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Targeting endothelial junctional adhesion
molecule-A/ EPAC/ Rap-1 axis as a novel
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Abstract

Muscular dystrophies are severe genetic diseases for which no effi-
cacious therapies exist. Experimental clinical treatments include
intra-arterial administration of vessel-associated stem cells, called
mesoangioblasts (MABs). However, one of the limitations of this
approach is the relatively low number of cells that engraft the dis-
eased tissue, due, at least in part, to the sub-optimal efficiency of
extravasation, whose mechanisms for MAB are unknown. Leuko-
cytes emigrate into the inflamed tissues by crossing endothelial
cell-to-cell junctions and junctional proteins direct and control
leukocyte diapedesis. Here, we identify the endothelial junctional
protein JAM-A as a key regulator of MAB extravasation. We show
that JAM-A gene inactivation and JAM-A blocking antibodies
strongly enhance MAB engraftment in dystrophic muscle. In the
absence of JAM-A, the exchange factors EPAC-1 and 2 are down-
regulated, which prevents the activation of the small GTPase Rap-
1. As a consequence, junction tightening is reduced, allowing MAB
diapedesis. Notably, pharmacological inhibition of Rap-1 increases
MAB engraftment in dystrophic muscle, which results into a signif-
icant improvement of muscle function offering a novel strategy for
stem cell-based therapies.
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Introduction

Muscular dystrophies are inherited neuromuscular disorders that

are characterized by progressive muscle wasting and weakness

that lead to a wheelchair confinement and to a heart and/or

respiratory failure in the most severe forms (Emery, 2002; Mer-

curi & Muntoni, 2013). Although several new gene-therapy and

cell-therapy strategies are currently under clinical investigation

(Partridge, 2011; Arechavala-Gomeza et al, 2012; Tedesco & Cos-

su, 2012; Benedetti et al, 2013), to date there are no successful

and definitive treatments. Approximately a decade ago, we

described a population of myogenic vessel-associated stem/pro-

genitor cells, known as mesoangioblasts (MABs) (De Angelis

et al, 1999; Minasi et al, 2002). When MABs were injected into

the femoral artery of different pre-clinical models of muscular

dystrophies, amelioration of the dystrophic phenotype was

observed (Sampaolesi et al, 2003, 2006; Galvez et al, 2006; Gargi-

oli et al, 2008; Diaz-Manera et al, 2010; Tedesco et al, 2011).

Similar cells were isolated from human post-natal skeletal muscle

(human MABs) and they were characterized as a subset of peri-

cytes with myogenic potency in vitro and in vivo (Dellavalle et al,

2007). Based on these pre-clinical studies, a phase I/II clinical

trial based upon intra-arterial allogeneic transplantation of MABs

is currently ongoing for Duchenne muscular dystrophy (EudraCT

no. 2011-000176-33). However, one limitation with this cell ther-

apy is the difficulty of ensuring that a sufficient number of cells

reach the damaged areas, especially when they are infused

through the vascular route. Additionally, the mechanism by
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which MABs cross the vessel wall and infiltrate the damaged tis-

sue is still poorly understood.

Leukocyte extravasation can be stimulated by a repertoire of

cytokines that are produced by the inflamed tissue, as well as by

up-regulation of specific adhesion molecules on the endothelial sur-

face (Butcher, 1991; Nourshargh et al, 2010). In a previous study,

we showed that the combined pre-treatment of MABs with stromal-

derived factor-1 (SDF-1) and tumor necrosis factor-a (TNF-a)
enhanced MAB extravasation through endothelial cells in vitro and

in vivo (Galvez et al, 2006).

In most cases, leukocyte extravasation occurs through endothe-

lial cell-to-cell junctions (Vestweber, 2002; Woodfin et al, 2007).

These structures include both adherens and tight junctions that are

formed by a complex network of transmembrane adhesive proteins

linked inside the cells to cytoskeletal and signaling partners. Among

these, platelet endothelial cell adhesion molecule-1 (PECAM-1) and

junctional adhesion molecule-A (JAM-A) are the most effective in

the modulation of leukocyte diapedesis through endothelial junc-

tions (Nourshargh et al, 2006). JAM-A is a small immunoglobulin

that is located at endothelial and epithelial cell tight junctions (Mar-

tin-Padura et al, 1998; Bazzoni & Dejana, 2004; Ebnet et al, 2004;

Imhof & Aurrand-Lions, 2004), and it appears to have multiple

actions by interacting different intracellular partners (Martin-Padura

et al, 1998; Bazzoni et al, 2000; Ebnet et al, 2000). Of note, JAM-A

becomes concentrated at junctions as soon as cells come into con-

tact, and it promotes the correct assembly of the other members of

these junctional structures (Bazzoni & Dejana, 2004; Iden et al,

2012). The importance of JAM-A in endothelial and epithelial bar-

rier function has been studied previously (Liu et al, 2000; Mandell

et al, 2005, 2006, 2007). However, the downstream signaling path-

ways linking JAM-A to the regulation of the junctional tightening

are still only partially understood.

In the present study, we show that inhibition of JAM-A expres-

sion and/or activity enhances the engraftment of MABs to dystro-

phic muscle. Moreover, JAM-A inhibition is associated with a strong

reduction in Rap-1 activity, which, in normal conditions, is known

to maintain junction integrity.

Importantly, these studies led to identify that the chemical inhibi-

tion of Rap-1 reproduces the effects of JAM-A abrogation, thus open-

ing the possibility of developing specific drugs to improve stem cell

engraftment. These findings introduce a novel strategy of interven-

tion to improve stem cell therapies in dystrophic patients.

Results

MAB engraftment into acutely injured skeletal muscle is
increased in JAM-A-null mice

To investigate the involvement of the endothelium in MAB engraft-

ment, we focused on two endothelial junction proteins with estab-

lished functions in leukocyte diapedesis: JAM-A and PECAM-1

(Bazzoni & Dejana, 2004; Woodfin et al, 2007). At first, the in vivo

migration of MABs from the vessel lumen to the muscle interstitial

tissues was assessed in genetically modified JAM-A and PECAM-1

deficient mice (JAM-A-null and PECAM-1-null mice, respectively)

(Duncan et al, 1999; Cera et al, 2004). To this end, green fluores-

cent protein (GFP)-expressing murine embryonic MABs (D16-GFP)

(Sampaolesi et al, 2003) were injected into the right femoral artery

of wild-type (WT), JAM-A-null and PECAM-1-null age-matched mice

after acute muscular injury caused by a previous intra-muscular

injection of cardiotoxin. After 6 h, the mice were sacrificed and the

hind limb muscles (gastrocnemius, tibialis anterior and quadriceps)

were collected and their RNA was extracted. qRT-PCR of GFP

expression was used to evaluate the presence of migrated cells.

Embryonic MABs migrated significantly more efficiently to the

injured muscles of the JAM-A-null mice than WT, although they did

not show a significant increase in engraftment over WT when

injected into the PECAM-1-null mice (Fig 1A, on the left of the

dashed line and supplementary Fig S1A–D). This suggested a selec-

tive and specific role for JAM-A in MAB transmigration across the

endothelium.

We then extended these experiments to nuclear LacZ-expressing

adult murine MABs (C57-nLacZ) (Diaz-Manera et al, 2010), which,

at variance with embryonic MABs, have spontaneous myogenic

potential (supplementary Fig S2A). qRT-PCR analysis for nLacZ

cDNA revealed that adult MABs can also cross the endothelium to

reach the cardiotoxin damaged muscle tissue (Fig 1B) with a higher

efficiency in the JAM-A-null mice compared to the WT mice (Fig 1A,

and supplementary Fig S1E).

X-gal staining performed on gastrocnemius muscle sections dam-

aged by cardiotoxin was consistent with qRT-PCR results (Fig 1C

and D). As quantified in Fig 1D we measured up to a one-fold

increase in X-gal+ MABs in the injured muscles of JAM-A-null mice

compared to WT. These data suggest that impairment of JAM-A

expression significantly augments MAB engraftment to the damaged

muscle.

Chronic and acute inhibition of JAM-A enhances MAB
engraftment into dystrophic muscle of Sgca-null mice

To overcome the variability in the levels of muscle damage induced

by cardiotoxin and to study JAM-A role in muscular dystrophy, JAM-

A-null mice were crossed with alpha-Sarcoglycan (Sgca)-null mice.

The Sgca-null mice are a model for limb-girdle muscular dystrophy

type 2D (LGMD2D), caused by mutations in the gene that encodes

alpha-sarcoglycan protein (Duclos et al, 1998). The resulting double-

null mutation was confirmed by PCR genotyping (supplementary Fig

S3A; both mouse strains were in a C57/BL6 genetic background).

We first compared the muscle histopathology of the Sgca-null mice

with that of the Sgca-null/JAM-A-null mice with hematoxylin and

eosin staining of transversal sections of the gastrocnemius muscle.

This analysis revealed a similar phenotype that was characterized by

several regenerating skeletal muscle fibers with central nuclei and

variations in myofiber size (supplementary Fig S3B), which are some

of the typical features of dystrophic muscle.

The in vivo migration of MABs to the muscle tissue was then

assessed in these Sgca-null and Sgca-null/JAM-A-null mice, using

adult murine MABs. Indeed, intra-arterially (femoral artery) trans-

planted MABs migrated significantly more efficiently to the muscles

of the Sgca-null/JAM-A-null mice than to those of the Sgca-null con-

trol mice (Fig 2A and supplementary Fig S1F).

Since JAM-A has been implicated in leukocyte extravasation, we

investigated whether the absence of JAM-A modifies the inflamma-

tory reaction of the dystrophic skeletal muscle. In contrast to MABs,

the inflammatory infiltrate in skeletal muscle, which was mainly
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composed of CD68+ monocytes/macrophages, was reduced by 45%

in the Sgca-null/JAM-A-null mice compared to the Sgca-null mice

(supplementary Fig S3C and D). This data confirms previous results

that show how abrogation of both JAM-A expression and activity

inhibits leukocyte infiltration in inflamed tissues (Corada et al,

2005). However to test whether the reduced number of macrophag-

es could improve the engraftment of MABs indirectly by increasing

cell survival and reduce muscle damage, we performed TUNEL

staining. We found that apoptosis is not changed in Sgca-null/JAM-

A-null mice compared to Sgca-null mice (supplementary Fig S3E

and F) suggesting that increased engraftment is not due to reduced

cell death.

Finally, to develop a feasible future therapeutic approach, we

investigated the acute inhibition of JAM-A function. Sgca-null dys-

trophic mice were treated with the BV11 anti-JAM-A neutralizing

antibody (Martin-Padura et al, 1998; Del Maschio et al, 1999) or

with non-related IgG, and after 1 h MABs were transplanted intra-

arterially. Six hours after the transplantation, the efficiency of the

engraftment was comparable to that measured in the Sgca-null/

JAM-A-null double mutants, with more than a doubling of the MAB

engraftment in the mice treated with the blocking antibody (Fig 2B

and supplementary Fig S1G). To rule out any possible adverse

effects due to the acute administration of BV11 on vascular perme-

ability in vivo, we looked for a vascular leakage in different organs

(brain, liver and lung) as well as in skeletal muscle tissue of the

mice treated with the blocking antibody. As a marker of increased

permeability and edema we used fluorescent cadaverine (Madda-

luno et al, 2013); we did not detect any significant accumulation of

this tracer in the organs after BV11 treatment, including muscles,

lungs, liver and brain (supplementary Fig S4A).

A B

C D

Figure 1. Mesoangioblast engraftment into cardiotoxin-damaged muscle is increased in JAM-A-null mice..

A D16-GFP embryonic or C57-nLacZ adult murine mesoangioblasts (MABs) were injected into the right femoral artery of WT, PECAM-1-null and JAM-A-null age-
matched mice (treated with cardiotoxin 24 h before transplantation) as indicated. After 6 h, the hind limb muscles (gastrocnemius, tibialis anterior and quadriceps)
were collected and the presence of migrated cells was quantified using qRT-PCR with GFP or nLacZ primers. The RNA levels were normalized using GAPDH. The
RNA relative levels for the controls were set to 1, and the ratios for PECAM-1-null (n = 7) or JAM-A-null (n = 10) versus WT (n = 17) are shown for embryonic (left)
and adult (right) murine MABs. Fold increases have been extrapolated by data shown in Figure S1A–E.

B Representative Hematoxilin and Eosin (H&E) staining of JAM-A-WT and JAM-A-null mice from A after cardiotoxin treatment. Scale bars: 50 lm.
C Representative cryosections of the gastrocnemius muscle of JAM-A-WT and JAM-A-null mice stained for with H&E and X-gal. Asterisks indicate donor cells. Scale bars:

50 lm.
D Quantification of X-gal+ MABs in cryosections illustrated in C. **P < 0.05. Data are expressed as means � s.e.m.
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Overall, these data suggested an active contribution of the endo-

thelium in MAB localization and prompted us to hypothesize that

inhibition of JAM-A could enhance stem cell engraftment and thus

muscle regeneration upon cell transplantation in muscular distro-

phies. To investigate this hypothesis, we performed intra-arterial

transplantation of nLacz-C57 MABs in Sgca-null/scid/beige mice, an

immunodeficient dystrophic model for LMGD2D that allows long-

term engraftment of cells that will otherwise be rejected from the

mouse host (e.g., human or GFP/b-galactosidase-expressing cells)

(Tedesco et al, 2012). Specifically, the Sgca-null/scid/beige mice

were pre-treated with BV11 or IgG and then transplanted with

MABs. After 3 weeks, the mice were sacrificed and their hind limb

A B C

ED

F

Figure 2. Chronic and acute inhibition of JAM-A enhanced mesoangioblast engraftment for the injured muscles of Sgca-null dystrophic mice..

A Adult MABs were injected into the right femoral artery of Sgca-null and Sgca-null/JAM-A-null mice. After 6 h, the hind limb muscles (gastrocnemius, tibialis anterior
and quadriceps) were collected and the presence of migrated cells was quantified using qRT-PCR with nLacZ primers. The nLacZ RNA relative level (normalized to
GAPDH expression) obtained for controls was set to 1, and the ratios for Sgca-null/JAM-A-null (n = 8) versus control mice (Sgca-null, n = 6) is shown. Fold increase
has been extrapolated by data shown in Figure S1F.

B Sgca-null mice were treated with a JAM-A neutralizing antibody (BV11, 3 mg/kg) or with non-related IgG (IgG, 3 mg/kg) as control. After 1 h, the mice were intra-
arterially transplanted with adult MABs and 6 h later the muscles were collected and processed as described in A. nLacZ RNA relative levels obtained for the
controls was set to 1, and the ratio for BV11 versus control (IgG) is shown. Fold increase has been extrapolated by data shown in Figure S1G.

C BV11 (n = 3) or IgG (n = 3) were given to Sgca-null/scid/beige mice as described in B. Three weeks after the C57-nLacZ intra-arterial transplantations, the muscles
were analyzed and representative cryosections of the gastrocnemius muscle stained for eosin and X-gal are shown. Scale bar: 40 lm.

D Quantification of the number of X-gal+ MABs in gastrocnemius cryosections. Scale bar: 40 lm. ***P < 0.001.
E Immunofluorescence staining of Sgca (red), b-galactosidase (b-gal, green), Hoechst (blue) and laminin (white, lower images of both panels) were performed on

sections adjacent to those shown in C (transplanted with MABs) and on contralateral not transplanted muscles (w/o MABs) as a control. Merged images of red, green
and blue signals are shown (upper images of both panels). Scale bar: 80 lm.

F Quantification of Sgca+ fibers shown in E, upper panel (transplanted with MABs). ***P < 0.0001. Data are expressed as means � s.e.m.
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muscles were collected. X-gal, b-galactosidase and Sgca staining

were performed on gastrocnemius muscle sections, which con-

firmed that acute inhibition of JAM-A results in significantly

improved engraftment of donor cells (Fig 2C and D) that subse-

quently differentiated in skeletal myofibers (Fig 2E upper panel and

F; 1.4-fold increase). Of note, the presence of Sgca-positive fibers

containing b-galactosidase-positive nuclei unequivocally demon-

strated the contribution of the donor cells in generating the new

skeletal myofibers. Moreover, Sgca-null/scid/beige mice do not dis-

play any revertant fibers (Fig 2E, lower panel w/o MABs), further

confirming the donor origin of the Sgca-positive muscle fibers.

Altogether these results show that inhibition of JAM-A leads not

only to an enhanced MAB engraftment, but as a consequence also

to an increased formation of myofibers in a severe model of muscu-

lar dystrophy.

Impairment of JAM-A increases murine and human MAB
transmigration in vitro

To unravel the molecular mechanisms underlining the increased

migration of MABs in the absence of JAM-A, we used an in vitro

assay of MAB migration through cultured endothelial cells.

We used endothelial cells isolated from the lungs of WT and

JAM-A-null mice (Cera et al, 2004). These cells were grown as con-

fluent monolayers on glutaraldehyde-cross-linked gelatin-coated

filters. We then tested embryonic and adult murine MAB transmi-

gration through these endothelial monolayers. Similar to what

observed in vivo, the number of MABs that crossed the endothelium

was significantly increased in the absence of JAM-A (Fig 3A and B).

Furthermore, pre-incubation of the murine endothelial cells with

BV11 strongly enhanced the transmigration of embryonic murine

MABs (Fig 3C, left panel), with a 6-7-fold increase compared to the

number of MABs that crossed the endothelium in the presence of

vehicle or non-related IgG (Fig 3D). A similar increase in MAB

transmigration was also achieved using monolayers of JAM-A-null

endothelial cells, suggesting that chronic and acute JAM-A inhibi-

tion results in similar effects (Fig 3C and D).

Embryonic murine MABs are deficient in JAM-A and adult MABs

express barely detectable levels of JAM-A (supplementary Fig S2B,

left panel) making unlikely that MAB-associated JAM-A may play a

role in the motility of these cells. However, to rule out this possibil-

ity, embryonic and adult MABs were incubated with BV11 or non-

related IgG and tested for migration through filters that lacked an

endothelial cell coating. As a result, inhibition of JAM-A did not

change MAB transmigration (Fig 3E).

We then extended the study to human cells. For this, we first gen-

erated human umbilical vein endothelial cells (HUVECs) that were

stably infected with lentiviral vectors expressing shRNA against

JAM-A. Four different shRNA constructs were tested to establish sta-

ble JAM-A deficient cell lines. The efficiency of the different con-

structs was evaluated using Western blot (Fig 4A) and the relative

densitometry showed that sh#50 and sh#51 RNAs significantly

reduced JAM-A protein expression by approximately 75–85%, as

compared to the control (Fig 4B). The sh#50, sh#51 and sh#52 RNAs

were then selected to assess the impact of JAM-A down-regulation

on human MAB transmigration. The human MABs were derived

from three healthy donors and were selected for their different spon-

taneous myogenic differentiation into skeletal myosin heavy chain

positive-myotubes (supplementary Fig S2C). Moreover, as we previ-

ously reported for murine MABs, Western blot analysis showed only

a faint band corresponding to JAM-A in 37 years old (y.o.) human

MABs, while 22 y.o. and 42 y.o. MABs did not express JAM-A (sup-

plementary Fig S2B, right panel). Consistent with the data obtained

with murine cells, the human MABs migrated more efficiently when

the endothelial JAM-A was reduced and the increase in cell transmi-

gration correlated with the efficiency of JAM-A depletion in HUVECs,

suggesting a dose-dependent effect (Fig 4B-D).

To evaluate the potential use of blocking antibodies against

human JAM-A, we then studied the biological activity of a commer-

cially available human JAM-A-neutralizing antibody, J10.4 (Mandell

et al, 2004), along with that of BV16 (produced in our laboratory)

(Williams et al, 1999), in terms of their ability to dismantle JAM-A

from endothelial junctions. As shown in Fig 4E, both antibodies

altered JAM-A localization to a similar extent. One hour after J10.4

or BV16 treatment of endothelial cells, the JAM-A staining appeared

to be more diffuse and less intense at the junctions. This phenome-

non increased over time (Fig 4E and F). Furthermore, these JAM-A-

neutralizing antibodies induced comparable strong increases in

human MAB transmigration (Fig 4G).

Taken together, these results support the use of JAM-A blocking

antibodies to improve murine and human MAB engraftment.

Changes in junction organization drive MAB transmigration
through JAM-A-null endothelial cells

Cell extravasation involves a cascade of events initiated by adhesion

between flowing cells and the vascular endothelium and followed

by cell diapedesis through the endothelial monolayer. To investigate

which of these steps are modified during MAB transmigration

through JAM-A-null endothelial cells, we first performed adhesion

assays. As reported in Fig S5A, embryonic MABs adhere in a similar

manner to the endothelium regardless of the presence or the

absence of JAM-A, while adult MABs adhere even less to JAM-A-

null endothelial cells. This strongly suggests that increased adhesion

is not responsible for the greater extravasation of the cells. Then,

we asked whether the absence of JAM-A could modulate b1- and
b3- integrin expression or activity as previously reported in other

systems (Naik & Naik, 2006; Severson et al, 2009; McSherry et al,

2011; Peddibhotla et al, 2013). Western blot analysis showed that

the absence of JAM-A resulted in slightly decreased levels of b1-inte-
grin, as previously reported (Severson et al, 2009; McSherry et al,

2011). In contrast, the expression level of b3 integrin was increased

in JAM-A-null endothelial cells compared to control cells (supple-

mentary Fig S5B and C). Changes in b1 and b3 integrin expression

levels in the endothelium may induce a different distribution of

extracellular matrix proteins in JAM-A-null and WT endothelial cells

which, in turn, may modify MAB migration. To test this hypothesis,

we analyzed the organization of three major members of the endo-

thelial basement membrane: fibronectin, laminin and collagen IV

but we could not observe significant differences comparing JAM-A-

null and WT endothelial cells (supplementary Fig S5D). Moreover,

MABs migrated in a comparable way across filters coated by the

extracellular matrix of JAM-A-null and WT endothelial cells (see

Materials and Methods and supplementary Fig S5E).

Finally, we found that MAB transmigration through JAM-A-null

endothelial cells was not significantly affected by the presence of
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A

C

D E

B

Figure 3. Impairment of JAM-A expression and function both increase murine mesoangioblast transmigration in vitro..

A Endothelial cells isolated from JAM-A-WT (left) and JAM-A-null (right) mice were seeded onto glutaraldehyde-crosslinked gelatin-coated filters (Transwell).
6-carboxyfluorescin diacetate (6-CFDA)-labeled embryonic (top) and adult (bottom) MABs were added to the upper chamber and allowed to migrate for 6 h. The
migrated MABs (green) on the lower sides of the filters were fixed and counted. A representative experiment of five independent experiments, each in triplicate, is
shown. Scale bar: 100 lm.

B Quantification of the number of migrated MABs per area, as illustrated in A. **P < 0.001. Data are means � s.e.m. from five independent experiments, each in
triplicate.

C As in A, except that JAM-A-WT endothelial cells were pre-treated (3 h) and further incubated (6 h) with vehicle, non-related IgG and BV11 (20 lg/ml) (left and
middle, respectively). JAM-A-null endothelial cells were also incubated with vehicle (right) as a further internal control, illustrating that increased MAB
transmigration due to acute inhibition of JAM-A is comparable with their capacity to migrate in the absence of JAM-A. Representative experiment of four
independent experiments carried out in triplicate. Scale bars: 100 lm.

D Quantification of migrated embryonic MABs through JAM-A-WT (white and black bars) and JAM-A-null (grey bar) endothelial cells per area, as illustrated in C.
**P < 0.001. Data are means � s.e.m. from four independent experiments, each in triplicate.

E 6-CFDA-labelled embryonic (left) and adult (right) MABs were incubated with non-related IgGs (white bars), BV11 (20 lg/ml), (black bars) for 3 h. Then the MABs
were seeded on filters and allowed to migrate for a further 3 h in the presence of the indicated agents. The migrated MABs on the lower side of the filters (green)
were fixed and counted. Quantification of migrated cells per area is shown. Data are means � s.e.m. from three independent experiments, each in triplicate.
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b1- or b3-integrin blocking antibodies, compared to non-related IgG

(supplementary Fig S5F). Overall these results make unlikely the

involvement of matrix or b1- or b3-integrins in the increased migra-

tion of MABs through JAM-A-null endothelial monolayers.

To further understand the dynamics of MAB transmigration

through endothelial cells we followed the time course of this process

in live-cell imaging. Both JAM-A-WT and JAM-A-null endothelial

cells were stably transfected with the fluorescent protein Td-Tomato

to facilitate the observation of GFP transduced MABs crossing the

endothelial monolayers and invading the matrix in vitro. We found

that MABs make contact with the JAM-A-WT endothelialium but

they are unable to cross the monolayer and retain a spherical shape

up to 290 min. In contrast, MABs seeded on JAM-A-null endo-

thelium are able to elongate pseudopods through the endothelial

monolayer, transmigrate and invade the collagen gel (Fig 5A,

supplementary Fig S5G and Movie S1).

We then investigated whether the absence of JAM-A may change

the organization of endothelial junctions. To this end we performed

live-cell imaging of both JAM-A-WT and JAM-A-null endothelial

cells stably transfected with AcGFP-tagged PECAM-1. During 5 h of

observation, we found that junctions in JAM-A-null endothelial

monolayers are continuously formed and disrupted (Fig 5B and sup-

plementary Movie S2) showing a more dynamic behavior compared

to JAM-A-WT endothelium. These observations suggest that the

continuous remodeling of junctions in JAM-A-null endothelial cells

allows MABs transmigration through them. Evidence of MABs

crossing endothelial cell junctions in the region where they are dis-

assembled is reported in Fig 5C and supplementary Movie S3.

Finally, to further confirm that MABs crossed the endothelial

monolayers through the junctions, we performed a time course

transmigration assay of C57-GFP MABs through JAM-A-null endo-

thelial cells. The junctions were stained with an anti-PECAM-1 anti-

body. The orthogonal view and the 3 Dimentional reconstruction

showed that C57-GFP MABs transmigrate across the endothelium

via the paracellular route (Fig 5D) mediated by local disruption of

junctions.

Taken together these data support the idea that MABs transmi-

gration occurs through endothelial junctions and that this process is

significantly increased when JAM-A is absent and junctions become

less tightly organized.

JAM-A regulates the small GTPase Rap-1 in endothelial cells

To uncover the JAM-A transduction machinery, we first sought to

identify transcripts regulated by JAM-A expression. For this, we car-

ried out Affymetrix gene expression analysis to compare endothelial

cells isolated from lungs of WT and JAM-A-null mice. Among the

prominently affected genes, cAMP-responsive Rap-1 guanine nucle-

otide exchange factors (GEFs), such us EPAC-1 and EPAC-2, showed

significant down-regulation in the absence of JAM-A (local-pooled-

error test, P < 0.05; fold-change >2). The differences in the expres-

sion levels were confirmed at the protein level by immunoblotting

(Fig 6A), and down-regulation of EPAC expression was observed

upon inhibition of JAM-A with the BV11 blocking antibody

(Fig 6B).

The down-regulation of EPAC-1 and EPAC-2 raised the possibility

that JAM-A inhibition might affect the activation of the small

GTPase Rap-1 in endothelial cells, as previously shown in epithelial

cells (Mandell et al, 2005; Severson et al, 2009; McSherry et al,

2011). To address this issue, we first examined the activation of

Rap-1 in endothelial cells derived from JAM-A-null mice using a

pull-down assay for active GTP-loaded Rap-1 (Rap-1-GTP). To

detect Rap-1-GTP we used a glutathione S-transferase (GST) fusion

protein containing the RalGDS-Rap-1-binding domain (RalGDS-

RBD). The bound protein was analysed by Western blotting, which

showed that Rap-1-GTP levels decreased by 60% in the JAM-A-null

endothelial cells, as compared to the JAM-A-WT cells, whereas the

total level of Rap-1 was unaffected (Fig 6C). In a subsequent experi-

ment, endothelial cells were treated with BV11 or with non-related

IgG as control. The Western blotting showed a reduction in active

Rap-1, 3 h after BV11 administration, and this effect lasted for up to

6 h following JAM-A inhibition (Fig 6D). To investigate whether

JAM-A regulates Rap-1 localization to specific cell compartments,

we examined the localization of Rap-1-GTP by confocal microscopy

using GST-RalGDS-RBD as a probe in combination with an anti-GST

antibody for specifically detecting the Rap-1-GTP. Consistent with

the results of the pull-down assay, the absence of JAM-A reduced

the activation of Rap-1 both in the perinuclear regions and at cell-

cell contacts (defined by VE-cadherin staining; Fig 6E and F). These

data indicate that JAM-A regulates not only the activation, but also

the junctional localization of active Rap-1 in endothelial cells.

Using immunoprecipitation analysis, we showed that JAM-A is

associated to EPAC-1, EPAC-2, Rap-1 and afadin (a JAM-A-interact-

ing protein) (Bazzoni et al, 2000; Ebnet et al, 2000; Severson et al,

2009), which suggested that these proteins belong to a JAM-A multi-

protein complex that controls the organization of junctions (Fig 6G

and H). However, others have not been able to detect any co-associ-

ation between JAM-A and Rap-1 (Severson et al, 2009; McSherry

et al, 2011), which appears to be due to differences in the protocols

used for immunoprecipitation, potentially in terms of the use of

cross-linking or lower levels of starting materials (see Materials and

Methods).

These data suggest that JAM-A promotes the activation of Rap-1

by tethering EPAC-1 and EPAC-2.

Rap-1 modulation controls MAB migration through the
endothelium in vitro and improves muscular functionality in vivo

As the data above show that JAM-A acts by stimulating Rap-1 activ-

ity, we asked whether also the trans-endothelial migration of MABs

could be modulated by Rap-1. To address this question, we used the

selective activator of EPAC, 007, and the Rap-1 pharmacological

inhibitor GGTI-298. As shown in Fig 7A, Rap-1-GTP increased in the

presence of 007, as also seen for tetradecanoylphorbol acetate

(TPA), an activator of the signal transduction enzyme protein kinase

C used here as a positive control. On the other hand, Rap-1 activa-

tion was strongly inhibited in the presence of GGTI-298 (Fig 7B).

Following Rap-1 activation via 007, the transmigration of adult

murine MABs was significantly reduced by some 60% (Fig 7C).

Conversely, the transmigration of MABs was significantly doubled

in the presence of the Rap-1 inhibitor GGTI-298, which suggested an

active contribution of Rap-1 in MAB extravasation. Interestingly,

incubation of the JAM-A-null endothelial cells with 007 significantly

counteracted the ability of MABs to migrate through the endothe-

lium (50% inhibition), which supports the concept that Rap-1 might

by-pass JAM-A in inhibiting MAB transmigration (Fig 7C).
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Conversely, GGTI-298 treatment had no effect on JAM-A-null endo-

thelial cells (Fig 7C).

Overall these data are consistent with the idea that Rap-1 is

the downstream effector of JAM-A in the modulation of MAB

transmigration through endothelial junctions. Furthermore, MABs

pre-incubated with 007 or GGTI-298 or vehicle showed no signifi-

cant differences in their transmigration through filters lacking

endothelial cells, excluding the possibility that these agents have

a direct effect on MAB migration (Fig 7D). Importantly, GGTI-298

was also effective in an in vitro human setting, since it enhanced

transmigration of human MABs through human endothelium

(Fig 7E).
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Figure 4.
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The data reported above support the idea that inhibition of

Rap-1 may improve MAB engraftment. To validate these data in

vivo, we first performed a Rap-1 pull-down assay after intra-peri-

toneal administration of GGTI-298 and we found that Rap-1 activ-

ity was inhibited in skeletal muscle of Sgca-null mice

(supplementary Fig S4B) as expected. GGTI-298 inhibited Rap-1

activation to a similar extent as BV11 (supplementary Fig S4B).

We also observed that GGTI-298 did not induce tissue edema

(supplementary Fig S4A).

We then administrated GGTI-298 to Sgca-null mice before MAB

transplantation and we found that MABs engrafted more efficiently

upon this treatment, confirming in vitro data (Fig 7F and supple-

mentary Fig S1H).

Most importantly, functional experiments performed on dystro-

phic, immunodeficient age-matched (2 months old; 4 months old;

7 months old) Sgca-null/scid/beige mice showed that treating them

with GGTI-298 prior to MABs intra-arterial injection significantly

improved exercise tolerance. Indeed treated animals (GGTI-298 +

MABs) showed enhanced motor capacity, running from 33 to 72%

more than control animals (2.5 fold increase versus baseline,

**P < 0.01) and from 16 to 55% more than treated animals (+

MABs) (1.5 fold increase versus baseline, ***P < 0.001) (Fig 7G

and supplementary Fig S6).

Altogether, these data provide evidence that JAM-A and its

downstream effector Rap-1 are important biological targets for

improving MAB engraftment in dystrophic muscles. These observa-

tions open the possibility of using inhibitors of JAM-A or Rap-1 to

improve the efficacy of stem cell therapy in tissue regeneration.

Discussion

The efficacy of both autologous and allogeneic stem cell therapy for

tissue regeneration is linked to the amount of cells that engraft into

the damaged area. Here we introduce a novel strategy to increase

this function by targeting endothelial cell-to-cell junctions. These

structures have crucial roles in the regulation of leukocyte diapede-

sis through the vessel wall (reviewed in Nourshargh et al, 2010).

Several proteins form the architecture of intercellular junctions in

the endothelium, and among these, as shown in the present study,

the tight junction adhesive protein JAM-A markedly limits MAB

extravasation (reviewed in Weber et al, 2007).

Targeting JAM-A expression or function strongly increases MAB

transmigration through endothelial cells and their engraftment into

dystrophic muscle. This results in a greater contribution of the

donor cells to the regeneration of the host muscle.

The specificity of the action of JAM-A in limiting the passage of

MABs is supported by different sets of data. First, inactivation of PE-

CAM-1, another junctional protein known to increase leukocyte

extravasation, was not as effective as JAM-A in increasing MAB

engraftment. Moreover, inhibitors of the specific downstream sig-

naling pathway of JAM-A had the same effect obtained by inactivat-

ing the protein itself.

JAM-A is known to act by inducing and maintaining endothelial

cell junction organization (Ebnet et al, 2004; Nourshargh et al,

2010). Early studies showed that JAM-A is the first junctional com-

ponent to concentrate at intercellular junctions when endothelial

cells come into contact (Bazzoni & Dejana, 2004; Iden et al, 2012).

Therefore it is likely that through specific intracellular signaling

JAM-A promotes a correct organization of junctions. This concept is

supported by the data reported here showing a more dynamic and

less tight organization of endothelial junctions in absence of JAM-A.

Consistently, MABs are able to cross endothelial cells through junc-

tions and this process is much more efficient in absence of JAM-A.

Additionally, other JAM-A functions such as endothelial cell adhe-

sion through integrins (Naik & Naik, 2006; Severson et al, 2009;

McSherry et al, 2011; Peddibhotla et al, 2013) or changes in matrix

composition do not appear to play a major role in modulating MAB

extravasation. Therefore, our data support the concept that MABs

extravasate more efficiently in absence of JAM-A since endothelial

cell junctions are less tight.

Through the analysis of the gene expression profiles, we initially

showed that in the absence of JAM-A, endothelial cells express

lower levels of EPAC-1 and EPAC-2. These proteins are potent acti-

vators of the small GTPase Rap-1, which maintains the correct orga-

nization of cell-cell junctions and increases endothelial barrier

function (Cullere et al, 2005; Kooistra et al, 2007; Dube et al,

2008). In the absence of JAM-A, Rap-1 activation and junctional

Figure 4. Human mesoangioblast transmigration through the endothelium increases with both chronic and acute JAM-A inhibition..

A HUVECs with stable scrambled shRNA (Ctrl) or JAM-A targeting shRNAs (#51, #49, #50, #52) were generated (see Materials and Methods) and then homogenized.
The cell lysates were analyzed by immunoblotting for JAM-A and VE-cadherin, using vinculin as loading control.

B Quantification of data presented in A. JAM-A expression levels were normalized with vinculin and are expressed as percentages. Data are means � s.d. from three
independent experiments.

C HUVECs with stable scrambled shRNA (ctrl) or a JAM-A targeting shRNA (#51) were seeded onto Transwell filters for 72 h. 6-CFDA-labeled human MABs derived from
three different donors (22-, 42- and 37-year old [y.o.] healthy donors) were added to the upper chamber and allowed to migrate for 8 h. Migrated MABs on the
lower sides of the filters (green) were fixed and counted. Representative data are shown from four independent experiments, each in triplicate. Scale bar: 100 lm.

D Quantification of migrated MABs per area is shown for 22 y.o. (left), 42 y.o. (middle) and 37 y.o. (right) MABs. *P < 0.01, **P < 0.001. Data are means � s.e.m. from
four independent experiments, each in triplicate.

E Confluent monolayers of HUVECs were treated with non-related IgG, J10.4 and BV16 (12 lg/ml) at 37°C, for the indicated times. The cells were then incubated for
the last 1 h with 100 lg/ml cycloheximide (chx) to inhibit protein synthesis, fixed and stained for JAM-A (red) and VE-cadherin (marker for junctions, green). Scale
bar: 20 lm.

F Quantification of JAM-A delocalization. Time course (1, 3, 6 and 15 h) for mean fluorescence (expressed in arbitrary units, AU, in cells treated with IgG, J10.4 and
BV16, as indicated). The trend lines are shown. ***P < 0.00001 compared with IgG. Data are means � s.e.m. from three independent experiments.

G Experiments performed as in C, except the HUVECs were pre-treated (3 h) and further incubated (8 h) with non-related IgG, J10.4 and BV16 (as indicated).
Quantification of migrated MABs per area is shown for 22 y.o. (left), 42 y.o. (middle) and 37 y.o. (right) MABs. **P < 0.001. Data are means � s.e.m. from three
independent experiments, each in triplicate.

Source data are available for this figure.
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Figure 5. Mesoangioblast transmigration through JAM-A-null endothelial cells is driven by changes in junction organization..

A Time-lapse imaging of adult MAB (C57-GFP, green) transmigration across JAM-A-WT (left, red) and JAM-A-null (right, red) endothelial cells expressing Td-tomato
seeded onto collagen matrix. Images stack were obtained every 7 min from 0 (time of MAB addition to the endothelial monolayers) to 380 min. Representative time
frame images (120, 150, 210 and 290 min) from stack projection along y-axis are shown. See also supplementary Fig S5G and Movie S1.

B Time-lapse imaging of JAM-A-WT (left) and JAM-A-null (right) endothelial cells expressing PECAM-1-GFP as marker of cell-cell junction (white). Images stack were
obtained every 12 min for 300 min. Representative time frame images (0, 60, 120, 180, 240 and 300 min) are shown. The red arrowheads indicated the junction
dynamics. Scale bar: 10 lm. See also supplementary Movie S2.

C Time-lapse imaging of C57-GFP MAB transmigration across JAM-A-null endothelial cells expressing PECAM-1-GFP (white) seeded onto collagen matrix. Images stack
were obtained every 10 min for 300 min. Representative time frame images (20, 130, 180, 230, 280, 300 min) are shown. MAB is shown as a gradient of pseudo-
colors (Depth index) ranging from red (top, on the endothelium) to blue (bottom, through the collagen matrix), varying according to focal plane depth. The red
arrowheads indicated the junctions. The yellow arrowhead highlights the crossing point of MAB through the disrupted junctions. Scale bar: 10 lm. See also
supplementary Movie S3.

D Time course of C57-GFP MAB transmigration across JAM-A-null endothelial cells seeded onto collagen matrix. JAM-A-null endothelial cells were fixed at different
time point during the transmigration assay and then stained with anti-PECAM-1 (red) as marker of cell-cell junction and DAPI (blue) as marker of nuclei. Two
representations of a confocal z-stack taken after 180 min of MAB transmigration are shown. On the left, orthogonal cross-sections and on the right, a couple of
images taken from a 3D reconstruction are shown. The white arrowhead (top) indicated the crossing point of MABs through the disorganized junctions. The yellow
arrowheads highlighted the portion of MAB under the endothelium. Scale bar: 10 lm.
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localization are inhibited. As a consequence, junctions are partially

dismantled and MAB extravasation is increased. Comparable results

were obtained by inhibiting Rap-1 directly. These data are in agree-

ment with a previous study that showed a link between JAM-A

expression and Rap-1 activation in other systems (Mandell et al,

2005; Severson et al, 2009; McSherry et al, 2011) although the

mechanism of action of JAM-A in Rap-1 activation remained

unsolved (Monteiro & Parkos, 2012).

Here we show that JAM-A acts by sustaining the expression of

EPAC-1 and EPAC-2, which are in turn Rap-1 activators. This effect

can be inhibited not only by abrogating JAM-A expression, as in the

JAM-A-null cells or mice, but also by promoting the release of JAM-

A from endothelial junctions through incubations with blocking

antibodies. This last observation suggests that for sustained Epac

gene expression, JAM-A needs to be present and functionally active

at the endothelial junctions.

The data reported here describe a novel strategy of intervention

to increase MAB engraftment in dystrophic muscle. Chemical inhibi-

tors of Rap-1 and JAM-A-blocking antibodies can be administered

before MAB transplantation to improve the MAB infiltration into the

damaged muscle. To this end, we extended our studies to a human

system by testing chemical inhibitors of Rap-1 and JAM-A-blocking

antibodies on the transmigration of human MABs through human

endothelial cell monolayers. We show similar results comparing the

murine and human systems, supporting the possibility of translating

these findings to a clinical setting. In this context the availability of

clinically approved antibodies or drugs could speed up further trans-

lational studies. This would be of great relevance, as increased

engraftment strictly correlates with increased number of newly gen-

erated skeletal myofibers. Indeed, functional experiments performed

on dystrophic, immunodeficient Sgca-null/scid/beige show that

treating mice with the Rap-1 inhibitor significantly improved their

motor capacity and exercise tolerance.

Thus, improved MAB localization into the damaged muscle will

promote further the clinical efficacy of these treatments. This must

now await the availability and use of clinically approved antibodies

or drugs.

It was shown that JAM-A actively participates in leukocyte diape-

desis through endothelial junctions. Consistent with other reports

(Corada et al, 2005; Woodfin et al, 2007), we could confirm in the

present studies that when JAM-A is inhibited, fewer monocytes can

infiltrate into the inflamed muscle. It is not surprising that mecha-

nisms that regulate cell adhesion and extravasation may vary in dif-

ferent cell types. A possible explanation for the opposite behavior of

MABs and leukocytes is that leukocytes express JAM-A and the ho-

motypic interaction with endothelial JAM-A was found to be impor-

tant in directing their diapedesis through endothelial junctions

(Weber et al, 2007; Nourshargh et al, 2010; Vestweber, 2012a,b). In

contrast, MABs do not express JAM-A and cannot interact with it on

the endothelial surface.

In conclusion, we have unveiled a mechanism through which

donor MAB engraftment can be modulated by acting on host endo-

thelium. While the focus of our study is on MAB engraftment in

muscular dystrophy, the strategy that we have described might also

have a more general impact. For instance, in preliminary studies,

we have seen that JAM-A inhibition can markedly increase MAB

infiltration in the ischemic heart and improve the recovery of this

organ. Furthermore, we cannot exclude that JAM-A inhibition will

increase transmigration and engraftment of other types of stem/

progenitor cells, thus improving cell-based therapies of further, dif-

ferent diseases.

Materials and Methods

Mice

PECAM-1-null (Duncan et al, 1999), JAM-A-null (Cera et al, 2004;

Corada et al, 2005), Sgca-null (Duclos et al, 1998) and Sgca-null/

scid/beige (Tedesco et al, 2012) mice (age-mached within each

experiment) were used for these studies. Sgca-null/JAM-A-null

transgenic mice were generated by crossing Sgca-null and JAM-A-

null mice, and by selecting homozygous mice for both genes. All of

the mice used in this study were on a C57BL/6J background, except

for the Sgca-null/scid/beige mice, and were genotyped to verify the

mutations. Genotyping PCR for Sgca (WT allele 1066 bp; mutated

allele 618 bp) and JAM-A (WT allele 800 bp; mutated allele 500 bp)

mutations were detected with the primers listed in supplementary

Table S1.

For Sgca-null/scid/beige and PECAM-1-null mice genotyping see

Tedesco et al (2012) and Duncan et al (1999), respectively. All of

the procedures involving living animals conformed to Italian

(D.L.vo 116/92 and subsequent additions) and English law (Ani-

mals Scientific Procedure Act 1986 and subsequent additions) and

were approved respectively by the San Raffaele Institutional Review

Board (IACUC 355) and UK Home Office (Project License PPL no.

70/7435). C57BL/6J WT mice were purchased from Charles River

Laboratories.

Cell culture

Endothelial cells were isolated from lungs of JAM-A-WT and JAM-

A-null mice, cultured and immortalized as described previously

(Cera et al, 2004). Murine endothelial cells were treated with the

JAM-A-neutralizing antibody BV11 (20 lg/ml), b1-integrin (10 lg/
ml), b3-integrin (3 lg/ml) blocking antibodies, non-related IgG

(20 lg/ml, 10 lg/ml or 3 lg/ml) for the established time in Dul-

becco’s modified Eagle’s medium (DMEM) supplemented with 2%

fetal bovine serum (FBS) and then used in the assays. Cell mono-

layers were starved in DMEM containing 0.5% serum for 16 h prior

to treatments with an activator of the signal transduction enzyme

protein kinase C tetradecanoylphorbol acetate (TPA, 10 lM)

(Sigma-Aldrich, St Louis, MO, USA) for 10 min, EPAC activator (8-

pCPT-2′-O-Me-cAMP, 100 lM, referred to as ‘007’ throughout the

manuscript, in keeping with other publications and for simplicity)

(Biolog, Bremen, Germany) for 5 min, and Rap-1 inhibitor (GGTI-

298, 10 lM dissolved in dimethyl sulfoxide containing 10 mM dith-

iothreitol, as suggested by the supplier) (Calbiochem, Merck Milli-

pore, Darmstadt, Germany) for 1 h, and then used in the assays.

HUVECs were isolated from umbilical veins and cultured as previ-

ously described (Grazia Lampugnani et al, 2003). Human endothe-

lial cells were treated with the JAM-A-neutralizing antibodies J10.4

(12 lg/ml) and BV16 (12 lg/ml), or with non-related mouse IgG

(12 lg/ml), for 3 h in MCDB-131 medium supplemented with 10%

FBS, and then used for the in vitro migration assays. In immunofluo-

rescence experiments, the HUVECs were incubated with cyclohexi-
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mide (100 lg/ml) (Sigma-Aldrich), to inhibit protein synthesis, for

the last 1 h, before fixation. Cell monolayers were starved in MCDB-

131 containing 0.5% serum for 3 h prior to treatments with GGTI-

298 (10 lM) for 1 h, and then used for the in vitro migration assays.

All of the treatments were maintained during the assays.

Both murine (embryonic D16-GFP and adult C57-nLacZ or C57-

GFP) and human MABs (derived respectively from 22-, 42- and 37-

years old healthy donors) were cultured as previously reported

(Tonlorenzi et al, 2007). Detailed protocols for in vitro skeletal mus-

cle differentiation of adult murine and human MABs have already

been described in previous studies (Tonlorenzi et al, 2007; Diaz-

Manera et al, 2010). Briefly, C57 nLacZ adult murine MABs, as well

as human MABs, were plated on matrigel-coated dishes and at 80%

of confluence cells were exposed to differentiation medium contain-

ing DMEM plus 2% horse serum and cultured for an additional 3–

10 days before analysis.

A

D
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Figure 6.
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Murine MABs were also incubated with BV11, non-related rat

IgG, GGTI-298 or 007, and then used for the in vitro migration

assays.

In experiments with living cells, blocking antibodies and the

non-related IgG were used as purified immunoglobulins. Human

cells had been obtained from muscle biopsies at Hospital San Raffa-

ele, according to the protocol ‘Evaluation of regenerative properties

of human mesoangioblasts’, submitted to the San Raffele Ethical

Committee on January 08, 2007, approved on February 1 and

authorized on February 20, 2007. All patients had signed informed

consent.

In vivo migration assay

In a first set of in vivo migration assays, 20 ll of 100 lM Naja mos-

sambica mossambica cardiotoxin (Sigma-Aldrich) were injected

directly into the gastrocnemius, tibialis anterior and quadriceps

muscles of WT C57/BL6J, PECAM-1-null and JAM-A-null age-

matched mice. Then, 24 h after cardiotoxin-induced damage, MABs

were delivered via intra-arterial injections. In another set of in vivo

experiments, Sgca-null and Sgca-null/scid/beige mice were injected

into the tail vein with 3 mg/kg BV11 JAM-A neutralizing antibody,

or non-related rat IgG (Del Maschio et al, 1999) 1 h prior to intra-

arterial injections of MABs. In a separate experimental group, GGTI-

298 (50 mg/kg resuspended in 1 ml vehicle per mouse) or vehicle

(6% dimethyl sulfoxide, 0.6 mM dithiothreitol, normal saline solu-

tion) were given to Sgca-null mice via intra-peritoneal injections 1 h

before intra-arterial MAB delivery. In the Sgca-null/JAM-A-null

mice, no treatments were performed before intra-arterial MAB injec-

tions. In all experiments, with the exception of functional experi-

ments into Sgca-null/scid/beige (see Treadmill to exhaustion test),

MABs have been injected into one femoral artery of each mouse,

according to standard protocols (Tedesco et al, 2012). Mice were

sacrificed 6 h after intra-arterial injections since previous studies

established that within 6 h intra-arterially delivered MABs have

completed transmigration from the vessel lumen into acutely or

chronically damaged skeletal muscle (Galvez et al, 2006; Tedesco

et al, 2012). In the case of in vivo engraftment experiments into

Sgca-null/scid/beige mice, mice were sacrificed 3 weeks later. The

hind limb muscles (gastrocnemius, tibialis and quadriceps) were

collected and analysed.

In vitro migration assay

In vitro migration assays were performed on murine (JAM-A-WT,

JAM-A-null) or human endothelial cells (HUVECs, with stable

scrambled shRNA or JAM-A targeting shRNAs). Briefly, the cells

were seeded on 8-lm transwell filters (Corning, NY, USA) that were

previously coated with glutaraldehyde-crosslinked gelatin as fol-

lows: the culture supports were incubated for 1 h at RT with 0.5%

(for murine endothelial cells) or 1.5% (for HUVECs) gelatin, fol-

lowed by crosslinking with 2% glutaraldehyde solution (Sigma-

Aldrich) for 15 min at RT. The glutaraldehyde was then replaced by

70% ethanol. After 1 h, 5 washes with sterile PBS were followed by

an overnight incubation with PBS containing 2 mM glycine. Before

cell seeding, the slides were washed 5 times with sterile PBS. Alter-

natively, l-Dish35 mm, high glass bottom (Ibidi) were coated with col-

lagen gels (130 ll) containing Collagen R (Serva Electrophoresis

GmbH, Heidelberg, Germany) and Collagen G that were prepared as

previously described (Bauer et al, 2007). Endothelial cells were then

grown as a monolayer to reach confluence in 72 h, in 5% CO2 at

37°C. When needed, the confluent cell monolayers were pre-incu-

bated for 3 h with JAM-A neutralizing antibodies, or b1-integrin
(10 lg/ml, (Noto et al, 1995)) or b3-integrin (3 lg/ml, (Ashkar

et al, 2000)) or with the appropriate isotype-IgG as a control. Upon

endothelium starvation, pre-treatments with GGTI-298, 007 or vehi-

cle were performed for 30 min. Antibodies and chemical treatments

were maintained during the assay. For extracellular matrix experi-

ments, the confluent endothelial cell monolayers were extracted

with 0.5% Triton X-100, followed by one rinse with 0.1 M NH4OH

Figure 6. JAM-A regulates EPAC-1 and EPAC-2 expression and Rap-1 activity in controlling the tightening of endothelial cell junctions..

A Cultured endothelial cells isolated from JAM-A-WT and JAM-A-null mice were homogenized. The lysates were analyzed by immunoblotting for EPAC-1, EPAC-2 and
JAM-A using vinculin as a loading control.

B JAM-A-WT endothelial cells were incubated with IgG or BV11 (20 lg/ml) for the indicated times and then treated as in A, except we used GAPDH as the loading
control. Representative experiment of three independent experiments is shown.

C Confluent monolayers of JAM-A-WT and JAM-A-null endothelial cells were harvested in lysis buffer. The protein extracts were incubated with the Ral-GDS-RBD probe
or the GST-negative control (as indicated). The active Rap-1 (Rap-1-GTP) and total Rap-1 were detected using an anti-Rap-1 antibody. Representative data are
shown for the densitometry analysis of active Rap-1-GTP, normalized for total protein. **P < 0.001 versus JAM-A-WT. Data are means � s.d. from three
independent experiments.

D JAM-A-WT endothelial cells were incubated with IgG or BV11 for 3 h and 6 h (as indicated). Rap1-GTP loading quantified by GST pull-down/ Western blotting and
densitometry analysis, as reported in C. Data are means � s.d. from three independent experiments.

E Confluent monolayers of JAM-A-WT and JAM-A-null endothelial cells were fixed and double-stained with anti-VE-cadherin (green, left) as marker of cell-cell junction
and GST-RalGDS-RBD (white) to detect the Rap-1-GTP (right). The insets show high magnification fields of VE-cadherin (white, dashed square) and Rap-1-GTP (red,
dashed square) stainings. The arrowheads indicated the junctions. Pixels representing the co-localization of Rap-1-GTP with VE-cadherin are highlighted in yellow.
Scale bar: 20 lm.

F Rap-1-GTP immunofluorescence intensity at junctions is expressed as arbitrary units (AU). **P < 0.02. Data are means � s.e.m. from three independent
experiments.

G Cultured JAM-A-WT endothelial cells were homogenized, and the lysates (Input) were subjected to immunoprecipitation (IP) using an anti-JAM-A monoclonal
antibody or IgG, as control. Precipitated material was analyzed by immunoblotting for JAM-A, afadin, EPAC-1, EPAC-2 and Rap-1. Representative experiment of three
independent experiments is shown.

H As in G, except the lysates (Input) were subjected to immunoprecipitation (IP) using an anti-EPAC-2 antibody or IgG, as control. Precipitated material was analyzed
by immunoblotting for JAM-A, EPAC-1 and EPAC-2. Representative experiment of three independent experiments is shown.

Source data are available for this figure.
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and three rinses with PBS (Giese et al, 1994) and the washed twice

with DMEM containing 2% FBS.

MABs were labeled with 0.7 lM 6-carboxyfluorescin diacetate

(6-CFDA) (Molecular Probes, Invitrogen, Eugene, OR, USA) for

20 min at 37°C. 3 9 104 fluorescent murine or human MABs were

added to the upper chamber and were left to migrate in 5% CO2 at

37°C for 6-8 h. After the scraping of the non-migrated cells on the

upper face of the filters, the cells on the lower face were fixed with

4% paraformaldehyde for 10 min and washed in PBS. The migrated

cells were counted under an inverted fluorescence microscope

(AMG EVOS fl) using 10 9 magnification. Five pictures of adjacent

fields of the central zone of each filter were taken. The data were

displayed as numbers of migrated cells per area.

Adhesion assay

Confluent JAM-A-WT and JAM-A-null endothelial cells monolayers

were grown in 96-well plate for 72 h. MABs were labeled with

0.7 lM 6-carboxyfluorescin diacetate (6-CFDA) (Molecular Probes,

Invitrogen) for 20 min at 37°C before addition to endothelial cells

monolayers (3 9 104 cells/well). Co-cultures were left at 37°C for

30 min. Unbound MABs were removed and wells were washed with

pre-warmed DMEM 0.1% BSA four times. Finally, adherent MABs

were quantified using the fluorometer Wallac Victor3 1420 multila-

bel counter (Perkin Elmer, Whaltman, MA, USA). Wells without

MABs were used to assay the background fluorescence. Wells with

the starting amount of MABs were used to assay the total immuno-

fluorescence. Each condition was done in triplicate.

Production of lentiviruses and stable cell lines

shRNA against the human JAM-A gene and a non-targeting shRNA

as a control were cloned into pLKO.1 puro-based lentiviral vectors

and purchased from Sigma-Aldrich (St Louis, MO, USA). The JAM-A

target sequences were listed in supplementary Table S1.

The cDNA coding for the wild-type mouse PECAM-1 was kindly

provided by Dr. Steven Albelda, Philadelphia, Pennsylvania. The

mouse PECAM-1 cDNA was amplified by PCR and subcloned into

lentiviral expression vector pLVX-AcGFP-N1 (Clontech, Mountain

View, CA, USA) using restrinction sites for SmaI and BstBI (Pro-

mega, Fitchburg, WI, USA). The primers used were listed in supple-

mentary Table S1. The pLVX-Tdtomato-N1 (Clontech) plasmid was

used to generate stable endothelial cells and MABs expressing the

red fluorescent protein Tdtomato.

The lentiviral particles were produced using a four-plasmid trans-

fection system as described previously (Taulli et al, 2005). Lentivi-

rus-containing supernatants were collected 48 h and 72 h after

transfection, passed through a 0.45 lM filter, and used in two con-

secutive cycles of infection of endothelial cells. About 48 h after the

last infection, infected cells were selected with puromycin (3 lg/ml)

for 72 h and maintained at 1.5 lg/ml puromycin.

Immunoprecipitation and immunoblotting

For immunoprecipitation, confluent monolayers of endothelial cells

were incubated with 80 g/ml dithiobis-(succinimidyl) propionate

(Pierce, Rockford, IL, USA) for 30 min at 37°C. The cells were lysed

in RIPA buffer (100 mM Tris–HCl, pH 7.4, 150 mM NaCl, 1% Tri-

ton, 1% deoxycholic acid, 0.1% SDS, 2 mM CaCl2, protease inhibi-

tors [Roche] and phosphatase inhibitors [Sigma-Aldrich]) and JAM-

A or EPAC-2 was immunoprecipitated overnight from 8 mg total

extract, as described by Ebnet et al (2000). For total extracts prepa-

ration, the cells were harvested in Laemmli buffer (2.5% SDS, 20%

glycerol, 0.125 M Tris-HCl, pH 6.8). Total extracts were incubated

for 5 min at 100°C to allow protein denaturation, and then centri-

fuged for 5 min at 16 000 9 g to discard cell debris. The superna-

Figure 7. Endothelial Rap-1 has a functional role in mesoangioblast migration in vitro and in vivo..

A JAM-A-WT endothelial cells were starved for 16 h and then treated with vehicle (ctrl), a selective activator of EPAC (007, 100 lM) or tetradecanoylphorbol acetate
(TPA, 10 lM), an activator of the signal transduction enzyme protein kinase C, used as positive control for Rap-1 activation. Rap1-GTP loading was quantified by
GST pull-down/ Western blotting and densitometry analysis. Representative blot (left) and quantification of densitometry analysis (right) of Rap-1-GTP levels
normalized for total amount of protein. **P < 0.001. Data are means � s.d. from three independent experiments.

B JAM-A-WT endothelial cells were incubated with the Rap-1 pharmacological inhibitor GGTI-298 (10 lM) or vehicle for 3 h and 6 h (as indicated). Rap1-GTP loading
was quantified as in A. Data are means � s.d. from three independent experiments. Note: to highlight Rap-1 activation, the filter in A was exposed for 30 s, while in
B it was exposed for 5 min, to improve the evaluation of Rap-1 inhibition at 3 h and 6 h.

C JAM-A-WT and JAM-A-null endothelial cells seeded on coated filters for 72 h and treated with vehicle (ctrl) or 007 or GGTI-298 for the last 30 min, as indicated. 6-
CFDA-labelled adult MABs were added to the upper chamber and allowed to migrate for 6 h under these conditions. Quantification of migrated MABs per area for
JAM-A-WT (on the left of the dashed line) and JAM-A-null (on the right of the dashed line) endothelial cells. **P < 0.001. Data are means � s.e.m. from three
independent experiments, each in triplicate.

D 6-CFDA-labelled embryonic (left) and adult (right) MABs were incubated with vehicle (ctrl, white bars), 007 (100 lM) or GGTI-298 (10 lM) (black bars) for 3 h, as
indicated. Then the MABs were seeded on filters and allowed to migrate for a further 3 h in the presence of the indicated agents. The migrated MABs on the lower
side of the filters (green) were fixed and counted. Quantification of migrated cells per area is shown. Data are means � s.e.m. from three independent experiments,
each in triplicate.

E HUVECs were treated as described in C. Quantification of migrated MABs per area is shown for 22 y.o. (left), 42 y.o. (middle) and 37 y.o. (right) MABs. **P < 0.001.
Data are means � s.e.m. from three independent experiments, each in triplicate.

F Sgca-null mice were treated with GGTI-298 (50 mg/Kg, n = 2) or with vehicle (ctrl, n = 3) for 1 h and then were intra-arterially transplanted with adult MABs. After
6 h, the hind limb muscles were collected and the presence of migrated cells was quantified using qRT-PCR with nLacZ primers. The relative RNA level of nLacZ
obtained for control was set to 1, and the ratio for GGTI-298 versus control is shown. Fold increases have been extrapolated by data shown in Figure S1H.

G Box-plot showing exercise tolerance in a treadmill test for untreated Sgca-null/scid/beige mice, Sgca-null/scid/beige mice transplanted with MABs (+ MABs, 5 × 105 cells
injected bilaterally in femoral arteries) and Sgca-null/scid/beige mice transplanted with MABs and treated with GGTI-298 (+MABs + GGTI-298, 5 × 105 cells injected
bilaterally in femoral arteries). Values are plotted as fold increase of motor capacity measured at different time points (21, 28 and 35 days post transplantation), and
were normalized with the baseline performances of each mouse. Data are means � s.e.m. of 3 mice per group. **P < 0.01, ***P < 0.001, one-way ANOVA.

Source data are available for this figure.
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tants were collected and the protein concentrations were determined

using BC Protein Assay kits (Pierce), according to the manufacturer

instructions.

Total extracts or the immunoprecipitated were loaded onto gels,

separated by SDS-PAGE, transferred to a Protran Nitrocellulose

Hybridization Transfer Membrane (0.2 lm pore size; Whatman).

The membranes were probed with primary antibodies as indicated

in the figures. Bound antibodies were visualized with the appropri-

ate horseradish peroxidase-linked secondary antibody (1:2000; Cell

Signaling Technology, Danvers, MA, USA) and specific binding was

detected by the enhanced chemiluminescence (ECL) system (Amer-

sham Biosciences, Uppsala, Sweden) using HyperfilmTM (Amer-

sham Biosciences), or with SuperSignal West Femto Maximum

Sensitivity Substrate kits (Thermo Pierce, Rockford, IL, USA) for

chemiluminescence detection with a ChemiDoc XRS gel imaging

system (Bio-Rad, Hercules, CA, USA). The molecular masses of pro-

teins were estimated relative to the electrophoretic mobility of the

cotransferred prestained protein marker, Broad Range (Cell Signal-

ing Technology, Danvers, MA, USA). Densitometric analysis was

performed using imagej Version 1.33 (National Institute of Health,

Bethesda, MD, USA) or IMAGE LAB (Bio-Rad) software.

Immunofluorescence microscopy

Immunofluorescence analyses were performed according to standard

protocols (Lampugnani et al, 1997; Tedesco et al, 2012). Briefly,

cells were cultured in 8-well l-Slides (Ibidi, Martinsried, Germany).

For MyHC staining, the cells were fixed with 4% paraformaldehyde

for 10 min at 4°C. Once fixed, the cells were incubated for 30 min

with 1% BSA, 0.2% Triton (TX-100) in PBS and for another 30 min

with 10% donkey serum. For Sgca, b-gal and laminin staining of

muscle tissue sections, the slices were not fixed but were directly

blocked for 30 min with 1% BSA, 0.2% TX-100 in PBS, and for a fur-

ther 30 min with 10% goat serum. For all of the other stainings, the

cells were fixed and permeabilized in ice-cold methanol at �20°C,

for 5 min. Fixed cells were incubated for 1 h in a blocking solution:

for JAM-A and VE-cadherin staining, the blocking buffer was 2%

BSA, 5% donkey serum and 0.05% Tween-20 in TBS. Cells and

slices were then incubated overnight at 4°C or for 2 h at RT, with pri-

mary antibodies diluted in blocking buffer. The appropriate second-

ary antibodies (Alexa Fluor 488, 546, 594, 1:200; Invitrogen) were

applied to the cells for 45 min at RT. Before mounting the cells, the

cell nuclei were stained with 4′,6-diamidino-2-phenylindole (DAPI;

1:5000; Jackson ImmunoResearch, Westgrove, PA, USA) or Hoechst

33342 (1:1000; Fluka, Sigma-Aldrich), for 5 min at RT.

Samples were observed under a DMR fluorescence microscope

(Leica, Solms, Germany) using 63 9 or 100 9 lenses, or a DMI

6000B fluorescence microscope (Leica) using 10 9 or 20 9 lenses.

The images were captured using a charge-coupled camera, model 3,

Hamamatsu or DFC 350FX, before processing through Adobe Photo-

shop and Adobe Illustrator. Only adjustments to brightness and con-

trast were used in the preparation of the figures. For comparison

purposes, different sample images of the same antigen were

acquired under constant acquisition settings.

For detection of apoptosis, Dead ENDTM FLUORIMETRIC TUNEL

SYSTEM (Promega) has been used and immunofluorescence on sec-

tions has been performed following manufacturer’s instructions.

Confocal microscopy was performed with a Leica TCS SP2 AOBS

confocal microscope, equipped with yellow (Argon, 488 nm), red

(561 nm solid state laser) and blue (633 nm HeNe laser) excitation

laser lines. Image acquisition was performed using a 63 9 /1.4 NA

oil immersion objective (HCX PL APO 63 9 Lbd Bl; Leica) and with

spectral detection bands and scanning modalities optimized for the

removal of channel cross-talk. Open-source software, IMAGEJ

(Schneider et al, 2012), was used for the data analysis. Briefly, for

the quantification of Fig 5D (right panel), we developed a macro for

automated segmentation of the cells based on junctions definition

by VE-cadherin. After background correction, the total fluorescence

of JAM-A within each segmented area was measured. Finally, the

mean fluorescences were calculated as the ratios of the total fluores-

cence signals to the number of pixels in the areas, expressed as arbi-

trary units.

Live cell imaging and analysis

Time-lapse imaging using JAM-A-WT and JAM-A-null endothelial

cells expressing Td-tomato and C57-GFP MABs on a Leica TCS

SP5 confocal microscope equipped with a HCX Plan Apo 409

(1.25–0.75 NA) oil-immersion objective. A 488 argon laser, and a

561 diode laser have been used for the excitation of the GFP and

Tdtomato respectively, setting the acquisition to sequential scan-

ning to avoid cross-talk between the channels. The system is

equipped with an incubator (OKOlab) to maintain 37°C in an

atmosphere of 5% CO2. Stacks of images were taken every 7 min

during a period up to 5 h, in optical planes separated by 1.5 lm
along a z-axis range of 54 lm.

Time-lapse imaging using JAM-A-WT and JAM-A-null endothelial

cells expressing PECAM-1-GFP was performed on a spinning disk

confocal microscope (UltraVIEW VoX; PerkinElmer) equipped with a

Plan Fluor 409 (1.30 NA) and Plan Apo VC 60x (1.40 NA) oil immer-

sion objective (Nikon, Amsterdam, the Netherlands) and controlled

by Volocity (Improvision, Perkin Elmer, MA, USA) software. The sys-

tem was equipped with an environmental chamber (OKOlab, Naples,

Italy) maintained at 37°C in an atmosphere of 5% CO2. For the endo-

thelial dynamics (Fig 5B), stacks of images were taken every 12 min

during a period up to 5 h, in optical planes (separated by 2 lm) along

a z range of 12 lm. For the transmigration assay (Fig 5C), stacks of

images were taken every 10 min during a period up to 5 h, in optical

planes (separated by 2 lm) along a z range of 26 lm.

Movies were analysed using ImageJ by compiling images from

the maximum projection of consecutive focal planes consistently

within each experiment. Depth-coded stack were generated using

the dedicated plug-in (Depth coded stack), which assigned a gradi-

ent of pseudo-colors ranging from red to blue, (see ‘Depth Index in

Fig 5C), varying according to focal plane depth. 3-Dimentional

reconstitutions of MABs through the endothelium were processed

and edited using Volocity software (Perkin Elmer).

Rap-1 activation assay and immunostaining

Activation of Rap-1 was measured in vitro on confluent murine endo-

thelial cell monolayers. When needed, the cells were incubated with

BV11 and the non-related rat IgG, or with TPA, 007 or GGTI-298, and

then used for the assays. To detect in vivo Rap-1 activation, the hind
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limb muscles were collected and then processed by Tissue Lyser II

(Qiagen, Hilden, Germany). The tissue lysates were cleared by cen-

trifugation at 16 000 9 g for 15 min and then used for the assays.

Rap-1 pull-down assays were performed using the GST-fused

Rap-1-binding domain of Ral-GDS, which was obtained by trans-

forming Escherichia coli strain BL21 with a pGEX-2T-Ral-GDS-RBD

expression vector (Self et al, 2001). The fusion protein (GST-Ral-

GDS-RBD) was affinity purified on glutathione-Sepharose 4B beads

(GE Healthcare, Buckinghamshire, UK) using standard methods.

The Rap-1 pull-down assays were performed as described previ-

ously (Franke et al, 1997). Rabbit polyclonal anti-Rap1 and anti-

rabbit HRP-conjugated antibodies were used to reveal Rap-1-GTP

and total Rap-1. Activated Rap-1 in ice-cold methanol fixed cells

was detected by probing with the RBD from the Rap-1-GTP-inter-

acting protein Ral-GDS-GST at 6 lg/ml, overnight at 4°C. A rabbit

anti-GST antibody was used subsequently. Negative controls were

performed as follows: by omitting the incubation with GST-Ral-

GDS-RBD; by replacing GST-RalGDS-RBD with GST alone at the

same dilution; by using the anti-GST antibody alone. To deter-

mine the amount of co-localization between Rap-1-GTP and VE-

cadherin, we developed an in-house image-processing pipeline

based on the MevisLAB platform (developed by MeVis Medical

Solutions AG and Fraunhofer MEVIS, http://www.mevislab.de/).

For each biological sample, three different images are input into

the processing pipeline: an image depicting the localization of

Rap-1-GTP (Rap-1-image), an imaging depicting the localization of

VE-cadherin (VE-c image), and an image depicting the nucleus

localization (DAPI-image). As a first step, the DAPI-image is thres-

holded (static threshold manually set to an intensity value of 30)

and turned into a binary image, with nuclei set to 0 and the

remaining pixels set to 1. Next, the VE-c image is de-noised by

using an itk-based median filter of radius set to 1 pixel. The de-

noised image is combined with the binary DAPI-image so that

only the VE-c pixels not belonging to the nuclei are kept for fur-

ther analysis. The Rap-1-image is processed in a similar way. The

binary VE-c and Rap-1 images are finally used to assess co-locali-

zation. Only pixels set to 1 in both images are kept for further

analysis, as these represent co-localization of VE-cadherin and

Rap-1-GTP. The mean intensities of Rap-1-GTP co-localizing with

VE-cadherin were finally calculated.

Antibodies

All antibodies used are described in supplementary Table S2.

Histology

Muscles were frozen in liquid nitrogen-cooled isopenthane and

cryostat sections were used for histology. Tissue sections were

stained with hematoxylin and eosin (Sigma-Aldrich) and/or X-Gal

(Invitrogen) according to standard protocols (Tedesco et al, 2011).

Intravenous injection of lysine-fixable cadaverine conjugated to
Alexa Fluor-555

Cadaverine conjugated to Alexa Fluor-555 (3.125 mg/ml, in saline)

was injected intravenously into the tail vein of adult (5 month

old) mice (25 mg/kg). The circulation time was 2 h. For in situ

detection of cadaverine, the anesthesized mice were perfused for

1-2 min with HBSS, followed by 5 min perfusion with 4% parafor-

maldehyde in PBS, pH 7.2. The organs were then removed and

post-fixed in 4% paraformaldehyde at 4°C for 5-6 h. Images of dis-

sected organs were captured using a stereomicroscope (SZX16,

Olympus, Tokyo, Japan) equipped with a fluorescence long-pass

filter for red fluorescent protein (excitation, 530–550 nm; emission,

575 nm). Image acquisition was performed using a 1 9 objective

with total magnification of 0.35 9, supported by a RGB camera

(Nikon Digital Sight DS-5Mc, Amsterdam, the Netherlands). The

IMAGEJ open source software was used for data analysis. The

mean fluorescences were calculated as the ratios of the total fluo-

rescence signals to the number of pixels in the areas, expressed as

arbitrary units.

The paper explained

Problem
Cell therapy is a promising route for the treatment of muscular dys-
trophies, severe and fatal genetic diseases of the skeletal muscle for
which no cure is currently available. Injection of blood-vessel-associ-
ated stem cells, known as mesoangioblasts (MABs), has improved the
regeneration of skeletal muscle and its function in different animal
models of muscular dystrophies. Furthermore, donor human leukocyte
antigen (HLA)-matched MABs are currently being transplanted into
Duchenne Muscular Dystrophy patients in phase I/II clinical trial.
One potential limitation for cell therapy is the difficulty of ensuring
that a sufficient number of reconstituting cells reach the damaged
areas. Therefore, strategies to increase cell engraftment will be crucial
to improve the successful outcome of such cell therapies. Although
some efforts have been made towards the definition of the require-
ments for efficient engraftment of MABs, a deliberate protocol for the
clinical application of this strategy is still missing.

Results
We identified the endothelial junctional protein JAM-A as a key regula-
tor of MAB engraftment in regenerating skeletal muscle. We show that
endothelial specific JAM-A gene inactivation or a JAM-A blocking anti-
body markedly enhance MAB engraftment in vitro and in vivo in mouse
models. In searching for the mechanism of action, we observed that in
absence of JAM-A, MABs of both murine and human origin can migrate
more efficiently through endothelial cell monolayers. Furthermore, in
the absence of JAM-A, the activation and junctional localization of the
small GTPase Rap-1 is prevented due to the down-regulation of the
cAMP-responsive Rap-1 guanine nucleotide exchange factors EPAC-1
and EPAC-2. This, in turn, inhibits junction tightening and allows MAB
extravasation. Notably, pharmacological inhibition of Rap-1 signifi-
cantly increased MAB engraftment in vitro and in vivo.

Impact
The identification of specific cues that steer stem cells from their
niche and increase the efficiency of their engraftment to diseased tis-
sues might help to identify tools to improve stem cell therapies. The
data highlight the fact that targeting the endothelial cell-to-cell junc-
tions may be a reasonable therapeutic strategy to enhance the
engraftment of muscle cell progenitors (MABs) to dystrophic muscles.
Furthermore, we identified Rap-1 chemical inhibitor as potential
agent to optimize cell therapy protocols for muscular dystrophies.
These findings reveal an important role of the endothelium in the reg-
ulation of stem cell engraftment and will provide novel types of ther-
apeutical intervention in the treatment of dystrophic patients.
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Quantitative real-time PCR analysis

RNA was isolated from muscles using TRIZOL (Invitrogen) and con-

verted into double-stranded cDNA with the cDNA synthesis kit Im-

PromTM-II Reverse Trascription System (Promega) according to the

manufacturer instructions. qPCRs were performed with a M93000P

Stratagene thermocycler. For quantitative real time PCR analysis the

primers used were listed in supplementary Table S1.

Treadmill to exhaustion test

Exercise tolerance was tested on a treadmill (Columbus Instru-

ments, Columbus, OH, USA) as previously reported (Tedesco et al,

2011, 2012). Untransplanted Sgca-null/scid/beige mice (n = 3),

Sgca-null/scid/beige mice transplanted with adult MABs (n = 3)

and Sgca-null/scid/beige mice transplanted with adult MABs and

treated with GGTI-298 (n = 3) were used for these studies. Briefly,

mice were trained three times a week to the treadmill (10 min;

speed of 6 m/min). Upon completion of the training protocol, mice

have been tested for their motor capacity for 2 weeks, to have base-

line measurements for each mouse. Transplantations were done

bilaterally with 5 9 105 adult MABs per femoral artery 24 h after

the last exercise (baseline measurements). Three weeks after the

transplantation mouse motor capacity was tested again on the tread-

mill. During the test mice were kept into a 10° inclined treadmill at

speed of 6 meters/min and the speed was then augmented of 2 m/

min every 2 min until exhaustion (when mice stop for more than

5 s without reengaging the treadmill). Data are shown as fold

increase of motor capacity measured at different time points (21, 28

and 35 days post transplantation) and were normalized with the

baseline performance (pre-transplant) of each mouse.

Statistical analysis

Data were analyzed using GraphPad Prism 5 (La Jolla, CA, USA) or

Excel, and the data are expressed as means � standard error of the

means (s.e.m.) or � standard deviation (s.d.). Statistical significance

was tested using student’s two-tailed unpaired t-tests or one-way

ANOVA. A probability of < 5% (P < 0.05) was considered to be sta-

tistically significant.

Supplementary information for this article is available online:

http://embomm.embopress.org/
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