values), and bonferroni post-hoc test results (� where significant).

Frequency M (SEM) 1 kHz 2 kHz 4 kHz 8 kHz 16 kHz 24 kHz 32 kHz 42 kHz 64 kHz

1 kHz 58.33 (1.68)

2 kHz 50.00 (1.78) 8.33���

4 kHz 37.00 (1.62) 21.33��� 13.00���

8 Hz 23.67 (1.50) 34.67��� 26.33��� 13.33���

16 kHz 26.33 (1.42) 32.00��� 23.67��� 10.67��� -2.67

24 kHz 46.33 (1.50) 12.00��� 3.67 -9.33�� -22.67��� -20.00���

32 kHz 48.33 (1.75) 10.00��� 1.67 -11.33��� -24.67��� -22.00��� -2.00

42 kHz 45.33 (2.69) 13.00��� 4.67 -8.33� -21.67��� -19.00��� 1.00 3.00

64 kHz 79.67 (1.64) -21.33��� -29.67��� -42.67��� -56.00��� -53.33��� -33.33��� -31.33��� -34.333���

� p < .05

�� p < .01

��� p< .001

https://doi.org/10.1371/journal.pone.0222096.t001
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mutation. There was a significant main effect of sex on pure tone thresholds, in addition to a

significant interaction between sex and frequency. Males generally had higher thresholds at

the low and high ends of the frequencies tested compared to females, specifically for 1, 4, 32,

and 42 kHz. Sex differences in auditory acuity and auditory anatomy are common in the ani-

mal kingdom, found in humans, mice, and birds, to name a few [59, 64–66]. However, to our

knowledge, this is the first demonstration of sex differences in ABR-derived thresholds of labo-

ratory rats. Sex differences in auditory acuity are typically amplified as animals age, possibly

due to the protective effects of estrogen on the auditory system. It is unknown if the sex differ-

ences found here will increase in older rats, or if there would be an interaction between the

Brattleboro rats and their wild-type Long Evans counterparts with age.

Significant sex differences in the ABRs were not found at all frequencies, but were obtained

at some of the lowest and some of the highest frequencies tested. It is not known whether the

sex differences occurred at ecologically “meaningful” frequencies. Neither 1 kHz nor 4 kHz are

typically employed in rodent vocalizations, although 4 kHz falls within the range of audible

rodent “squeals.” These “squeals” are usually produced in times of distress and are thought to

express physical pain or discomfort [67]. The sex differences in the 32 and 42 kHz ABR thresh-

olds are interesting, as these are typical frequencies found in rat USVs. However, rats in this

study were tested with pure tones rather than USVs, so while the pure tone frequencies align

with USV frequencies, we cannot say definitively whether there are differences in USV detec-

tion between male and female Long-Evans rats using the results from the current study.

The sex differences in auditory acuity are possibly linked to the sex differences in vocal pro-

duction in rats. Previous studies have shown that male rat pups produce a greater quantity of

USVs than females do, and their USVs tend to be slightly lower in fundamental frequency and

amplitude than USVs from females [68]. Males also produce more USVs during play bouts

than females do [69], although another report only found this to be true for trills [46]. Addi-

tionally, Graham and colleagues [70] found sex differences in USVs in two different strains of

rats, with males producing more USVs than females (Sprague-Dawley and Long-Evans).

Sex differences in vocalizations are not limited to rats. Male golden hamsters (Mesocricetus
auratus) produce shorter USVs than females, and their USVs had lower entropy and band-

width compared to female USVs [71]. Mice are also known to produce variable vocalizations

across the sexes, differing in spectrotemporal characteristics [72,73], amplitude [74], and pro-

portions of call categories produced [72]. Responses to USVs from playback studies also com-

monly show sex differences (e.g., [75]). Although the function of mouse USVs is not entirely

known, there are clear parallels across rodent species. As USVs are typically produced along-

side social behaviors in rats, the sex differences observed in USV production and social behav-

iors align with each other.

Another possibility for the presence of sex differences in auditory acuity could be that the

young female Long-Evans rats’ ABR thresholds are influenced by levels of estradiol. Estradiol

has been linked to auditory perception and processing changes in young and old female labo-

ratory rats, mice, and humans (as reviewed in [76]). Older human females (post-menopausal)

have higher ABR thresholds than young females and young males [77,78]. Additionally, ovari-

ectomized laboratory rats also show higher ABR thresholds compared to non-ovariectomized

rats [62]. Estradiol has also been found to affect outer hair cells, as young females have larger

otoacoustic emission (OAEs) amplitudes than young males [79,80]. Furthermore, females who

use oral contraceptives have been found to produce fewer spontaneous OAEs (SOAEs) and

lower click-evoked OAE (CEOAE) amplitudes than females who did not use oral contracep-

tives [81,82]. These findings are likely due to differing levels of estradiol and other steroid hor-

mones, such as testosterone. It is possible that the sex differences in auditory acuity exhibited

by the Long-Evans strain of rat could be due these hormone effects. Studies manipulating
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gonadal steroid hormones and measuring SOAEs, CEOAEs, and distortion product OAEs

(DPOAEs) alongside ABRs would be a fruitful avenue for research into sex differences in hear-

ing acuity.

Since AVP has been linked to auditory processing [37], we hypothesized that auditory

thresholds, as measured by ABR audiograms, would differ amongst Hom, Het, and WT Long-

Evans rats. When Naganuma and colleagues [83] injected AVP and then measured ABRs,

thresholds were significantly elevated. Counter to our hypothesis, however, we failed to detect

a significant difference across the three genotypes, suggesting that the chronic vasopressin

deficiency does not influence auditory acuity. Our results may have differed from Naganuma

and colleagues’ results as they tested acute increases in AVP rather than chronic AVP defi-

ciency. Differences could also arise due to the differing natures of the manipulations–periph-

eral AVP manipulation from an IP injection versus global AVP loss due to a genetic mutation.

In addition, the Brattleboro mutation could trigger compensatory mechanisms during devel-

opment that ameliorate deficits in auditory detection. Finally, it is possible that a larger sample

sizes is necessary to detect genotype differences. Our post-hoc power analysis conducted on

the main effect of genotype revealed that our sample size of 30 rats (10 rats per genotype) was

moderately powered (β = 0.46).

One possible limitation of the current study is related to the age range in which the rats

were tested. Paul and colleagues [46] found differences in the USVs of Brattleboro and wild-

type rats at P34 and P44, which corresponds to early and mid-adolescence. However, the ABR

audiograms measured in the current study were collected in late adolescent rats, between P50

and P60. Given that adolescence is a time of marked behavioral and neural change, it is possi-

ble that between these two time points, differences in USVs became diminished and, in con-

junction, differences in auditory acuity could have diminished or disappeared. However, the

range at which ABRs were collected still fell within late adolescence and, while USVs could

develop quite rapidly, it is unknown whether auditory thresholds would significantly change

after 16–20 days after birth [84].

Another possible limitation of the study is that only a few frequencies were tested in the

ultrasonic range (24, 32, 42, and 64 kHz). Additionally, these results reflect auditory processing

of pure tones, which are not fundamentally the same as USVs. While this study reveals that the

basic auditory processing of pure tones and clicks by anesthetized Hom, Het, and WT Long-

Evans rats is equivalent, future studies should measure the perception of more tones in the

ultrasonic range, as well as USVs, across more ages. Researchers should also measure ABR

audiograms in these rats between P34 and P44 when the differences in USVs are most promi-

nent, as well as at other developmental periods to see if the developmental rate changes.

The above findings do not support the idea that differences in auditory perception contrib-

ute to differences in USV production or social behaviors, but further studies are needed before

this idea can be completely ruled out; Brattleboro rats may show deficits in acuity of natural

stimuli. Furthermore, researchers should also investigate other ways of manipulating AVP,

such as vasopressin receptor blockers, to determine their effects on acoustic communication.

For instance, AVT can influence acoustic communication in amphibians by changing acoustic

features in calls or altering the rate of calls (reviewed in [85, 86]). Male túngara frogs (Physalae-
mus pustulosus) treated with exogenous AVT alter the “whine” component of their advertise-

ment calls by increasing the initial frequency and shortening the duration of the call [87]. The

altered “whine” call decreases the likelihood of a female túngara frog finding the “whine”

attractive and diminishing their preference for the caller [87]. However, exogenous AVT injec-

tions also increased the number of “chucks” in male túngara advertisement calls, which can

increase attractiveness of male túngara frogs to female túngara frogs [88]. Additionally, exoge-

nous AVT injections in the gray treefrog (Hyla versicolor) altered advertisement calls by
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increasing the duration and including more pulses to the calls [89]. However, these changes

were dependent on close proximity to conspecific males [89]. Tito and colleagues [90] found

that exogenous AVT injections increased the likelihood of advertisement calling in the gray

treefrog; however, call rate (the number of calls produced within a given time frame) of adver-

tisement calls decreased to half of the baseline call rate and the dominant frequency of the calls

increased compared to calls produced by non-AVT-treated males [90]. It is possible that

manipulations of AVP in mammals could produce similar changes in mammalian acoustic

communication as AVT produces in amphibians.

Conclusions

This was the first attempt to determine correlates between a chronic lack of AVP and auditory

processing. We failed to detect a significant effect of genotype, which suggests that chronic

AVP deficiency does not affect auditory acuity, at least to simple tone detection. To our knowl-

edge, this is the first study to report sex differences in auditory thresholds in Long-Evans rats.

Furthermore, a greater range of frequencies was tested in the present study, including those in

the ultrasonic range, providing a more comprehensive view of auditory thresholds.
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