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The Complementary Learning Systems (CLS) theory provides a powerful framework for considering the acquisition, consolidation,
and generalization of new knowledge. We tested this proposed neural division of labor in adults through an investigation of the
consolidation and long-term retention of newly learned native vocabulary with post-learning functional neuroimaging. Newly learned
items were compared with two conditions: 1) previously known items to highlight the similarities and differences with established
vocabulary and 2) unknown/untrained items to provide a control for non-specific perceptual and motor speech output. Consistent
with the CLS, retrieval of newly learned items was supported by a combination of regions associated with episodic memory (including
left hippocampus) and the language-semantic areas that support established vocabulary (left inferior frontal gyrus and left anterior
temporal lobe). Furthermore, there was a shifting division of labor across these two networks in line with the items’ consolidation
status; faster naming was associated with more activation of language-semantic areas and lesser activation of episodic memory
regions. Hippocampal activity during naming predicted more than half the variation in naming retention 6 months later.
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Introduction

Across the lifespan, humans need to acquire new knowl-
edge and do so rapidly with relative ease. One lifelong
learning process is vocabulary acquisition. Beyond the
initial influx of new language in childhood, there are
numerous words, meanings, and expressions to learn
throughout adulthood. Thus, individuals constantly
acquire new vocabulary relating to their everyday lives,
hobbies, and profession. Re-establishing vocabulary is
also a key target for those with language impairment
(aphasia) after brain damage from injury, stroke, or
dementia because word-finding difficulties (anomia) are
a pervasive and frustrating feature of all types of aphasia
(Rohrer et al. 2008). Therefore, from both cognitive and
clinical neuroscience perspectives, it is fundamentally
important to understand both the cognitive and neural
bases of vocabulary acquisition.

One influential theory is the Complementary Learning
Systems (CLS; Marr 1971; McClelland et al. 1995) model.
This theory proposes that new knowledge is initially
coded through rapidly formed, sparse representations
supported by the medial temporal lobes (MTL) and

hippocampus. Longer-term consolidation and evolution
of generalizable representations follow from slower,
interleaved learning and MTL replay to neocortical
regions. Thus, over time, there is a gradual shift in
the division of representational load between MTL and
neocortical regions (with the rate of change depending
on various factors: cf. McClelland et al. 2020). The
CLS provides a potentially generalizable theoretical
framework for the acquisition of many different kinds
of knowledge including language acquisition (cf. Davis
and Gaskell 2009). There is, however, little direct neural
evidence for this theory in long-term language learning,
particularly in adults who already have large and varied
vocabularies.

To date, few if any studies have explored the pro-
cesses that underpin new vocabulary learning within
adults’ native language (i.e., learning the meaning and
name of novel items/concepts as one might do when
learning about a new hobby, profession, or technology).
Instead, the handful of pre-existing investigations has
typically focused on second language learning. Stud-
ies have adopted different experimental designs. Some
have required participants to link brand new names to
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pre-existing, well-established meanings (Raboyeau et al.
2004; Yang et al. 2015). Alternatively, to avoid the unfa-
miliar phonetic and phonological elements of second
languages, researchers have used pseudowords that con-
form to the phonological structure of the native language
(Mestres-Missé et al. 2008; Davis et al. 2009; Paulesu
et al. 2009; Ozubko and Joordens 2011; Pohl et al. 2017).
Pseudowords, however, do not have semantic meanings
to aid learning and consolidation. Takashima et al. (2017)
trained participants with pseudowords, half with word
meanings, to explore this issue. Participants completed a
same-day and 1-week later recognition functional mag-
netic resonance imaging (fMRI) task. Novel words with
semantic information at encoding were better retained
but utilized both the episodic and semantic systems
during recognition at both stages. Of course, learning
additional names for pre-existing items may generate
competition between new and old words when nam-
ing. This proactive interference can skew accuracy and
reaction times (RTs; Gaskell and Dumay 2003). To avoid
these issues, researchers sometimes use abstract (i.e.,
meaningless) images alongside pseudowords (Takashima
et al. 2014).

Although these pseudoword studies assessed per-
formance through recognition tasks rather than the
full recall process needed in speech production, they
nevertheless indicate some important target brain
regions for investigating native vocabulary. In an online
fMRI associative learning study, Breitenstein et al.
(2005) presented participants with an image and paired
auditory pseudoword. Participants learned the novel
vocabulary through associative learning exposure,
with higher occurrences of “correct” pairings. There
was strong evidence of initial hippocampal encoding
of pseudowords. In addition, there was hippocam-
pal modulation during online pseudoword learning,
whereby a linear decrease of left hippocampal activity
paralleled increases in pseudoword accuracy over the
training. Davis et al. (2009) used fMRI to measure neural
responses to novel pseudowords at different stages of
consolidation. Unfamiliar novel words had elevated
hippocampal responses, and this response correlated
with post-scanning measures of word learning. Similar to
Breitenstein et al. (2005), as participants completed more
training, there were associated hippocampal activity
decreases. These studies provide evidence for the first
stage of the CLS, in short-term learning of pseudowords.
Such studies also provide second-stage neocortical
regions of interest (ROIs), with differential responses to
novel and existing words, including the left temporal lobe
(Raboyeau et al. 2004; Davis et al. 2009), bilateral anterior
temporal lobes (ATLs; Grönholm et al. 2005), and fusiform
gyrus (Breitenstein et al. 2005) with elevated responses
during training.

To fully understand native vocabulary acquisition
and recovery of vocabulary in aphasia, investigation
of meaningful real-world items with native language
names would be ideal. A potentially suitable approach

comes from a series of MEG and aphasiological studies
that used the “Ancient Farming Equipment” learning
paradigm, which provides a line drawing, a novel Finnish
name, and a description of how the item is used (cf.
Laine and Salmelin 2010). However, to fully elucidate the
networks supporting word acquisition and allow charting
of the neocortical transfer proposed by the CLS, a longer-
term strategy is required.

In the present study, we generated a direct evaluation
of the CLS with respect to native vocabulary acquisition,
including the role of semantic learning. Accordingly, we
used fMRI to investigate the interaction between episodic
and semantic neural networks that underlie native novel
vocabulary learning, and how these processes differ
from long-standing fully consolidated words. Healthy,
older participants were recruited for comparability with
aphasic patient samples and due to increases in word-
finding difficulties in normal aging (Burke and Shafto
2008). Participants were trained on novel native words
for 3 weeks, before performing both picture naming
(of previously known items, untrained/unknown items,
and select trained items, which had been learned
successfully per participant) and semantic judgment
tasks in the scanner (i.e., names had to be learned
sufficiently well for speech production rather than
simply above-chance memory recognition). We also
adopted this method and learning target as it directly
mimics those found in rehabilitation of aphasic word-
finding difficulties (where patients aim to re-establish
meaningful, native vocabulary through multiple learning
sessions, extending over several weeks). Consequently,
not only does the current study provide information
about native vocabulary acquisition in the healthy brain,
but it may also give important clues about the neural
bases of successful aphasia rehabilitation by providing a
baseline for the same analysis in patients with aphasia.

We predicted that at a whole brain level, naming of
newly trained, less consolidated words (for a maximum
of 3 weeks, e.g., echidna, dilruba, binnacle) would rely on
the episodic/MTL areas as described by the first stage
of the CLS. Whereas naming of already known, highly
consolidated words (e.g., dragonfly, xylophone, hairdryer)
would rely on the language network, that is, the neo-
cortical second stage of the CLS. We used behavioral
measures of naming accuracy and RTs to measure how
well learned and consolidated the newly learned items
were. For the newly learned vocabulary, we predicted that
there would be a positive correlation between ROIs in the
episodic network, namely the bilateral hippocampi and
left inferior parietal lobe (IPL), and longer RTs (i.e., for
items that were not as well consolidated). We predicted
the opposite would occur with ROIs in the language net-
work, with more blood oxygen level-dependent (BOLD)
activity in these regions correlating with quicker RTs (i.e.,
reflecting the gradual shift from episodic/MTL regions
to neocortical ones for the most consolidated items). In
contrast, for naming the established items, BOLD activity
within the MTL/episodic regions would not be expected
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to have any significant correlations with performance
measures, as this vocabulary should be well consolidated
into the language system and thus rely on the language
network alone. Finally, we considered the relationship
between initial consolidation efficacy with longer-term
retention of the newly acquired vocabulary. Specifically,
we tested the hypothesis that the items which were less
well consolidated after initial learning (as indexed by
their higher reliance on the MTL/episodic network) would
be less well retained after 6 months, whereas items that
were better consolidated (as indexed by their higher acti-
vation of the language network) would be better retained.

In this study, we explored the following questions: 1)
Does vocabulary acquisition follow the CLS framework
of learning? 2) Does involvement of the episodic system
when naming newly trained words correlate with worse
performance, and does involvement of the semantic-
language system when naming newly trained words cor-
relate with better performance? 3) If so, do these correla-
tions significantly differ from naming previously known
items?

Materials and Methods
Participants
Twenty older, healthy native English speakers were
recruited (12 females, age range 46–77 years, mean (M)
age 63.90, standard deviated (SD) 8.82). All participants
were right-handed, with normal or corrected-to-normal
vision, no history of neurological disease, dyslexia, or
contraindications to MRI scanning. The Addenbrooke’s
Cognitive Examination Revised was used to screen for
dementia, with a cutoff score of 88. Capacity for verbal
learning was tested with the California Verbal Learning
Test. All participants gave informed consent before
participating, and the study was approved by a local
National Health Service ethics committee.

Stimuli
There were three sets of stimuli items (for a full list,
see Supplementary Table 1). All sets contained real-
world items including mammals, fish, birds, tools, food,
clothing, and toys. Two sets included unfamiliar items
with very low word frequency names. These items
were drawn from the British National Corpus (BNC
Consortium 2007), a 100 million word text corpus. One
set was used for training, while the other remained as an
untrained baseline set. The trained and untrained sets
were counterbalanced across participants. The third set
contained familiar items. These items were drawn from
the International Picture Naming Project. Items were
selected that could be named accurately (85–100%), with
low word frequency and longer RTs (>1000 ms) to select
less easily named items. All stimuli were below a word
frequency of 100 words per 100 million and had high
name agreement. For the baseline task, the item images
for the known, trained, and untrained sets were phase
scrambled. In the picture naming task, fMRI stimuli were

single high quality, colored photographs with a white
background. In the semantic decision task, the fMRI
stimuli were presented as an orthographic written name,
in black text on a white background.

Procedure
There were five stages: baseline naming assessment,
word training, post-training behavioral assessment,
functional imaging data collection, and maintenance
naming assessment (Fig. 1). Participants were tested on
all items before training. Stimuli sets were tailored to
each participant so that all known items could be named,
and all untrained and to-be-trained items could not be
named prior to training. Participants undertook fMRI
scanning within 2 days of finishing training. Only items
which had been successfully learned, demonstrated in
the post-training naming assessment, were used in the
fMRI trained condition (therefore, there were different
stimuli sets per participant for the trained condition). To
assess maintenance, participants were tested on learned
items between 5 and 6 post scanning, without interim
training.

Behavioral Training
Participants received self-guided, at-home training on
new words and the related semantic information. Train-
ing took place for up to 45 min a day, 4 days a week for
3 weeks. In the first 2 weeks, participants received cue
training. In the third week, participants received speeded
training.

Items were presented via an interactive PowerPoint
presentation. Visual Basic for Applications was used to
store cue choice, time on task, and accuracy data. In
weeks 1 and 2, cue training took place daily. A novel
picture was shown, with the name both in orthographic
and audio forms. Participants were instructed to listen
to the name and repeat it out loud. After all items had
been repeated, the cue training began. Participants were
instructed only to use cues when they needed one and
reminded they would be tested on the semantic informa-
tion. The training was designed to allow healthy partici-
pants to choose the level of cue they thought they would
need to be correct on each trial. This interactive and self-
determined approach was chosen to make the training
feel challenging, engaging and reduce boredom.

The cue training was commonly used in standard
speech and language therapy (Nickels 2002; Abel et al.
2005; Pohl et al. 2017). Participants saw a picture of an
item with a choice of four cues, or the option to name
the item with no cues. Participants could use as many
cues as they like, in any order. There were four increasing
cues. First, a picture plus a written descriptive semantic
cue. Second, the picture plus the first name phoneme.
Third, the first and second name phonemes were cued.
The fourth cue was the whole name. All cues were given
both orthographically and audibly. The semantic cue was
formed in the same way for each item, initially with
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Fig. 1. Timeline of study stages.

the geographical origins, then an identifying feature, fol-
lowed by a broader semantic cue. For example, an ankus
was “An Indian hooked tool used to handle and train
elephants.”

After each naming attempt, the whole correct word
was given. Participants were asked to indicate whether
they named each item correctly or not. Participants then
indicated whether the item was European or not. The
initial training set was 10 items. When participants were
able to name 70% of the presented items with no cue,
then another 10 items were added to the set, incremen-
tally up to 50 items.

In the third week of training, the learned items were
used in a novel repeated increasingly speeded presenta-
tion (Conroy et al. 2018) learning environment. Partici-
pants were instructed that the computer would present
an item for a short time, and they needed to name the
picture before a specified time limit. When participants
reached a success rate of 70% at a target speed, the
timing was incrementally reduced from 1.8 to 1.4 s, to
1 s. When participants beat the 1 s target for 70% of items,
the set size was increased by 10 items and the timing was
reset to 1.8 s.

We assessed participants’ learning using a post-
training assessment of trained items in the absence of
cues. Only successfully named items were used during
the fMRI naming task (trained vocabulary condition;
M = 45 items), creating participant-specific trained
condition naming sets. The fMRI session took place on
the same day as the post-training assessment.

Neuroimaging Acquisition
All scans were acquired on a 3T Phillips Achieva scan-
ner, with a 32-channel head coil with a SENSE factor of
2.5. High-resolution, whole-brain, structural images were
acquired including 260 slices with the following parame-
ters: time repetition (TR) = 8.4 ms, time echo (TE) = 3.9 ms,
flip angle = 8 degrees, field of view (FOV) = 240 × 191 mm,
resolution matrix = 256 × 206, voxel size = 0.9 × 1.7 ×
0.9 mm.

We opted to use a triple gradient echo EPI sequence
in order to improve the signal-to-noise ratio, particularly
in the ATLs where traditionally there are issues of EPI
signal dropout and distortion (Poser et al. 2006; Halai
et al. 2014, 2015). All functional scans were acquired
using an upward tilt up to 45 degrees from the AC–PC
line to reduce ghosting artifacts from the eyes into the
temporal lobes. The sequence included 31 slices covering
the whole brain with TR = 2.5 s, TE = 12, 30 and 48 ms,

flip angle = 85 degrees, FOV = 240 × 240 mm, resolution
matrix = 80 × 80, and voxel size = 3.75 × 3.75 × 4 mm.

All stimuli were presented electronically using E-
Prime 2.0 software (Psychology Software Tools). The block
order was pseudo-randomized optimized for statistical
power using OptSeq (http://surfer.nmr.mgh.harvard.edu/
optseq/). Verbal responses were recorded using a fiber
optic microphone for fMRI (FOMRI; Optoacoustics) with
noise-canceling. Participants were instructed to speak
“like a ventriloquist” to reduce motion artifacts.

Participants performed two tasks during imaging
acquisition, one of which is the focus of a separate study.
For this study, a picture naming task comprised a block
design with four conditions: known, trained, untrained,
and baseline. In the known condition, participants
overtly named familiar items (e.g., umbrella). In the
trained condition, participants named newly learned
items (e.g., echidna). If participants could not remember
an item name they responded: “don’t know.” If the
item was novel (untrained condition), participants
also responded “don’t know.” Similarly, participants
responded “don’t know” to phase-scrambled stimuli
from the other conditions as the baseline condition.
The task included two trial speeds but the results did
not differ across these conditions; therefore, data were
collapsed across this manipulation. In the standard
speed condition, each 1900 ms trial consisted of a fixation
cross for 700 ms, followed immediately by the target
image in the middle of a white screen for 1200 ms. With
five items per block, each block lasted 9.5 s. We also
included eight rest blocks per run, which were jittered to
have an average length of 9.5 s. With 32 task blocks and
8 rest blocks per run, the total run time was 6 min and
33 s. In the slower condition, each trial lasted 3700 ms
and consisted of a fixation cross for 700 ms, followed
by the target image for 3000 ms. Only three items were
presented per block and each block lasted 11.1 s. As
before, eight jittered rest blocks were included with an
average length of 11.1 s. With 32 task blocks and 8 rest
blocks, the total run time was 7 min and 4 s.

The second task, the focus of a separate study, required
participants to make semantic decisions. This included
three blocked conditions: trained, untrained, and base-
line. In the trained and untrained conditions, partici-
pants responded “Yes” or “No” or “Don’t Know” to the
semantic question “Is it European?” In the baseline task,
participants responded “Up” to an ascending alphabeti-
cal sequence “ABCD” or “Down” to a descending alpha-
betical sequence “DCBA.” As above, we used two trial
speeds but found no differences between conditions;
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therefore, data were combined. In the standard speed
condition, a fixation cross was displayed for 700 ms, fol-
lowed immediately by the target image for 1200 ms (total
trial = 1900 ms). There were five trials per block each
lasting 9.5 s, with six jittered rest blocks averaging to 9.5 s.
The total run time was 6 min and 33 s, which included 24
task and 6 rest blocks. In the slower condition, displayed
the target image for 3000 ms (total trial = 3700 ms). A total
of 24 task blocks were used with three trials per block
(11.1 s) and six jittered rest blocks averaging to 11.1 s
(total run time = 7 min and 4 s).

Neuroimaging Preprocessing and Analysis
T1 data was pre-processed using the FMRIB Software
Library (FSL, version 6.0.0; http://fsl.fmrib.ox.ac.uk/fsl/
fslwiki/, Woolrich et al. 2009). Brain tissue was extracted
from the structural images (BET; Smith 2002), and an ini-
tial bias-field correction was applied using FSL’s anatomy
pipeline (FAST; Zhang et al. 2001), excluding subcortical
segmentation as this was performed with BET. Regis-
tration to standard space was performed in FSL with
FLIRT and FNIRT (Woolrich et al. 2009; Patenaude et al.
2011) and segmentation with FAST (Zhang et al. 2001).
Despiking and slice time correction were applied to the
functional data in the AFNI neuroimaging suite (v19.2.10;
Cox 1996; Cox and Hyde 1997; 3dDespike; 3dTshift). Com-
bined normalization, co-registration, and motion correc-
tion parameter sets were applied to each functional echo
in FSL. Functional data were optimally combined, taking
a weighted summation of the three echoes, using an
exponential T2∗ weighting approach (Posse et al. 1999)
and regression analysis. Functional runs were also com-
bined and denoised using multi-echo independent com-
ponent analysis (Kundu et al. 2012, 2013) using the tool
meica.py (v3.2) in AFNI (Cox 1996; Cox and Hyde 1997).
The denoised time series were normalized to standard
space using FNIRT warps, then smoothed.

Statistical whole brain and ROI analyses were per-
formed using SPM12 (Wellcome Trust Centre for Neu-
roimaging) and MarsBaR. ROIs were based upon previ-
ous literature. MTL structures, including bilateral hip-
pocampi, are critical for episodic memory, as evidenced
by hippocampal amnesia (Dickerson and Eichenbaum
2010). However, episodic memory processes also involve
the IPL, despite parietal lesions not resulting in episodic
memory deficits (Cabeza et al. 2008). The left inferior
frontal gyrus (IFG) is considered critical in speech pro-
duction and semantic processes (Blank et al. 2002; Hickok
and Poeppel 2007; Lazar and Mohr 2011; Price 2012).
The middle temporal gyrus (MTG) is activated during
semantic processing (Binder et al. 2009; Visser et al. 2012;
Noonan et al. 2013; Jackson 2021), and focal damage is
associated with semantic deficits (Dronkers et al. 2004).
The specific co-ordinates for these ROIs were derived
by conducting a Neurosynth (Yarkoni et al. 2011) fMRI

meta-analysis using two search terms: “episodic mem-
ory” (bilateral hippocampi; Montreal Neurological Insti-
tute [MNI]: −28 −14 −15, 29 −14 −15 and left IPL MNI:
−47 −64 34), and “language” (left IFG MNI: −46 28 10 and
left MTG MNI: −52 −42 0).

Furthermore, we included a left ventral anterior tem-
poral lobe (vATL) ROI (MNI: −36 −15 −30) taken from
a key reference (Binney et al. 2010). The vATL is often
missed in fMRI studies using typical echo times of >30 ms
at 3T due to signal dropout. However, there is clear evi-
dence from the neuropsychology literature and seman-
tic dementia patients that the vATLs are important for
semantic cognition patients (Rogers et al. 2004; Patterson
et al. 2007; Lambon Ralph 2014; Lambon Ralph et al.
2016). Indeed, there is growing evidence that fMRI proto-
cols optimized for signal detection in areas of magnetic
susceptibility can identify vATL areas during semantic
processing (Devlin et al. 2000; Halai et al. 2014, 2015;
Jackson et al. 2016; Rice et al. 2018).

RTs for ROI analyses were calculated from onset of
stimulus and were z-scored to account for any variance
due to time on task. RTs were z-scored by condition to
enable analysis of within-condition RT variance.

Results
Behavioral Data
Participants spent a mean of 4.3 h training (SD = 0.8)
over an average of 12 sessions. Participants successfully
learned the novel vocabulary with an average gain of 81%
(SD = 10.73) outside the scanner. Inside the scanner, in
the trained condition, participants were presented with
only items they had successfully learned during training,
ascertained by a post-training behavioral picture nam-
ing task. Participants had an average of 88% (SD = 12.0)
accuracy on these participant-specific trained items in
scanner and an average RT of 1054 ms (SD = 203.5) in
scanner. Participants also successfully learned seman-
tic information about these successfully trained novel
items, with an average gain of 83% (SD = 12.92). This level
of variation in semantic knowledge of the new items (“Is
it European?”) demonstrates that there was a continuum
of semantic consolidation between participants in the
trained items. As would be expected, naming accuracy
for already-known (pre- and post-training) items during
scanning was high (M = 98%, SD = 2.2), with a mean RT of
1020 ms (SD = 148.5). The naming latency for the newly
learned and previously known items was not signifi-
cantly different (t(19) = −.396, p = 0.696), indicating effec-
tiveness of the training.

To explore the effect of semantic knowledge on word
learning, correlations were performed between accuracy
in the semantic judgment task (“Is it European?”), naming
accuracy, and subsequent maintenance of naming accu-
racy. There was a significant positive correlation between
naming and semantic accuracy, with age at scan added as
a controlled variable (r(20) = 0.912, P = 0.000). Additionally,

http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/


Gore et al. | 3397

Fig. 2. Whole brain BOLD activation of picture naming. (a) Trained minus untrained items (red) and known minus untrained items (green);
yellow = overlap. (b) Trained minus known items (blue). Images thresholded at P < 0.001 voxel height, FWE-cluster corrected P < 0.05. L, left; R, right;
Hipp, hippocampus; Thal, thalamus.

there was a significant correlation between learning of
the semantic cues and overall maintenance of learned,
trained items (r(20) = 0.66, P = 0.002).

Whole Brain Results
The results of the whole brain analyses for the picture
naming task are reported in Table 1, where three con-
trasts were created: 1) trained > untrained, 2) known
> untrained, and 3) trained > known. There were no
significant clusters of activation for the opposing con-
trasts: untrained > trained, untrained > known, and
known > trained. There was a similar pattern of acti-
vation between the contrasts, where large bilateral lan-
guage areas were identified. There was, however, greater
and more extensive activation for the trained condi-
tion, including the hippocampus in both the trained >

untrained and trained > known contrasts (Fig. 2).

ROI Analysis
To explore a core hypothesis arising from the CLS theory
(a division of labor between MTL vs. cortical regions),
behavioral data were correlated with activity in a priori
ROIs related to episodic memory (bilateral hippocampi

and left IPL) and semantic memory (IFG, left MTG, and
left ATL; Fig. 3b). There were no significant correlations
between semantic behavioral performance and a priori
ROIs.

In the initial exploratory analysis, for the trained >

untrained picture naming contrast (whereby participants
named pictures of newly learned items, vs. responding
verbally to phase-scrambled images), we found a positive
correlation between the left hippocampus and longer
RTs (r = 0.519, P = 0.019; Fig. 3c). Conversely, we observed
inverse correlations in semantic areas located in IFG (IFG;
r = −0.528, P = 0.017; Fig. 3c) and ATL (r = −0.611, P = 0.004;
Fig. 3c), where greater activation was related to quicker
performance, suggesting they had deeper consolidation
in the corresponding neocortical regions. There were no
further correlations between trained > untrained BOLD
and naming RTs. In the known > untrained contrast,
there was a significant correlation between RT and left
IFG BOLD activity (r = 0.509, P = 0.022; Fig. 3c). There were
no further significant correlations between known >

untrained BOLD activity and RT, including the left hip-
pocampus (r = −0.106, P = 0.656) and left ATL (r = 0.001,
P = 0.995; Fig. 3c).
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Fig. 3. (a) Significant correlations of post-training percentage accuracy of trained items versus average BOLD for trained > untrained contrast. (b)
Spherical 6 mm ROIs: right hippocampus (navy; MNI: 28 −14 −15), left hippocampus (cyan; MNI: −28 −14 −15), left IPL (purple; MNI: −47 −64 3), left
IFG (red; MNI: −46 28 10), left anterior temporal lobe (green; vATL, MNI: −36 −15 −30), left MTG (yellow; MNI: −52 −42 0). (c) Significant correlations
between contrast estimates (colored; trained > untrained, gray; known > untrained) and normalized in-scanner RT per participant per condition.

The key test of the CLS hypothesis is whether
the trained > untrained behavioral correlations were
significantly different from the known > untrained
correlations, indicating differing neural networks for
naming fully consolidated known items, versus less
consolidated newly trained items (for a maximum of 3
weeks). The positive correlation of hippocampal activity
in the trained > untrained contrast and RT, versus the
weak negative correlation of hippocampal activity in the
known > untrained contrast and RT, were significantly
different using Fisher’s r-to-z transformation (z = 1.846,
P = 0.032, adjusted P = 0.032). In addition, the strong
negative correlation of left ATL activity in the trained
> untrained contrast and RT was significantly different
to the very weak positive correlation of ATL activity in the
known > untrained contrast and RT (z = −2.25, P = 0.012,
adjusted P = 0.018). Similarly, the correlation between RT
and left IFG activity was significantly different in the
trained > untrained and known > untrained contrasts
(which displayed a negative and positive correlation

respectively; (z = −3.348, P = 0.001, adjusted P = 0.001),
Benjamini–Hochberg adjusted P values for multiple
comparisons (Benjamini and Hochberg 1995), P = 0.05.

We also correlated in-scanner accuracy with BOLD
activity for the trained > untrained contrast in each ROI.
In the left hippocampus, individuals with greater activ-
ity showed poorer learning (r = −0.456, P = 0.043; Fig. 3a).
Conversely, greater activity in the left ATL related to
better accuracy (r = 0.450, P = 0.046; Fig. 3a). Previously
known items could be correctly named on three sepa-
rate behavioral testing occasions, therefore, there was
high (M = 98%) accuracy on these items in the scanner,
which does not provide variation for correlation with
BOLD activity and therefore negates the ability to test
the key hypotheses. These two correlations were signif-
icantly different to each other however, using Fisher’s
r-to-z transformation (z = −2.85, P = 0.004). All other cor-
relations for trained > untrained accuracy, and known
> untrained accuracy, with the a priori ROIs were not
significant.
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Fig. 4. Correlations between maintenance and brain data. (a) Percentage trained item drop off as a covariate of interest in the trained–untrained
contrast. Image thresholded at P < 0.001 voxel height and P < 0.05 FWE-cluster correction. (b) Significant correlation between left hippocampal activity
and percentage trained item drop off.

Maintenance Data
Participants were retested on learned items 5–6 months
post scanning, without interim training. Maintenance
varied across participants, but overall participants
named on average 73.9% (SD = 27.43) of learned words.
To identify areas of BOLD activity which correlated with
better or worse retention of trained items, percentage
drop-off in naming performance over the maintenance
period was added as a covariate of interest to the trained
> untrained and known > untrained contrasts. In this
covariate, higher values indicate worse retention of the
trained words after the 6-month maintenance period.
With percentage drop off as a covariate of interest, over
trained > untrained BOLD, we identified a cluster in the
right hemispheric dorsolateral prefrontal cortex (rDLPFC,
peak MNI: 38 8 46, Fig. 4a). This indicates a correlation
between more BOLD activity in the rDLPFC and greater
trained item drop off (worse maintenance). There was
no significant difference in the opposing direction (areas
of BOLD correlating with better maintenance) or for the
known untrained contrast in either direction.

To explore the predictions from the CLS framework,
we obtained a correlation between maintenance and
the a priori ROIs during naming of trained words
(Fig. 4b). There was a significant positive correlation
between left hippocampal activation and percentage
drop off (r(20) = 0.605, P = 0.005), which suggests that
individuals who were more reliant on hippocampal
structures after learning were less likely to retain the
newly learned vocabulary after a delay. There were no
other significant correlations for trained > untrained or
known > untrained contrasts.

Discussion
Vocabulary acquisition is a lifelong process for every-
day life (e.g., “coronavirus”), hobbies (e.g., “thermocline”),
and careers (e.g., “temporoparietal”). Reviving vocabu-
lary is also key for individuals with language impair-
ment after brain injury, stroke, or dementia. This study

evaluated the CLS framework (McClelland et al. 1995,
2020) for the acquisition of novel real-world vocabulary
in adulthood. At one time-point post-learning, a contin-
uum of consolidation was demonstrated, with partici-
pants responding to completely unknown and untrained
words, naming successfully trained words with varying
levels of semantic knowledge, and naming previously
known, well-consolidated items.

The whole brain results indicate that new learning, in
the trained condition, activates a combination of the typ-
ical language-semantic network, plus the hippocampal-
episodic memory network. Whereas naming of well
consolidated, previously known words activates the
cortical language-semantic network. The ROI analyses
demonstrated that activity in the left hippocampus
during naming was associated with worse accuracy and
slower RTs, whereas activity in the language-semantic
network (left IFG, IFG, and left ATL) was associated
with better accuracy and quicker RTs. Additionally,
the maintenance results indicated that greater left
hippocampal activity during newly trained naming was
associated with greater drop off in item retention (i.e.,
worse maintenance).

Complementary Learning Systems
The learning results described in this study fit within
the CLS model. The CLS framework proposes a two-
stage episodic-semantic account of learning: initial
rapid hippocampal storage of new memories, followed
typically by slower interleaved consolidation of new
information alongside existing knowledge in the neo-
cortex (McClelland 2013; McClelland et al. 2020). In this
study, at the whole brain level, in both the trained >

untrained and known > untrained whole brain contrasts,
activated clusters formed a typical motor/language
network, including the IFG. In addition, when recalling
newly trained words but not when naming fully consol-
idated previously known words, we observed increased
hippocampal activity (as observed in previous studies:
Breitenstein et al. 2005, Davis et al. 2009) along with
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left IPL activation. Our predictions were that naming
newly trained words would rely on both episodic and
semantic systems, whereas naming previously known,
fully consolidated words would rely on the semantic-
language systems only. These whole brain analyses
support this notion. ROI analyses in combination with
performance allowed us to explore this hypothesis in
more detail.

In the episodic ROI analyses for newly trained words,
we found that left hippocampal activation was signifi-
cantly associated with worse naming performance (less
accuracy, longer RTs, and less maintenance of trained
words after 6 months). This effect was not found for the
naming of previously known items, with only a nonsignif-
icant weakly negative correlation. These two results were
in line with our predictions, specifically, that individuals
reliant upon the first MTL-episodic stage of the CLS
would have worse performance for the newly-acquired
vocabulary. It should be noted that we only found this
effect in the left hippocampus and not in the left IPL
or the right hippocampus. The previous literature has
demonstrated a role of the left hippocampus in vocabu-
lary acquisition (Breitenstein et al. 2005; Davis et al. 2009).
As the language network is left dominant, it is logical that
the episodic system supporting language acquisition is
also left dominant. The left IPL has also been indicated in
previous literature during word acquisition consolidation
(Pohl et al. 2017). Although there was a significant cluster
of IPL activation for the trained > untrained contrast
and not the known > untrained contrast, there were
no significant correlations between IPL activation and
behavioral performance. The functional organization of
the parietal lobe is complex, and although the ROI was
included as an episodic region based on previous litera-
ture (Wagner et al. 2005; Vilberg and Rugg 2008), various
areas of the parietal lobe may be performing different
functions, perhaps not aligning singularly with either the
episodic or semantic network (Humphreys and Lambon
Ralph 2015; Humphreys et al. 2020).

The neocortical areas activated by naming of newly
learned items were typical of areas identified during
speech production (Blank et al. 2002; Price 2012). We
also identified two cortical regions associated with
proficiency of naming learned items—the left vATL
and left IFG. These areas are typically associated
with semantic and language processing. The vATL is
considered to be a trans-modal hub critical to semantic
representation (Lambon Ralph et al. 2016). This proposal
has strong, convergent support from multiple sources
including semantic dementia patients (Warrington 1975;
Jefferies and Lambon Ralph 2006; Patterson et al. 2007;
Acosta-Cabronero et al. 2011), fMRI (Binney et al. 2010;
Visser et al. 2012), transcranial magnetic stimulation
(Pobric et al. 2007, 2010), surface cortical electrode
studies (Shimotake et al. 2015), and computational
modeling (Rogers et al. 2004; Chen et al. 2017; Hoffman
et al. 2018; Jackson et al. 2021). Subregions of the left
vATL have been associated with picture naming and

speech production specifically (Sanjuán et al. 2015).
The IFG has been linked to speech production, among
other processes, since Broca (1861) reported a patient
with loss of articulation after destruction of the IFG and
surrounding cortex. Despite debate as to the exact role of
subregions of the IFG in speech production (Flinker et al.
2015) and semantic control (Whitney et al. 2012; Jefferies
2013; Noonan et al. 2013; Jackson 2021), the IFG is widely
recognized to be important for articulation (Blank et al.
2002; Hickok and Poeppel 2007; Lazar and Mohr 2011;
Price 2012).

In these language-semantic ROIs, we found an oppo-
site pattern of results to those found in the episodic-
hippocampal analyses. When naming newly trained
items, more activity in the left vATL was associated with
better accuracy and shorter RTs. In contrast, there was
a nonsignificant weak positive correlation between vATL
activation when naming previously known words. These
results align with our predictions that when individuals
had better consolidated the new vocabulary (as indexed
by better accuracy and shorter RTs) then this would be
reflected in greater reliance upon the second neocortical
stage of the CLS. This effect was also found in the left
IFG, with activity during naming of newly trained items
associated with quicker RTs. In addition, there was an
opposite correlation of activity-behavior when naming
previously known items, whereby less activity in the
left IFG was associated with quicker responses. This
may reflect less neural effort for production of familiar
vocabulary due to well-established phonological and
articulatory representations (Blank et al. 2002; Price 2010,
2012) and/or fewer semantic control requirements. The
fact that we observed 1) greater neocortical activity for
the trained than known words and also 2) a negative
correlation between activation and performance for
the trained items may well reflect the fact that not
only should neocortical activation build up as the
newly trained items are consolidated (and become
independent of the MTL systems) but also that we know
for established vocabulary from numerous language
and semantic fMRI studies that there is more activation
for less familiar/lower frequency words. Presumably, as
proposed by many previous researchers, this reflects
the fact that less frequent representations require more
neural resources/longer processing times. Thus, in the
“life course” of new vocabulary, one might expect an
initial period in which the cortical activation builds up as
the new vocabulary is cortically consolidated, but then
with sufficient practice and use, the cortical represen-
tations should become more efficient and precise, thus
be associated with decreasing cortical activation. This
very pattern has been observed in implemented com-
putational models of language (e.g., Chang and Lambon
Ralph 2020) in which both initial vocabulary learning
and relearning (after damage) are associated with an
initial period of increasing unit activation and then a
subsequent gradual reduction in unit activation as the
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underpinning (cortical) representations are more finely
tuned.

It has previously been hypothesized that the CLS could
apply in other domains (Davis and Gaskell 2009) and
there are demonstrations in short-term pseudoword
recognition (Cornelissen et al. 2004; Breitenstein et al.
2005; Mestres-Missé et al. 2007; Davis et al. 2009).
Our findings complement and significantly extend
these intra-learning investigations by exploring learning
after full consolidation and maintenance of the new
vocabulary. With 3-week training, the participants were
able to name the items without cueing and make
semantic decisions (i.e., more than exhibit above-
chance recognition performance). Taking this body of
literature together, they clearly demonstrate that the
hippocampal system is critical for new learning of
artificial and native vocabulary learning and that long-
term consolidation reflects the gradual shift to long-term
cortical representation and processing as predicted by
the CLS model.

The speed of consolidation and reliance on the
hippocampal-episodic network is now understood to
be dependent on the strength of relationship between
pre-existing knowledge and information to be learned
(McClelland 2013; Kumaran et al. 2016; McClelland et al.
2020). In this study, participants learned entirely new
information (items, semantics, and names). The item
names are arbitrarily related to the object and their
associated meaning; thus, this new knowledge is not
systemically related to any pre-existing information.
Therefore, the results obtained were as expected—it
takes time to consolidate item names and, even after
2–3 weeks of learning, individuals remain reliant on
a mixture of the hippocampal-episodic and semantic
systems, rather than entirely on the cortical language-
semantic system.

Methodological Considerations
There were no significant clusters of activity for untrained
> trained items. Previous literature has identified
reductions of BOLD response related to word training
(Nardo et al. 2017) and pseudowords versus word reading
(Taylor et al. 2014). Activation can be interpreted as
either engagement of the relevant systems or increased
processing effort (Taylor et al. 2013). These areas
of reduction can be interpreted as decreased effort
associated with training. However, reductions may also
signify responses to task difficulty, whereby items which
are not trained are more difficult to respond to. In this
study, items which were untrained were completely
unknown to the participant; therefore, the task is not
inherently more difficult, as participants perform the
same processes of viewing an image, thinking whether
they know the name, then verbally responding.

Translational Potential
This study is also potentially informative for aphasia
therapy. The neural bases of successful speech and

language therapy have been rarely explored, and those
studies that have done so have yielded varying results
(Abel et al. 2015; Nardo et al. 2017; Woodhead et al.
2017). The methods adopted in this study were delib-
erately designed to mimic those used to treat word-
finding difficulties, where patients aim to re-establish
meaningful, native vocabulary through multiple learning
sessions and vanishing phonemic cues (Abel et al. 2005),
over several weeks (Dignam et al. 2016). By using the
same paradigm, future studies can explore whether
the neural correlates of word learning/relearning in
aphasia follows the same framework. The current
results would seem to imply that therapy success will
depend on 1) the extent of damage to specific critical
regions involved in the CLS framework and 2) damage to
connectivity from the hippocampus to critical language
regions. Furthermore, the majority of patients (especially
those with middle cerebral artery stroke) tend to have
intact hippocampus, which may be linked to the reason
why patients experience initial success in learning,
but long-term learning and maintenance (the goal of
therapy) will relate to how well the therapy can induce
relearning/stabilization of neocortical representations. If
these mechanisms hold in stroke aphasia, it could have
important implications for intensity and dose of speech
and language therapy provision.

Conclusion
The results of the study map the framework for word
learning in the healthy older brain. In whole brain anal-
yses, there was increased hippocampal activity when
naming newly trained items, but not previously known,
well-consolidated items. These results demonstrate the
first stage of the CLS model, with initial hippocampal
encoding. In addition, greater left hippocampal activity
was associated with less accuracy, longer RTs, and less
maintenance of the newly trained words. When naming
well-consolidated previously known words, there was no
association between hippocampal activity and perfor-
mance.

The second consolidation stage of the CLS proposes
a gradual shift from reliance on the MTL-episodic
network towards long-term neocortical consolidation.
In line with this prediction, we found that when
naming newly trained words, higher levels of left
IFG and vATL activation were associated with better
accuracy and shorter RTs. Crucially, the associations
in each ROI between BOLD activity and performance
were significantly different between naming of pre-
viously known items and newly trained items. Over-
all, the results of this study provide evidence for
both aspects of the CLS model in long-term, native
word acquisition.

Supplementary Material
Supplementary material can be found at Cerebral Cortex
online.

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab422#supplementary-data
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