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Abstract

A great deal of robustness is allowed when visual tracking is considered as a classification

problem. This paper combines a finite number of weak classifiers in a SMC framework as a

strong classifier. The time-varying ensemble parameters (confidence of weak classifiers)

are regarded as sequential arriving states and their posterior distribution is estimated in a

Bayesian manner. Therefore, both the adaptiveness and stability are kept for the ensemble

classification in handling scene changes and target deformation. Moreover, to increase the

tracking accuracy, weak classifiers including Support Vector Machine (SVM) and Large

Margin Distribution Machine (LDM) are combined as a hybrid strong one, with adaptiveness

to the sample scales. Comprehensive experiments are performed on benchmark videos

with various tracking challenges, and the proposed method is demonstrated to be better

than or comparable to the state-of-the-art trackers.

Introduction

The goal of visual tracking is to locate the target states over a video sequence. Usually, the

tracking-by-detection methods can be categorized into two main branches: the generative

model and the discriminative model. This paper focuses on the discriminative model. It con-

siders the tracking problem as a binary classification problem, and the key issue is classification

learning.

For sequential arriving video frames, the appearance of target always undergoes great

changes caused by complex tracking conditions. In many practical applications [1–4], different

types of challenges occur frequently, including illumination variation, target deformation, fre-

quent occlusion and fast motion. Represented by an appropriate visual model, the detection

region is projected into the feature space as samples, specifically, positive ones for the target

and negative ones for the background. The task of the discriminative model [5, 6] is to learn a

classifier capable of distinguishing the positive samples from the negative ones. Both the track-

ing accuracy and generality ability are significant for an excellent classifier, i.e. the accuracy

in building a hyper-plane classifying the positive and negative samples and the generalization

ability in assigning the new arriving samples into the right class.
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Advidan, for the first time, introduced the classification method for the tracking problem.

In 2004, he proposed to solve the tracking problem by employing the popular support vector

machine, and proposed Support Vector Tracker (SVT) [7]. It shows promising performance

and has received much attention. Similar classifier also includes weakly supervised classifier

[8]. In 2007, his other paper, entitled “Ensemble Tracking” [9], was published in PAMI. As the

experimental results show, his work revealed exciting robustness and accuracy. The success

relies heavily on the excellent ensemble classifiers proposed. It learns a hyper-plane by using a

strong classifier combined with several weak classifiers. Since then, the idea of adaboost was

introduced into the ensemble tracking method, many methods based on the ensemble idea

have been proposed. In 2006, Grabner [10] employed an on-line Adaboost to select features

and provided them to particular classifiers. In 2007, Tian [11] proposed an on-line ensemble

SVM tracker, additionally in 2010, Thomas [12] proposed a Modular Ensemble Tracker

(MET). In 2014, Zhou [13] proposed a dynamic selection strategy with ensemble classifiers.

As a key the ensemble of classifiers provides the tracker with more robustness. Typically,

each classifier is assigned to a particular visual cue, and all the classifiers are weighted-com-

bined according to their confidences. As the tracking proceeds, influenced by the tracking con-

ditions and target deformation, the target always shows a variable appearance. Because the

confidence of each weak classifier varies with the discriminative ability of the visual cues, they

should be updated to maintain sufficient generality of the tracker. The model updating scheme

for tracking-by-detection has been widely studied in the literature. There also exist some meth-

ods related to the discriminative model. Grabner [10] used Boosting as a feature selector and

realized an online boosting tracker. Saffari et al. [14] proposed an online multi-class boosting

model. In another approach [15], Random Forests undergoed an online update to grow and

discarded decision trees during tracking. Usually, the existing methods adapt the ensemble

weights of weak classifiers according to their outputs. However, the posterior distribution of a

target is unknown, thus this updating scheme becomes unreliable. Moreover, updating is per-

formed based on the current observation; as a result, the information is in a time sequence. In

2013, Bai et. al. [16]proposed a Randomized Ensemble Tracker, he modelled the ensemble

weights by drawing a Dirichlet distribution and updated them randomly. Though good perfor-

mance was achieved on several challenging tasks, the essential parameters in Dirichlet were

still updated by the tracking confidence, which was unreliable. Due to the posterior distribu-

tion of estimated ensemble parameters being unknown, the best way is to estimate their states

in a Bayesian framework.

Another crucial factor related to tracking performance is the classifier employed. In the

existing ensemble trackers, the employed classifiers including SVM [7], fuzzy C-means [17], v-

Support vector [18, 19] and Structural Minimax Probability Machine [20] et al. The classifiers

are not required to be of strong discriminative ability, because the tracking results are obtained

by their combination. Therefore in the designed of classifier, both the samples and the classi-

fier together determine the tracking performance. Accordingly, despite of the less requirement

on classifiers, in this paper we made further research on these two issues. It is well known that

SVM can be viewed as a learning approach that tries to maximize over the training examples

the minimum margin. Reyzin [21] conjectured that the margin distribution rather than the

minimum margin, is more crucial to the generalization performance. It has also been disclosed

by Gao and Zhou [22] that rather than simply considering a single-point margin, both the

margin mean and variance are important. In 2014, Gao and Zhou [23] introduced samples’

distribution data into the definition of the objective function and proposed LDM. Having

been tested on many typical datasets, its superiority to SVM was demonstrated. However, the

learning step of LDM costs much more time than that of SVM, so employing LDM as the

weak classifier will lead to low efficiency. However, it could perform with better generality and
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accuracy than SVM for the problems that are hard to classify. Therefore, we employ a hybrid

classifier combined both SVM and LDM, which will not only ensure the efficiency but also

improve the tracking accuracy at the same time.

In this paper, we conduct major research on increasing the discriminating and generaliza-

tion abilities of an ensemble tracking. Specifically, the SMC method is employed to model

ensemble parameters updating. The vector of weights assigned to weak classifiers is viewed

as a sequential arriving state in a Bayesian framework. Based on the observation of some ran-

dom samples, the states of ensemble parameters are approximated by using the Monte Carlo

method in the time sequence. Moreover, the sample observation is associated with the outputs

of the weak and strong classifiers. To obtain more robustness and generality, this paper gener-

alized LDM to the tracking problem and constructed a hybrid classifier adapted with feature

scales. The proposed method is field-tested on benchmark videos including types of chal-

lenges. Comprehensive experiments and analysis are performed, its performance is demon-

strated to be better than or at least comparable to previous algorithms in the literature.

The rest of this paper is organized as follows: the framework of the proposed SMC-guided

ensemble tracker is introduced in Section 2. A pyramid patches-based visual model is stated as

the input of ensemble classifiers in Section 3. Then, the employed hybrid weak classifiers are

discussed in Section 4. Finally, Section 5 presents the experimental results and analysis to illus-

trate how the method adapts to various tracking challenges.

Sequential Monte Carlo-guided ensemble tracking

Fig 1 gives an overview of the proposed tracking system. The tracking problem is formulated

as a binary classification task. At each time step, given the prior outputs from the pre-frame,

the tracker detects the target state depending on a strong classifier. The detection region is rep-

resented in a multi-scale pyramid model. Scale-adaptive hybrid weak classifiers are weight-

combined as the strong classifier. Specially, their weights are modelled in a SMC framework

to realize more generality, and both the classifiers group and their weights are updated in the

time sequence. In this section, we briefly review the ensemble tracking algorithm and resolve

the ensemble updating problem in a SMC framework. Rather than updating the ensemble

Fig 1. Overview of the proposed method.

https://doi.org/10.1371/journal.pone.0173297.g001
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parameters under the current observation, we represent them as a sequential estimated state

and realize updating in a SMC framework.

Ensemble tracker

Given a set of N weak classifiers, a strong classifier is computed via a linear combination.

hstrongðxÞ ¼
XN

n¼1

an � h
weak
n ðxÞ ð1Þ

αn in this equation is a weight, measuring the confidence of each classifier. For each video

frame, we denote the weights of all the weak hypotheses as a vector V. The hypothesis hweakn

generated by a weak classifier corresponds to a feature and is obtained by applying a defined

learning algorithm. In the video sequence, we denote the series of sequentially arriving data

sets as f0, f1, . . ., where fi in our application is the detection windows in the i-th frame. Repre-

sented in a discriminate visual model, a set of features are extracted from fi as data assigned to

the weak classifiers. At time t, given input data x 2 ft, the task of the tracker is to predict its

label y 2 {+1, −1}.

y ¼
þ1; hstrongðxÞ � t

� 1; otherwise

(

ð2Þ

where threshold τ is a model parameter. Then, the target state is estimated by maximizing the

confidence map based on all the samples’ outputs.

Sequential Monte Carlo based tracker updating

Because the tracking conditions undergo time-varying changes, the tracker should also have

adaptiveness and generality. We propose updating the ensemble tracker in a Bayesian frame-

work. Specifically, we update both the weight vectors and the pool of weak classifiers after the

classification stage in each time step to evolve the model.

The weight vector Vt is adapted at each time step to keep the tracker adaptive. Therefore,

the sequentially arriving flow of Vt over the whole video sequence is seen as a state-evolving

procedure. Then, from a Bayesian point of view, its updating is estimated by obtaining its pos-

terior distribution. The SMC method provides a good solution to this problem.

Given a sequence Vs(V1, V2, . . ., Vm) and a corresponding sequence of observations Z = (z1,

z2, . . .zm), the updating goal is to find those Vs(V1, V2, . . .Vm) that maximize the posterior dis-

tribution

PðV1¼u1
; . . . ;Vm¼umÞ ¼ pðu1:mjZÞ ð3Þ

where u1:m ¼ ðu1; . . . ; umÞ 2 Vm is a state space vector representing the possible values of the

Vs. For each state ut, there is a corresponding observation zt for t = 1. . .m. Based on the prior

probability distribution and current observations, the goal of the weight vector estimation is to

find the value but of states ut such that

bu1:m ¼ argmaxu1:mðu1:mjZÞ ð4Þ

The Monte Carlo method provides a possible solution to the above equation. Particle Filter

(PF) is a recursive Bayesian filter that belongs to the SMC methods. The classical PF framework

has been developed for sequential state estimation e.g. tracking [24] [25]. According to the classi-

cal PF, at time t − 1, the posterior probability distribution p(ut − 1|Zt − 1) is usually approximated

SMC guided ensemble tracking
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by using a finite number (N) of weighted wit� 1
samples pðut� 1jZt� 1Þ � fwit� 1

; uit� 1
g
N
i¼1

. Then, the

posterior distribution p(ut|Zt) can be approximated using by some weighted samples as

pðutjZtÞ � cpðZtjutÞ
XN

i¼1

wit� 1
pðuit� 1

jZit� 1
Þ ð5Þ

Because it is difficult to draw samples from the posterior distribution, the importance sam-

pling method is usually performed by a proposal distribution. Samples are drawn from a pro-

posal density q as

uit � qðu
i
tÞ≜
X

i

wit� 1
pðuitju

i
t� 1
Þ: ð6Þ

The sample weight is usually recursively updated as

wit ¼ pðZ
i
t� 1
juit� 1
Þwit� 1

ð7Þ

By updating the ensemble parameters in a PF framework, the ensemble tracker will be

adaptive as the tracking continues to realize stability. The weight of each weak classifier is

updated not only based on the observation at the current frame but also based on the consis-

tency of the adjacent frames. In such a way, abrupt changes will be avoided and reliable updat-

ing is realized.

Pyramid patches based visual model

Features play an important role in tracking performance [26].We employ a patches-based

visual model to generate weak hypotheses. Typically, the existing methods usually employ or

construct various independent features as samples and assign them to the corresponding weak

classifiers. We represent the detection region in a pyramid model as in [27] and provide fea-

tures with various scales to the weak classifiers. In this way, the target is observed in a multi-

scale model. This model will provide the tracker with much more robustness against occlusion

and target deformation.

As shown in Fig 1, at time t, the detection region ft is represented as a multi-scale patches

model in a pyramid with four levels. In detail, at the first level, we divide ft into patches of size

n × n uniformly. At the second and third levels, larger patches that cover different portions of

the object are also selected by dividing ft into the number of 4 × 4, 2 × 2 evenly spaced regions,

respectively. At the highest level, it is considered as one patch. For each patch, we extract its

64-bins HSV color/gray-scale histogram and standard histogram of gradients (HOG) [28]

features.

For this pyramid model, the extracted samples are in different scales. Therefore, a hybrid

weak classifier group is constructed for adaptiveness in the next section.

Hybrid weak classifiers

As a popular classifier for the existing ensemble trackers, SVM is also employed in our model.

It is well known that SVM can be viewed as a learning approach that tries to maximize over

training examples the minimum margin. It was disclosed by Gao and Zhou [22] that rather

than simply considering a single-point margin, both the margin mean and variance are impor-

tant. In 2014, Gao and Zhou [23] introduced samples’ distribution data into the objective func-

tion and proposed the Large Margin Distribution Machine (LDM). However, it is too strong

to be employed as the weak classifier.

SMC guided ensemble tracking
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Because the target is represented in a multi-scale visual model, each patch corresponds to a

particular classifier. Patches in different scales show different discriminate ability. Specifically

for a large-scale patch, it is easier to lean a good hyper-plane because its feature vector is usu-

ally of large difference. However, regarding to small-scale patches, they always have similar

appearance and are difficult to be separated in the feature space. For this type of patches, if the

accuracy and generality of the corresponding weak classifiers are insufficient, the robustness

and accuracy will be influenced heavily. In this paper, LDM is applied to the small-scale sam-

ples. In this way, the performance of the strong classifier will be increased and the computa-

tional complexity can be guaranteed.

We set the instance space as X 2 Rd and the label set as Y ¼ fþ1; � 1g. Regarding classical

SVM, its objective function is:

min
o;x

1

2
oToþ C

Xm

i¼1

xi

s:t: yioT�ðxiÞ � 1 � xi

xi � 0; i ¼ 1; . . . ;m

ð8Þ

where ξ = [ξ1, . . ., ξm]T measures the losses of instances and C is a trading-off parameter. �ðxiÞ
is a feature mapping of x induced by a kernel κ.

For LDM, the first- and second-order statistics, that is, the mean and the variance of the

margin, are introduced into the learning step. The margin mean is

g ¼
1

m

Xm

i¼1

yio
T�ðxiÞ ¼

1

m
ðXyÞTo ð9Þ

The margin variance is

bg ¼
1

m2

Xm

i¼1

Xm

j¼1

ðyio
T�ðxiÞ � yjo

T�ðxjÞÞ
2

ð10Þ

LDM attempts to maximize the margin mean and minimize the margin variance simulta-

neously. The soft-margin LDM leads to

min
o;x

1

2
oToþ l1g � l2

bg þ C
Xm

i¼1

xi

s:t:yioT�ðxiÞ � 1 � xi

xi � 0; i ¼ 1; . . . ;m

ð11Þ

To resolve this constraint optimization problem, the dual coordinate descent method (CD)

is employed; and the solution details can be found in the paper [23] of Gao and Zhou.

Experiments and analysis

We implement the proposed method using MATLAB 2013B and carry out the experiments on

a computer with a 3.60 GHz CPU and 8 GB of main memory. The code is realized in Matlab

and C. We compare our method with nine state-of-the-art tracking methods on eighteen rep-

resentative video sequences. All the video sequences are downloaded from the Visual Tracker

Benchmark [29]. All the quantitative comparison metrics in this paper are based on two widely

used comparison metrics: ACLE(Average Center Location Errors) [30] and AOR(Average

Overlap Ratio) [31].

SMC guided ensemble tracking
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Parameter selection

At each time step, to estimate the ensemble parameters, a particles set is generated based on a

Gaussian Perturbation to the prior state. In this paper, we generate 500 samples for a particle

set. Specifically, given a prior particle Vi
t� 1

, a subsequent particle Vi
t is generated as

Vi
t ¼ V

i
t� 1
þ Gðm;s2Þ ð12Þ

where μ and σ are the mean and variance values of the Gaussian distribution, respectively. Spe-

cially, μ=0 and σ is set by another Gaussian Perturbation. In tracking process, the classifier

pool and the weight of each weak classifier varies with time, the Gaussian should not be a fixed

value, so we designed the second Gaussian Perturbation as mean value set to be the minimum

weight and variance set to be 1/N (N is the number of classifiers). To update the weight wi of

each particle, its observation pðZit� 1
juit� 1
Þ in Eq (7) is obtained based on evaluating the perfor-

mance as

pðZit� 1
juit� 1
Þ ¼

2

1þ e� siwi
; ð13Þ

where si and wi denote the sign and weight, respectively. Their values are determined by com-

paring the output of the weak classifier with the overall output. If hweakn correctly recognizes the

target object, then si is set to be 1; otherwise, it is set to be -1. The weight wi is set to be the clas-

sification margin.

For the LDM classifiers, the radial bias kernel function is employed, with γ set as 2*10. For

the SVM classifiers, the linear kernel function is employed, with the tolerance of termination

criterion e set as 0.1.

Quantitative comparison

Our method is compared with nine outstanding state-of-the-art tracking methods, including

“the visual tracking decomposition” (VTD) [32], “the multiple Instance Learning” (MIL) [33],

“the tracking learning detection” (TLD) [34], “structured output tracking” (Struck) [35],

“locally orderless tracking” (LOT) [36], “Adaptive color attributes for real-time visual track-

ing” (CN) [37], “Fast Compressive Tracking” (FCT) [38], “High-Speed Tracking with Kerne-

lized Correlation Filters” (KCF) [39] and Complementary Learners for Real-Time Tracking

(Staple) [40]. The tracking results for some key frames of eight representative video sequences

are reported, as shown in Figs 2–4, respectively.

Their quantitative comparisons are labelled in Tables 1 and 2 with respect to the metrics of

ACLE and AOR. Most of their ACLE and AOR curves are presented in Figs 5 and 6 over the

whole sequence. Overall, our method performs with better or at least comparable performance

in comparison with the state-of-the-art methods. These results are analyzed in detail in the fol-

lowing section.

Tracking result

The test sequences are categorized into four typical challenging problems: “partial occlusion”,

“abrupt motion”, “illumination variation” and “complex background”.

Partial occlusion. The targets in sequences “Suv” and “Walking2” suffer heavy or long-

time occlusion. In the Suv sequence, Fig 2 shows that our method performs a accurate tracking

in terms of position and scale when the targets undergo severe occlusion and deformation.

For example, at frames #527 and #785 of Fig 2(a), the other methods lose the target. For the

sequence “Walking2”, our method, Struck and Staple perform better than the other methods

SMC guided ensemble tracking
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at frames #200, #245, #455. In comparison, the other methods suffer from sever drift and some

of them completely fail. Furthermore, both the ACLE and AOR curves and the statistical values

show that our method performs with better accuracy than Struck and Staple. This dominance

can also be observed from the tracking results at frames #245 and #455. The success is attrib-

uted to the facts that: (1) the detection region is represented as pyramid patches, both the

global and local features are extracted, and this visual model provides the tracker with robust-

ness against occlusion; (2) hybrid classifiers are combined with adaptiveness to scales, which

enhances the discriminate ability to a large extent; (3) the ensemble parameters are modeled

in a SMC framework, and this method assigns the ensemble framework with stability and

generality.

Abrupt motion. It is a challenging task when the target moves with abrupt motion

because the images may be blurred. As shown in Fig 3(a), over the whole sequence, a deer

jumps up and down so fast and the water around occludes its face occasionally. Particularly, in

frame #24, the deer jumps down abruptly, which causes the video resolution to decrease. This

abrupt motion leads to some methods having declining accuracy. Finally, after several abrupt

motions, at approximately frame #65, only our method, TLD and Struck survive. In compari-

son, our method outperforms.

Moreover, our method also succeeds for the “Jumping” sequence, as shown in Fig 3(b),

where similar situations challenge the methods. A man jumps severely and the target face also

shows scale changes. Particularly, he abruptly changes his direction of movement (up to down

or down to up), e.g. at frame #35 and #166. Our method shows excellent robustness against

Fig 2. Tracking results for videos with challenges of “partial occlusion”: (a) “Suv” and (b) “Walking2”.

https://doi.org/10.1371/journal.pone.0173297.g002
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such challenges. The robustness is attributed to the employment of an adaptive ensemble

tracker. On one hand, the hybrid classifiers employ different classify methods on patches in

different scales to separate target from background. The adaptiveness to scale has been

improved. On the other hand, the update strategy for tracking parameters in Sequential Monte

Carlo framework can efficiently avoid random changing, which is caused by generating

Dirichlet distribution complete randomly. That is also the key factor of our method to be suc-

cessful in handling abrupt motion.

Illumination variation. Illumination is a typical challenge in many applications. The

“Car4” sequence is a representative one with large illumination variation. For example, at

frame #196 of Fig 4(a), the target car suffers from a heavy shadow. This difficulty influences

the accuracy of most methods. Particularly, after frame #196, the accuracies of VTD, FCT,

LOT and MIL begin to decline. This situation continues until approximately frame #615; then,

drifts become unavoidable for TLD and Struck. Nevertheless, our method realizes a stable

tracking along the whole sequence.

The illumination changes impose variations on both the positive and negative samples.

Correspondingly, the discriminative abilities of the weak classifiers also vary much. The classi-

fiers assigned to patches with exposure or shadows will show decreased accuracy. In our

tracker, these variations are reflected in the proposed SMC framework. Therefore, the tracker

will receive much robustness.

Fig 3. Tracking results for videos with “abrupt motion”: (a) “Deer” and (b) “Jumping”.

https://doi.org/10.1371/journal.pone.0173297.g003
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Fig 4. Representative tracking results for videos with “variable illumination”,i.e.,(a) “Car4” and “complex background”,i.e.,(b) “Couple”.

https://doi.org/10.1371/journal.pone.0173297.g004

Table 1. Statistical comparison of ACLE for eighteen video sequences, where the bold fonts indicate those with the best performance and the

underlined values indicate the second-best ones.

VTD MIL TLD Struck LOT CN FCT KCF Staple ours

BOY 7.17 6.37 3.79 2.97 42.1 4.77 6.07 1.97 1.92 1.32

Basketball 16.87 95.13 - 103.3 54.04 9.45 77.4 5.02 11.44 11.73

Car4 19.26 30.37 53.14 13.3 144.86 18.54 37.7 9.58 12.1 2.67

Coke 44.71 25.78 23.3 7.89 44.38 30.9 12 12.67 16.8 13.67

Couple 65.94 31.24 4.42 16.39 30.59 118 31.9 45 4.3 2.98

Deer 177.63 55.81 - 5.89 47.32 2.8 4.4 11.6 10.5 3.02

Dog1 12.76 7.16 4.53 5.5 13.77 3.45 5.71 2.87 6.2 8.56

FaceOcc1 9.25 17.2 14.78 7.54 19.59 12.9 21.9 5.9 15.3 5.37

FaceOcc2 5.01 7.87 8.47 16.96 13.18 19.9 4.01 6.03 8.3 3.34

Fish 8.82 25.63 8.31 14.56 32.77 35.7 8.49 2.91 8.6 2.6

Football1 5.44 4.87 4.87 11.86 3.37 16.4 3.25 2.3 4.06

Girl 6.19 11.78 5.94 2.66 20.07 12.5 12.96 8.39 7.9 7.98

Jumping 27.07 12.7 2.24 3.29 15.65 35.5 22 19.34 17.3 2.35

Suv 64.87 71.6 - 36.45 25.22 123 73.8 2.92 11.2 8.87

Sylvester 14.81 9.39 8.09 4.63 12.17 9.46 6.55 8.57 10.6 5.06

Tiger2 40.91 30.05 29 22.6 68.66 18.3 12.4 44.22 10.5 4.9

Walking 6.8 1.87 67.1 1.57 1.96 7.54 1.85 2.71 2.5 1.43

Walking2 13.84 20.02 7.02 3.16 19.87 21.34 23.5 6.66 1.8 1.49

average 30.4 25.8 16.3 15.6 33.9 32.1 21.1 11.1 8.5 5.08

https://doi.org/10.1371/journal.pone.0173297.t001
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Table 2. Statistical comparison of AOR for video sequences, where the bold fonts indicate those with the best performance and the underlined val-

ues indicate the second-best ones.

TLD LOT MIL Struck VTD CN FCT KCF Staple ours

BOY 0.69 0.47 0.51 0.68 0.6 0.61 0.63 0.65 0.78 0.72

Basketball 0.06 0.46 0.22 0.18 0.63 0.64 0.23 0.68 0.69 0.56

Car4 0.33 0.03 0.23 0.44 0.35 0.49 0.24 0.73 0.79 0.75

Coke 0.33 0.01 0.24 0.58 0.13 0.3 0.36 0.39 0.58 0.53

Couple 0.61 0.45 0.48 0.53 0.2 0.1 0.48 0.22 0.5 0.63

Deer 0.5 0.16 0.34 0.68 0.07 0.83 0.67 0.71 0.68 0.75

Dog1 0.58 0.58 0.53 0.54 0.54 0.45 0.48 0.59 0.77 0.51

FaceOcc1 0.53 0.4 0.57 0.68 0.64 0.58 0.55 0.62 0.7 0.77

FaceOcc2 0.57 0.45 0.6 0.68 0.68 0.53 0.65 0.63 0.73 0.72

Fish 0.59 0.24 0.38 0.55 0.62 0.3 0.67 0.59 0.69 0.88

Football1 0.36 0.61 0.6 0.46 0.54 - 0.17 0.48 0.76 0.58

Girl 0.56 0.36 0.39 0.68 0.58 0.42 0.36 0.51 0.55 0.53

Jumping 0.66 0.46 0.4 0.64 0.22 0.1 0.2 0.29 0.24 0.7

Suv 0.68 0.57 0.21 0.5 0.34 0.1 0.49 0.88 0.7 0.73

Sylvester 0.57 0.48 0.54 0.65 0.53 0.64 0.68 0.66 0.59 0.63

Tiger2 0.21 0.13 0.41 0.45 0.28 0.57 0.39 0.35 0.56 0.69

Walking 0.33 0.66 0.51 0.55 0.55 0.57 0.53 0.71 0.69 0.67

Walking2 0.41 0.31 0.29 0.47 0.32 0.35 0.28 0.38 0.76 0.69

average 0.48 0.38 0.41 0.55 0.43 0.44 0.43 0.54 0.65 0.67

https://doi.org/10.1371/journal.pone.0173297.t002

Fig 5. ACLE comparison curves for eight representative challenging video sequences.

https://doi.org/10.1371/journal.pone.0173297.g005
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Complex background. For a binary classification problem, handling the confusion

boundary is a challenging task. For a tracking problem, the complex background is also chal-

lenging. As shown in Fig 4(b), the companion and the target walker have similar appearance.

This kind of difficulty challenges the visual model and the classifiers. From the tracking results

and the ACLE and AOR curves, the outstanding performance of our method is obvious.

As shown in Fig 4(b), the targets move in variable scenes. In such cases, the challenges

mainly come from the variance of negative samples in the discriminative model. To handle

such cases, the classifiers should have sufficient generality. The introduction of LDM to our

model provides the tracker with more robustness against these challenges.

Conclusions

In this paper, we extensively researched the ensemble classification method, with respect to its

discriminate and generalization ability, to realize robust and accurate tracking. The detection

region is represented as pyramid patches. Correspondingly, some hybrid classifiers are com-

bined in an ensemble way. To increase the generality and stability, the ensemble parameters

are considered as a state and modeled in a SMC framework. The field test demonstrates the

effectiveness of the proposed method. In our experiments, we find that the representation of

each local patch greatly determines the tracking performance. In our future work, we will

develop a visual model with more discriminative ability.
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