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Gut dysbiosis, namely dysregulation of the intestinal microbiota, and increased gut
permeability lead to enhanced inflammation and are commonly seen in chronic
conditions such as obesity and aging. In people living with HIV (PLWH), several
lines of evidence suggest that a depletion of gut CD4 T-cells is associated with gut
dysbiosis, microbial translocation and systemic inflammation. Antiretroviral therapy (ART)
rapidly controls viral replication, which leads to CD4 T-cell recovery and control of the
disease. However, gut dysbiosis, epithelial damage and microbial translocation persist
despite ART, increasing risk of developing inflammatory non-AIDS comorbidities such
as cardiovascular disease, diabetes mellitus, liver steatosis and cancer. In addition to
ART, an emerging research priority is to discover strategies to improve the gut microbial
composition and intestinal barrier function. Probiotic interventions have been extensively
used with controversial benefits in humans. Encouragingly, within the last decade, the
intestinal symbiotic bacterium Akkermansia muciniphila has emerged as the “sentinel of
the gut.” A lower abundance of A. muciniphila has been shown in diabetic and obese
people as well as in PLWH. Interventions with high levels of polyphenols such as tea
or diets rich in fruit, the antibiotic vancomycin and the antidiabetic drug metformin
have been shown to increase A. muciniphila abundance, contributing to improved
metabolic function in diabetic and obese individuals. We hypothesize that gut microbiota
rich in A. muciniphila can reduce microbial translocation and inflammation, preventing
occurrences of non-AIDS comorbidities in PLWH. To this aim, we will discuss the
protective effect of A. muciniphila and its potential applications, paving the way toward
novel therapeutic strategies to improve gut health in PLWH.
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INTRODUCTION

Gut microbiota is composed of a community of microorganisms
gathered in the gastrointestinal (GI) tract. The number of
micro-organisms is 1–10 times greater in the GI tract than the
number of host cells in humans. Additionally, the number of
microbial genes is 100 times greater than that of the human
genome (1). In normal, healthy conditions, a state of eubiosis
is attained when the composition of the gut microbiota is
balanced. The gut microbiota is emerging as a prominent
player in maintaining health through several metabolic and
immune pathways. Dysregulation of gut microbiota composition,
also known as dysbiosis, can be associated with gut barrier
dysfunction and intestinal homeostasis disruption through
translocation of microbial products and proinflammatory factors
(2). Increasing evidence has put a spotlight on the contribution
of gut dysbiosis and its related inflammation in obesity,
diabetes mellitus (DM), cancer, aging and more recently, human
immunodeficiency virus (HIV) infection (3–7).

In people living with HIV (PLWH), intestinal CD4 T-cells
are a preferential target of the virus due to their high
expression of CCR5, a chemokine co-receptor allowing for
the entry of HIV, leading to their massive depletion during
early infection (8, 9). This disruption in gut homeostasis
results in dysbiosis, microbial translocation and systemic
inflammation (10, 11). Antiretroviral therapy (ART) has
transformed the lives of PLWH by rapidly controlling viral
replication and allowing CD4 recovery, reducing morbidity and
mortality. However, despite controlling viral load and CD4 T-
cell count, long-term ART reduces but does not normalize
gut dysbiosis, microbial translocation, immune activation and
inflammation (12–14). In addition to HIV itself, coinfection
with cytomegalovirus or viral hepatitis, leaky gut and microbial
translocation also lead to inflammation which has been associated
with the risk of non-AIDS comorbidities (13, 15–18). The
direct influence of dysbiosis, microbiota by-products, epithelial
barrier and local immune response will need further studies
to define their distinctive role on systemic inflammation
and subsequent development of non-AIDS comorbidities.
Cardiovascular disease, DM, liver steatosis, neurocognitive
disorders and cancer represent the most frequent manifestations
of non-AIDS comorbidities, which represent a new frontier in
the management of PLWH in today’s medical practice (19–21).
Thus, in addition to ART, strategies to improve the gut microbial
composition and intestinal barrier function are emerging as a
research priority.

Converging evidence has recently demonstrated the key role
of commensal bacteria harbored in the GI tract. Interestingly,
the bacterium Akkermansia muciniphila has been described as
a protective ally against the development of metabolic diseases
and colitis (22). A. muciniphila of the phylum Verrucomicrobia,
was first isolated and characterized in 2004. This Gram-
negative, anaerobic, non-motile, non-spore-forming bacterium
has been considered to be a next-generation beneficial microbe
(23). In humans, A. muciniphila colonizes the intestinal tract
in infanthood and will reach 1–4% of the fecal microbiota
by adulthood (24–26). Furthermore, studies have shown a

link between low A. muciniphila abundance and increased
occurrence of inflammatory metabolic diseases such as diabetes,
obesity, ulcerative colitis (UC) and Crohn’s disease (CD), all
of which are associated with epithelial gut damage and high
permeability (27–35). On the other hand, supplementation
with A. muciniphila can help protect from specific metabolic
disorders, inflammatory diseases and increase response to cancer
immunotherapy (4, 36–43). Moreover, increasing A. muciniphila
abundance with the antidiabetic drug metformin or with
high polyphenol interventions such as tea or diets rich in
fruit further improves metabolic function in diabetic and
obese individuals (42, 44–50). The causal or consequential
role of A. muciniphila in protection from various diseases
in humans remains under debate. Some evidence points
toward this symbiotic intestinal bacterium as an emerging
“gatekeeper of the gut”, associated with gut barrier integrity
and the regulation of inflammation (22, 51, 52). Herein,
we discuss recent advances in the understanding of the
protective effects of A. muciniphila and its potential relevance
in HIV infection.

THE MULTIFUNCTIONAL PROPERTIES
OF A. MUCINIPHILA

Akkermansia muciniphila encodes a particularly wide repertoire
of mucin-degrading enzymes in its relatively small genome,
uses mucin as its sole source of carbon and nitrogen, and its
downstream glycan byproducts can cross-feed other gut bacteria
(23, 53, 54). Based on its unique properties, the bacterium
was named after the Dutch microbial ecologist Antoon DL
Akkermans for his contributions to the field (55). Additionally,
this bacterium exhibits multiple biological functions, including
promoting gut barrier integrity, modulating immune response,
inhibiting inflammation and cross-feeding, called syntrophy,
with other microbiota species.

The gut barrier is organized as a multi-layered and complex
system which allows nutrient absorption while preventing the
translocation of microbes and their products. Disruption of
the gut barrier leads to the transit of luminal contents into
the bloodstream, activating the immune response and inducing
inflammation (56). Mucus covers the outer intestinal epithelial
cell layer and serves as physical protection from penetration of
micro-organisms and harmful compounds (57). In addition to
degrading mucins, A. muciniphila was also found to stimulate
mucin production (42, 52). In animal models, A. muciniphila
supplementation increased the thickness of the colonic mucus
layer approximately 3-fold, significantly more than the thickness
increased induced by the beneficial bacterium Lactobacillus
plantarum (52). Furthermore, in vitro, A. muciniphila was found
to improve enterocyte monolayer integrity by binding directly
to the enterocytes (51). Ottman et al. also showed that the
outer membrane protein Amuc_1100 of A. muciniphila improved
epithelial cell monolayer integrity in an in vitro culture after
24 h (58).

There is evidence to show that A. muciniphila may regulate
inflammation. Supplementation of this bacterium attenuated
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inflammation in an accelerated aging mouse model (52). Other
studies have also shown the anti-inflammatory properties of
A. muciniphila in different mouse models including germ-
free, liver injury and obesity models (59–64). Huck et al. (62)
reported that A. muciniphila could reduce inflammation induced
by Porphyromonas gingivalis in lean or obese mice. Ansaldoi
et al. (59) demonstrated that A. muciniphila plays a context-
dependent role in the induction of gut-resident T-cells during
homeostasis in mice. Sessa et al. reported in a cross-sectional
study of perinatally HIV-infected children and adolescents that
A. muciniphila abundance was associated with elevated IL-6 and
soluble CD14 (65).

Additionally, it should be noted that there are also other
microbes which are commonly found in the mucus layer aside
from A. muciniphila. These microbes include bacteria such
as Faecalibacterium prausnitzii, Eubacterium rectale, Roseburia
intestinalis, and Anaerostipes caccae which produce the anti-
inflammatory short-chain fatty acid (SCFA) butyrate (66–69).
Butyrate-producing bacteria do not have the ability to degrade
mucus, but use carbon and nitrogen degraded by mucin-
degraded species such as A. muciniphila (53). Belzer et al.
(66) reported that coculturing A. muciniphila with non-mucus-
degrading butyrate-producing bacteria F. prausnitzii, A. caccae,
and Eubacterium hallii resulted in syntrophic growth and
production of butyrate. Thus, not only does A. muciniphila play
an important role by itself in protecting the gut epithelium, but
also supports anti-inflammatory intestinal microbiota.

Due to this, and considering its relatively high abundance
at all stages of life, A. muciniphila is considered a promising
beneficial microbe for some diseases, including metabolic
disorders and cancers.

SUPPLEMENTATION OF
A. MUCINIPHILA IN THE CONTEXT OF
METABOLIC DISORDERS AND
CANCERS

As a strictly anaerobic bacterium, culture of A. muciniphila
needs to be conducted under strict conditions. Advances in the
culture and preparation of A. muciniphila have made it feasible
for study as a beneficial microbe (36, 70). Supplements of this
promising bacterium include live A. muciniphila, pasteurized
(killed) A. muciniphila and A. muciniphila-derived extracellular
vesicles (AmEVs) (4, 36, 38).

Obesity and metabolic disorders including DM are closely
associated with low-grade inflammation and intestinal dysbiosis
(71). Everard et al. reported that the abundance of A. muciniphila
was 3,300-fold lower in obese mice than in their lean littermates.
A 4-week oral gavage of live A. muciniphila in mice reversed high-
fat diet-induced metabolic disorders, including fat-mass gain,
metabolic endotoxemia, adipose tissue inflammation, and insulin
resistance, and increased intestinal levels of endocannabinoids
that controlled inflammation, increased gut mucus, and increased
expression of gut antimicrobial peptides such as regenerating
islet-derived 3-gamma (Reg3γ) for innate immunity (40).

In addition, even when A. muciniphila is killed through
pasteurization, supplementation demonstrated beneficial effects
by protecting from ovariectomy-induced fat mass gain (72).
In overweight insulin-resistant humans, a randomized, double-
blind, placebo-controlled pilot study showed that daily oral
supplementation of 1010 live or pasteurized A. muciniphila
bacteria for 3 months was safe and well tolerated, and
improved insulin sensitivity, reduced insulinemia, plasma total
cholesterol, body weight, fat mass and hip circumference, without
great changes in the overall gut microbiota composition (43).
Furthermore, AmEV administration was reported to enhance
tight junction function, reduce body weight gain and improve
glucose tolerance in high-fat diet (HFD)-induced diabetic mice,
suggesting that derivatives of the bacterium are sufficient to
induce a protective response (38). These findings suggest the
direct benefit of this bacterium on the gut barrier and the
host metabolism.

Remarkably, the influence of the gut microbiota composition
in modulating tumor responses to immunotherapy has also been
reported in various cancers such as melanoma, lung and kidney
cancer. This effect was observed in different geographic regions
where microbiota might differ (North America, Europe, East
Asia) (4, 73–75). Reconstitution of germ-free mice with fecal
material from lung cancer immunotherapy responders led to
increased T-cell responses, and greater efficacy of anti-PD-1
therapy (4). Oral supplementation with live A. muciniphila after
fecal microbiota transplantation (FMT) with non-responder feces
restored the efficacy of PD-1 blockade in murine models (4).

Although the long term effects of A. muciniphila
supplementation are unknown with concerns over the
translocation of probiotics (76), this bacterium may play a
crucial role in increasing the efficacy of metabolic and cancer
therapies and provide strong scientific rationale to launch
microbiota-based clinical trials.

STRATEGIES TO INCREASE THE
ABUNDANCE OF A. MUCINIPHILA

Supplementation of A. muciniphila may be difficult or costly,
however, strategies to indirectly increase the abundance
of A. muciniphila exist through dietary interventions, the
antidiabetic drug metformin, selective antibiotics and FMT.

Dietary polyphenols are natural antioxidants, which may help
protect obligate anaerobes by scavenging oxygen radicals. Gurley
et al. reported that administration of green tea to mice, with
comparable levels of polyphenols to those consumed by humans,
resulted in significant modulation of gut microflora, with the
greatest increases observed in A. muciniphila (47). Concord
grape, cranberry and the Amazonian fruit Camu Camu have
been reported to increase the abundance of A. muciniphila
in the intestinal tract approximately 7-fold, 15-fold, and 5-
fold, respectively, reduced inflammation and body weight gain,
and increased gut barrier integrity in obese mouse models
(44, 45, 49). Although a currently unpopular option, caloric
restriction such as intermittent fasting has shown increases in
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A. muciniphila abundance (77). To scale up this approach, diet-
mimetic medications are under intense scrutiny. Among the
most commonly used in both animals and humans is the anti-
diabetic drug metformin.

Metformin is the most commonly used drug to treat DM2
and recently has been shown to reduce inflammation, exert anti-
aging effects and modify the gut microbiota composition (78).
Although metformin acts primarily as a glucose mediator in
the liver by inhibiting hepatic gluconeogenesis, accumulating
evidence suggests that metformin also mediates changes in gut
microbiota composition (79–81). Convergent reports showed
that metformin significantly increased A. muciniphila abundance
in animal models (42, 46, 82). The nitrogen-rich structure of
metformin may also play a role in the nurturing of A. muciniphila,
which requires nitrogen for proliferation and survival (80). Thus,
the use of metformin is a strategy to enrich the abundance of
A. muciniphila in the gut, among its other metabolic benefits as
seen in DM2 (83).

A. muciniphila is resistant to vancomycin, metronidazole, and
penicillin (84). Selective antibiotic treatment with vancomycin
was shown to dramastically increase A. muciniphila abundance
in young non-obese diabetic (NOD) mice, reducing their glucose
levels and the diabetes incidence when compared with untreated
NOD mice (85). In two patients from the intensive care
unit of Marseille, France, broad spectrum antibiotics increased
A. muciniphila abundance to more than 40% in stools, without
inducing gastrointestinal disorders (84). Furthermore, Uribe-
Herranz et al. reported that in pre-clinical models to study
the immune-based off-target (abscopal) effect of radiotherapy,
oral supplementation with vancomycin increased A. muciniphila
which was associated with tumor growth inhibition in mouse
models (86). Although further explorations are required in
humans, vancomycin treatment appears safe and able to increase
A. muciniphila abundance in the gut microbiota.

Fecal microbiota transplantation is also effective in restoring
eubiosis in colitis and metabolic diseases. Zhang et al. showed
that transplanting fecal bacteria from people with normal glucose
tolerance into DM2 mice downregulated levels of fasting blood
glucose, postprandial glucose, total cholesterol, triglyceride, and
low-density lipoprotein-cholesterol and increased the abundance
of A. muciniphila (87). Huang et al. reported that FMT
improved gastrointestinal symptoms and alleviated depression
and anxiety in irritable bowel syndrome (IBS) patients. Further,
gut microbiota analyses revealed that Methanobrevibacter and
A. muciniphila were the most abundant fecal microbiota a month
after compared to before FMT (88).

These animal models and human epidemiological studies
suggest methods to increase A. muciniphila abundance in
humans, but efforts to scale up its abundance in PLWH, and in
turn improving their gut health and various metabolic factors, are
yet unexplored (89).

LEAKY GUT AND DYSBIOSIS IN PLWH

HIV infection is characterized by a rapid decline in CD4 T-cell
count, early gut mucosal damage, and subsequent translocation

of microbial products through the now more permeable
epithelium (10, 90). Circulating levels of lipopolysaccharide (LPS)
and (1→3)-β-D-Glucan (BDG) are two clinically significant
markers that assess the level of bacterial and fungal translocation,
respectively, of which high levels lead to metabolic endotoxemia
(89). Our group and others have shown that LPS and
BDG translocation are correlated with immune dysfunction in
PLWH and increased risk of non-AIDS comorbidities (91–94).
Moreover, we and others have evaluated circulating intestinal
fatty acid binding protein (I-FABP) and regenerating islet-
derived protein-3α (REG3α) as two gut damage markers in
PLWH (14, 95). I-FABP, an intracellular protein constitutively
expressed in enterocytes, is released upon cell death and
subsequently detected in the blood (96, 97). REG3α is an
antimicrobial peptide secreted by intestinal Paneth cells into the
gut lumen and upon gut damage, translocates into the blood
(14). We observed that these two gut damage markers were
correlated with HIV disease progression, microbial translocation
and immune activation in PLWH (14). These findings point to
the leaky gut as a significant contributor to chronic inflammation
and non-AIDS comorbidities in PLWH.

Recently, accumulating evidence has suggested that the
gut microbiota is emerging as a prominent player in the
regulation of host metabolism and chronic inflammation (98,
99). Bacterial communities residing in the intestine of HIV-
infected individuals have been shown to differ from those of
individuals not infected with HIV, independently of age, sex
and sexual practice (6). Dysbiosis is associated with impaired
intestinal barrier activity, impaired mucosal immunity function
and worse clinical outcome in PLWH (6, 16, 100, 101). Moreover,
A. muciniphila was significantly depleted in ART-naïve and
ART-treated PLWH, compared to uninfected controls (101,
102). In one study, Mutlu et al. demonstrated that PLWH had
significantly less A. muciniphila abundance regardless of ART,
CD4 count or viral load, compared to healthy controls (102).
Rocafort et al. confirmed and expanded these results by showing
that A. muciniphila abundance was significantly higher in 49
recently infected PLWH and 55 healthy controls compared
to 71 chronically infected untreated PLWH. Furthermore, in
27 chronically infected ART-treated PLWH, A. muciniphila
abundance was similar to healthy controls (101). These findings
suggest that chronic HIV infection leads to progressive depletion
of A. muciniphila abundance, and following ART initiation,
A. muciniphila abundance returns to levels similar to those of
healthy controls. The causative role of A. muciniphila abundance
in HIV infection with respect to gut integrity and inflammation
needs to be further elucidated.

HYPOTHESIS: A. MUCINIPHILA AS A
SENTINEL FOR GUT PERMEABILITY IN
PLWH

HIV infection, metabolic disorders and cancer share common
features such as chronic inflammation and dysbiosis, which
includes the decreased abundance of A. muciniphila in the
gut microbiota (4, 40, 71, 101–104). Given this decreased
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abundance of A. muciniphila in PLWH, and considering the
benefits of increasing A. muciniphila abundance in obesity, we
hypothesize that A. muciniphila can act as a shield for gut
permeability, preventing microbial translocation and reducing
inflammation, with the aim toward decreasing risks of developing
non-AIDS comorbidities in PLWH. Potential interventions that
may increase A. muciniphila abundance in people living with HIV
are shown in Figure 1.

Leaky gut has been considered one of the most important
factors for microbial translocation and increased inflammation
in PLWH (15). In three in vitro human cell line models, Caco-
2, HT-29, and TIGK, A. muciniphila was reported to improve
enterocyte monolayer integrity and increase the expression
of cell–cell adhesion and tight junction molecules (51, 62).
Furthermore, in an accelerated aging mouse model, the thickness
of the colonic mucus layer increased approximately 3-fold after
long-term A. muciniphila supplementation (52). Therefore, we
propose that A. muciniphila might decrease inflammation by
preserving gut barrier integrity and subsequently preventing
microbial translocation in PLWH.

Furthermore, in PLWH, there is a lower abundance of
butyrate-producing bacteria (105, 106). Butyrate plays an
important role as an energy source for colonic epithelial cells and

epithelial barrier integrity, T-cell activation, colonic regulatory T
cell differentiation, gut and blood antigen presenting cell (APC)
modulation (105–109). Lower abundance of butyrate-producing
bacteria has been associated with poor clinical outcome in
Crohn’s disease, ulcerative colitis and colon cancer (110, 111).
Interestingly, A. muciniphila could promote butyrate-producing
bacteria growth and butyrate production (66). We therefore
suggest that A. muciniphila, by supporting butyrate-producing
bacteria, may also decrease inflammation in PLWH through this
method (106, 109).

Moreover, antimicrobial peptides in the gut play a prominent
role as host defense effector molecules. Specifically, the C-type
lectin REG3α secreted by human Paneth cells and its mouse
ortholog REG3γ can bind peptidoglycan and serve as bactericidal
agents against Gram-positive species (112). Live A. muciniphila
supplementation showed an increased expression of the murine
homolog REG3γ in an obese mouse model (40). Moreover,
A. muciniphila was reported to induce immunoglobulin G1
(IgG1) antibodies, antigen-specific T-cell responses and intestinal
adaptive immune responses (59). Therefore, A. muciniphila may
improve intestinal homeostasis through the increased expression
of REG3α in Paneth cells and inducing intestinal adaptive
immune responses in PLWH.

FIGURE 1 | Potential interventions to increase Akkermansia muciniphila abundance in people living with HIV.
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CONCLUSION

Epithelial gut damage, microbial translocation and inflammation
are considered common determinant mediators of inflammatory
non-AIDS comorbidities in PLWH. A. muciniphila has
emerged as the “sentinel of the gut” and has been shown to
promote gut barrier integrity, modulate immune response,
inhibit inflammation and enrich butyrate-producing bacteria.
Supplementation of A. muciniphila and other strategies
promoting the abundance of A. muciniphila have been proven
to be effective in some metabolic disorders and cancer. Recently,
clinical trials involving metformin (113), prebiotics (CIHR/CTN
NCT04058392) or FMT to increase A. muciniphila abundance
have come into fruition, and we suggest that a gut microbiota
enriched in A. muciniphila can reduce microbial translocation
and inflammation, lowering the risk of developing non-AIDS
comorbidities and improving quality-of-life in PLWH.
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