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Contemporary tracking studies reveal that low migratory connectivity

between breeding and non-breeding ranges is common in migrant landbirds.

It is unclear, however, how internal factors and early-life experiences of indi-

vidual migrants shape the development of their migration routes and

concomitant population-level non-breeding distributions. Stochastic wind

conditions and geography may determine whether and where migrants end

up by the end of their journey. We tested this hypothesis by satellite-tagging

31 fledgling honey buzzards Pernis apivorus from southern Finland and used

a global atmospheric reanalysis model to estimate the wind conditions they

encountered on their first outbound migration. Migration routes diverged

rapidly upon departure and the birds eventually spread out across 3340 km

of longitude. Using linear regression models, we show that the birds’ longi-

tudinal speeds were strongly affected by zonal wind speed, and negatively

affected by latitudinal wind, with significant but minor differences between

individuals. Eventually, 49% of variability in the birds’ total longitudinal

displacements was accounted for by wind conditions on migration. Some

birds circumvented the Baltic Sea via Scandinavia or engaged in unusual

downwind movements over the Mediterranean, which also affected the longi-

tude at which these individuals arrived in sub-Saharan Africa. To understand

why adult migrants use the migration routes and non-breeding sites they use,

we must take into account the way in which wind conditions moulded

their very first journeys. Our results present some of the first evidence into

the mechanisms through which low migratory connectivity emerges.
1. Introduction
One of the most robust patterns emerging from contemporary tracking studies of

migrant landbirds is one of low migratory connectivity, whereby individuals

which breed in close vicinity of each other diverge across huge geographical dis-

tances during the non-breeding phase of their annual cycle [1]. Although there are

exceptions where strong connectivity between breeding and non-breeding sites

exists [2,3], in most migrant landbirds, individuals from different breeding popu-

lations are likely to mix during the non-breeding season. We also know that

migrant landbirds are typically highly faithful to individual breeding and non-

breeding sites, temporarily residing in two or more areas along their individual

migration cycle [4]. It remains unclear, however, how innate and environmental

factors affect the development of individual migration routines during early life

[5]. A major challenge in this regard is to resolve how stochastic environmental
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influences shape the first outbound migration of juvenile

migrants [4]. Although many migrant landbirds travel in

mixed-age groups, juveniles migrate independently from their

parents and other elders in numerous species [6,7]. Such unex-

perienced migrants are assumed to follow an innate migratory

heading for a predetermined amount of time during one or

more bouts of migratory flight [8,9], which explains why

young and inexperienced migrants are often observed not to

compensate for wind drift [10–13] or experimentally induced

displacements [14], and which suggests they only manage to

settle wintering territories if they do not drift too far from suit-

able habitat. In such a system, there is a great potential for

environmental factors, and especially geography and atmos-

pheric circulation patterns, to influence the distribution of

juvenile migrants, moulding patterns of migratory connectivity

within and among breeding populations [1,4,15]. Much of this

theory, however, have been developed based on site-specific

radar observations and experiments, and still needs to be

tested by tracking juvenile migrants [7,16].

Very little is known about how environmental factors

shape the first outbound migrations of juvenile migrant land-

birds that rely on genetic information because most juvenile

tracking studies so far have been conducted on large species

such as storks [17–19], cranes [20], kites [16], eagles [21,22]

and vultures [23]; all of which learn strategic migration

routes and stop-over sites from elder conspecifics. Only a hand-

ful of studies have tracked juvenile migrants that travel

independently from elders, and these often yielded contrasting

results about the role of innate and environmental factors in

the development of individual migration routines. A satellite-

tracking study of juvenile ospreys Pandion haliaetus and

honey buzzards Pernis apivorus from Scandinavia, for example,

confirmed that juveniles did not compensate for sidewinds

towards predetermined goals as their adult conspecifics did

[24,25]. By contrast, juveniles of other migrant landbird species

are capable of navigating towards targeted non-breeding areas

without elder guidance. Juvenile Eleonora’s falcons Falco
eleonora [26] and juvenile common cuckoos Cuculus canorus
[27], for example, independently navigate to restricted non-

breeding ranges, respectively, on Madagascar and south of

the Congo Basin. Juvenile Eleonora’s falcons from Sardinia

thereby used a complex route involving a major shift in

migratory orientation after they crossed the Sahara [26],

whereas a juvenile common cuckoo followed a remarkably

straight path from northern Europe to northern Angola [27].

Some juvenile waders engage in long and complex but adap-

tive detours that appear to be programmed genetically

[28,29]. Contrary to expectation, it has also been shown that

juvenile songbirds can compensate for large geographical dis-

placements from their ‘normal’ migratory route [30] and that

complex migration routes can be genetically hard-wired [31].

Juvenile migrants may also engage in remarkably straight

trans-oceanic autumn migrations, which may require a

more sophisticated strategy than simple vector-based naviga-

tion [32]. There is, in conclusion, still little empirical

information about the influence of environmental conditions

on the orientation of juvenile migrants and the role of early-

life experiences in shaping individual migration routines and

migratory connectivity [1,4,33].

In this paper, we present the first results of an ongoing study

into the ontogeny of individual migration routines of European

honey buzzards. Between 2011 and 2014, thirty one fledgling

honey buzzards from southern Finland were equipped with
Argos tracking devices and GSM-GPS-trackers before they left

the nest. Three fledglings were confirmed to have died on the

nest owing to predation (two) and sickness (one) and one

died in Estonia shortly upon departure (electronic

supplementary material, table S1) so we obtained a good

sample of tracking data for 27 juveniles. Although adult

honey buzzards engage in complex detours to circumvent geo-

graphical barriers and to exploit predictable large-scale wind

regimes [34], the juveniles are unable to learn these routes

during their first migration because they initiate migration one

to two weeks later than the adults [24]. The juveniles then

seem to follow an innate migratory heading [25], as expected

for the bulkof migrant landbird species, and they do not circum-

vent geographical barriers in the same way as larger soaring

migrants do [21,23,35]. As a result, and as juvenile honey buz-

zards do not compensate for side winds [10], we expect

stochasticity in wind conditions on migration to determine at

what longitude these juvenile migrants settle in sub-Saharan

Africa. We test this hypothesis by annotating tracking data

with wind estimates from a global atmospheric reanalysis

model [36–38] and modelling the birds’ longitudinal speed in

relation to wind conditions encountered en route, accounting

for possible individual differences in orientation. We also map

residual (i.e. predicted–observed) longitudinal speeds to ident-

ify during what parts of the journey birds moved westward or

eastward faster than predicted. Some birds may, for example,

orient downwind more over sea than over land, in which case

we expect to see higher residual longitudinal speeds over the

Baltic and the Mediterranean for those individuals.
2. Methods
(a) Origin and tracking of juvenile honey buzzards
As a part of a long-term study [39,40], 21 honey buzzard nests

on 16 territories in southern Finland (latitude 618140 –638120 N,

longitude 218160 –238310 E) were visited between 2011 and 2014.

Typically, nests were visited once in June to determine occupied

nests and again in mid-July to ring chicks. A third nest visit was

timed to the final stage of the brood phase to equip fledglings

with solar-powered Argos GPS platform terminal transmitters

(PTTs) (Microwave Telemetry Inc.) or GSM-GPS-trackers (Micro-

wave Telemetry Inc., Ecotone). Tags weighed 22–27 g

corresponding to approximately 3% of the birds’ body mass at

the time of deployment (913+82 g; avg+ s.d., n ¼ 31). We used

the body-loop attachment method with a Teflon ribbon harness

[41]. The amount and type of data the PTTs/trackers delivered

varied depending on tracker model and programming schedule,

but also other factors such as weather (cf. [42]).

The sex of the nestlings (17 females and 14 males, electronic sup-

plementary material, table S1) was determined from DNA as

extracted from blood samples using the salt extraction method.

Introns of the sex-chromosome linked CHD gene were amplified

to distinguish the sexes [43]. Ten microlitres of PCR reaction

contained 5 ml of Phusion master mix (Thermofisher Scientific),

10 pmol of primers 2550F and 2718R, 2 ml of dH2O and 1 ml of

DNA extract. The PCR products were separated on a 2% agarose gel.

(b) Data preparation
Honey buzzards engage in pre-migratory movements in Europe

and also make itinerant movements within sub-Saharan Africa

during the non-breeding season. We therefore developed some

simple rules on the basis of which to categorize the migration

period and checked whether the endpoints we calculated were

representative of the longitude at which honey buzzards settled
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in sub-Saharan Africa (see the electronic supplementary material,

figure S1 for full explanation).

Because honey buzzards interrupt travel at night, and possibly

under adverse weather conditions, we excluded all resting

events from our analyses. We did this by removing all overland

locations where ground speed was lower than 1.39 m s21 (approx.

5 km h21). We did not exclude any fixes above sea, except for the

fixes of M4 in the night of 3–4 October 2013 because this bird

roosted on a ship. We calculated the loxodromic distance and

time interval from each location to the next to determine the

birds’ ground speeds and used vector trigonometry to determine

the longitudinal component of the birds’ ground speeds (i.e. west-

ward/eastward speed, Ubird). We determined whether fixes were

situated over land or over water using the Global Self-consistent

Hierarchical High-resolution Shoreline Database [44].

(c) Influence of wind on hourly longitudinal bird speed
Using the RNCEP package [36], we annotated every fix with

zonal (i.e. westward(2)/eastward(þ), Uwind) and latitudinal

(i.e. southward(2)/northward(þ), Vwind) wind components by

linearly interpolating wind data from the 925 mB pressure level

(corresponding to an average flight altitude of approx. 700 m

[37]) in the NCEP global atmospheric reanalysis model [38]. Rea-

nalysis data are generated on a 2.58 � 2.58 grid four times daily

and resolve large-scale circulation patterns that can be used

reliably to estimate wind conditions at the altitude of flight of

soaring raptors [34,45,46]. Summary statistics for Ubird, Uwind

and Vwind for each of the 27 birds that were used in this analysis

are provided in the electronic supplementary material, table S2.

We then constructed generalized linear regression models

(GLMs) to determine how hourly longitudinal bird speed (Ubird)

was affected by Uwind and Vwind. We constructed a model includ-

ing only Uwind, a model including the additive effects of Uwind and

Vwind, and a model including an interaction effect between Uwind

and Vwind. We then selected the most parsimonious model based

on Akaike’s information criterion (AIC [47]).

(d) Innate and parental factors
Linear regression plots show a positive relationship between Ubird

and Uwind for all individuals, regardless of sex or territory where

they hatched (electronic supplementary material, figure S2). Some

individuals do seem to move west or east in windless conditions

faster than others. We therefore extended the most parsimonious

GLM with randomly varying intercepts per individual [48]. Fledg-

lings tagged on the same territory may behave similarly owing to

parental effects. We therefore constructed a mixed linear effects

model with a nested design to allow for randomly varying intercepts

between individuals and territories. To identify the most parsimo-

nious model for Ubird, we then compare AIC and log-likelihood

values using a restricted maximum likelihood approach [49].

(e) Identifying influential geographical features
Several factors such as geography, topography, thermal soaring con-

ditions and time of day may influence the rate at which birds move

longitudinally. However, instead of running an exhaustive model

selection procedure with possibly confounding predictor variables,

we decided to map residual (i.e. observed–predicted) hourly longi-

tudinal speeds based on the most parsimonious mixed effects

model. This allows us to visualize where birds responded differently

to wind than they do on average across the entire flyway.

( f ) Influence of wind and geography on the total
longitudinal displacement of birds

Out of 27 birds that departed from Finland, 24 ultimately sur-

vived their first migration and 23 of those yielded sufficient
data to quantify wind conditions along their entire trip (elec-

tronic supplementary material, table S1). We calculated the

total longitudinal displacement (Dlong[8]) of these 23 individuals

by subtracting the longitude at which the birds started migration

from the longitude at which they ended migration (electronic

supplementary material, table S3). We then constructed multiple

linear regression models to predict the birds’ total longitudinal

displacements as a function of the mean zonal wind ( �Uwind)

and the mean latitudinal wind (�Vwind) encountered en route.

The birds diverge rapidly upon departure from Finland,

partly because one-third of all birds departs via Scandinavia.

We also constructed two models including an additional categ-

orical variable to account for this route choice and selected the

most parsimonious model including only significant predictor

variables based on AIC [47].

Mixed effect models were implemented using the lmer-

package in 64-bit R v. 3.3.3. All maps were produced using the

ggplot2-package [49]. The three-dimensional plot (electronic

supplementary material, figure S3a) was produced with the

rgl-package [50].
3. Results
Our tracking data revealed a rapid divergence of juvenile

migration routes upon departure from Finland, whereby

birds spread out across 1034 km longitude by the time they

reached latitude 558 N at the southern end of the Baltic Sea.

Just before the Mediterranean, the spread had increased to

2286 km and by the end of migration, individuals had spread

out across 3340 km longitude.

(a) Influence of wind conditions on hourly longitudinal
bird speed

Linear regression models confirmed that Uwind, and to a lesser

extent Vwind, significantly affected Ubird. Our most parsimo-

nious model (table 1, model 3; electronic supplementary

material, figure S3a) shows that on average juvenile honey buz-

zards moved westward at a rate of 0.76 m s21 in the absence of

winds, and that they drifted approximately 0.5 m s21 with

every 1 m s21 increase of Ubird in either direction. In addition,

there was a significant negative effect of Vwind and a signifi-

cant negative interaction effect of Uwind : Vwind on Ubird

(table 1, model 3), indicating that the degree to which birds

drifted with zonal winds was exacerbated by headwinds

(i.e. northward winds, Vwind . 0).

There was a clear positive influence of Uwind on Ubird across

most of the flyway (figure 1). Eighteen of 27 individuals initiated

migration in a south-eastward direction in eastward winds

across the Gulf of Finland (figure 1b). All but two (Matti and

Lisa) of nine individuals that departed westward or south-

westward across Scandinavia and the Baltic Sea experienced

winds with a westward component (figure 1b). Individuals

that departed across Scandinavia continued to fly overland,

even in weak sidewinds or in moderate eastward winds, until

they reached southern Sweden. They then crossed the Baltic

Sea in a south-eastward direction in eastward winds (e.g. Edit,

figure 1b) or south-westward in westward winds (e.g. Gilda

and Valentin, figure 1b). Once over mainland Europe, most

birds experienced winds with a moderate to strong eastward

component (figure 1a, 45–558 N) and concomitantly moved in

a south-eastward direction. Some birds did move south-

westward over Eastern Europe and the Balkans when they

encountered westward winds (figure 1a, 40–508 N).
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One bird (Julia) ended up over the Black Sea and initiated

a reverse migratory movement, flying north-westward in

opposing eastward winds until she approached the coast,

but then continued travelling over water until near the

Bosphorus. Over the Mediterranean Sea, the honey buzzards

usually encountered winds with a weak zonal component

(figure 1c). Some sea-crossing individuals engaged in pro-

nounced longitudinal movements (e.g. Hans) that were not

directed towards the nearest land. Once over Africa, most

birds moved south-westward in strong westward winds

(figure 1a). Three of four birds that travelled south-

eastward over the Sahara did so in unusual eastward winds

(figure 1a, Gilda, Hans and Valentin).

(b) Innate and parental factors
Including a random intercept for individuals significantly

improved the most parsimonious GLM (table 1, model 3)

but did not significantly alter estimates for wind effects com-

pared with model 1. We did not find evidence for parental

effects by nesting individuals per territory, as indicated by

the small increase in AIC and log-likelihood compared with

the model including only individual (electronic supplemen-

tary material, table S4). Adding sex as a fixed categorical

effect to our most parsimonious GLM revealed no significant

differences between males and females and so we did not use

it for multilevel modelling (p ¼ 0.13).

(c) Identifying influential geographical features
We mapped residuals from model 2 from the electronic sup-

plementary material, table S4 (electronic supplementary

material, figure S3a) to see when and where birds responded

differently to wind while crossing geographical barriers (elec-

tronic supplementary material, figure S3b). The birds that

departed into Scandinavia moved west faster than expected

from their average individual response to wind conditions,

especially the two individuals that departed westward in

eastward winds (Matti and Lisa; electronic supplementary

material, figure S3b, blues). Over the Black Sea and over the

Mediterranean Sea, there occurred many ‘events’ whereby

birds travelled westward (blues) or eastward (reds) faster

than predicted by our most parsimonious model (e.g. Sven

and Hans; electronic supplementary material, figure S2c).

Other extremely low or high residual Ubird values occurred

over Africa and across the whole journey birds tended to

move westward moderately faster than predicted (electronic

supplementary material, figure S2, greens), and to head

downwind more over water than over land.

(d) Influence of wind and geography on the total
longitudinal displacement of birds

We distinguished between the nine birds that departed

across Scandinavia oracross the Baltic Sea and the 18 individuals

that departed across the Gulf of Finland to predict the birds’ total

longitudinal displacements. However, we could not find a way

to categorize individuals based on route choice in other parts of

the flyway. For example, when birds arrive at the Mediterranean

in roughly the same location, they continue along roughly the

same flight direction under similar wind conditions.

Multiple linear regression models revealed that �Uwind and
�Vwind had a significant additive effect on the birds’ total longi-

tudinal displacements (Dlong[8], table 2). Route choice at
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departure, by contrast, only had a marginally significant effect

on Dlong[8] (table 2), probably because only one bird that

departed into Scandinavia in opposing winds (Matti) survived

until the end of migration. Nevertheless, we found that the

individuals with the largest residual longitudinal displace-

ments (figure 2, Hans, Matti and Venus) had all engaged in

longitudinal movements that were poorly accounted for by

local wind conditions at some point in their journey (figure 1).
4. Discussion
Long-distance migrant landbirds that breed in close vicinity of

each other in Europe typically spread out over vast geographi-

cal ranges in sub-Saharan Africa. Our results demonstrate that

for honey buzzards, such low migratory connectivity is owing

largely to stochasticity in the wind conditions that juvenile

migrants encounter on their first outbound migration [4].

Although most juvenile honey buzzards travel south-eastward

in eastward winds over northern and central Europe, this

movement is offset by the fact that on average, juvenile

honey buzzards move westward at a rate of 0.87 m s21 in

windless conditions, and by the prevalence of westward

winds over the Sahara, which constitutes the longest segment

of their journey. There were minor but significant differences

in mean migratory orientation between individuals, but wind

accounted for at least half the bird’s total longitudinal displace-

ment. All juveniles, both males and females, ended up further

west than where they started their journey in southern Finland,

and more than half ended up west of 108 E, well within the win-

tering range of honey buzzards that breed as far west as

Sweden [24] and the Netherlands [34,37].

Atmospheric circulation patterns seem to impact on

migratory connectivity in migrant landbird populations in

different ways. On the one hand, stochasticity in wind
conditions drives low migratory connectivity between breed-

ing and non-breeding ranges of the Finnish honey buzzard

population. On the other hand, the Afro-Palaearctic flyways

are characterized by distinct latitudinal wind regimes [34]

that are likely to lead to predictable patterns of migratory

connectivity between different breeding populations. Juven-

iles that hatched in eastern breeding populations, such as

those we studied here, are likely to end up in the core winter-

ing range of conspecifics that breed in western breeding

populations. By contrast, it seems unlikely that juveniles

which hatched in western Europe would end up in the

non-breeding range of conspecifics that breed further east

and that winter in central and eastern Africa. Atmospheric

circulation patterns may therefore help explain genetic struc-

ture of extant populations of P. apivorus, as has been done for

marine migrants based on ocean currents [51].

We were unable to directly account for geography to predict

the total longitudinal displacement of juvenile honey buzzards.

Moreover, the honey buzzards were not as reluctant to engage in

long sea-crossings as many larger soaring migrants [21,23].

Nevertheless, and contrary to our expectations, geography

affected the longitude at which certain individuals settled. For

example, one of two birds that departed westward from Finland

into Scandinavia in opposing winds survived its first migration

and ended up further west in Africa than any other juvenile

(Matti). In other cases, birds ended up further west or east

than predicted because they engaged in protracted downwind

movements over the Mediterranean or other barriers, and

because they did not compensate for these movements later in

their journey (e.g. Hans and Venus). We investigated all tracks

in detail to obtain clues about why these birds engaged in

such movements. One bird (Sven) started flying westward

when night fell during its sea-crossing, roosted on a westward-

sailing ship shortly thereafter, continued flying westward in

westward winds the next morning and died a few days later in
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Figure 2. Predicted versus observed total longitudinal displacements
(Dlong[8]) of 23 juvenile honey buzzards that survived their first autumn
migration (excluding one of 24 survivors with large gaps in tracking data)
based on our most parsimonious model (table 2, model 2). Points above
the black line indicate cases where a bird ended up further west than pre-
dicted based on the wind conditions it encountered en route. Points below
the black line are cases where birds ended up further east than predicted.
Name labels indicate three individuals with relatively high standardized
residual values (i.e. worst predictions).
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northern Algeria. This bird thus probably flew downwind

because it was in relatively poor condition [52,53]. The fact

that another bird suddenly changed travel direction at nightfall

while crossing the Black Sea suggest the birds may generally be

more hesitant to fly over water at night [54,55]. However, not all

sea-crossing individuals behave in the same way and it remains

difficult to generalize our observations into a mechanistic, deter-

ministic model. A simple innate migration strategy that leaves

room for flexible responses to highly stochastic conditions is

probably highly adaptive for migrant birds [4].

(a) Wind, geography and mortality on the first
outbound migration

The survival rate of juvenile honey buzzards was much higher

than expected based on previously reported survival rates of

migrating raptors in the Afro-Palaearctic flyways [56,57]. No

less than 74.2% of all tagged fledglings and 88.8% of all individ-

uals that initiated migration survived their first migration.

Moreover, none of the juveniles died by drowning, in sharp

contrast to the high mortality rate among larger soaring

migrants that attempt long flights across the Mediterranean

[23,58]. Interestingly, all three juveniles that died during the

first autumn migration (F2, F3, M4) had left Finland through

Scandinavia or around the Baltic Sea. However, the circum-

stances under which these birds were lost suggest they

died owing to different causes and we do not think mortality

is systematically higher along this flyway [59].

(b) Potential carry-over effects of early-life migration
experiences

Depending on where juvenile honey buzzards end up settling

at non-breeding sites, they may learn very different spring
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migration routes when they first return to Europe as immature

birds. Honey buzzards usually spend at least one whole year in

sub-Saharan Africa before they first return to Europe, and

they may move further east or west before their first spring

migration [60]. Of the individuals we studied here, 12 reached

their third calendar year. All of these moved over long

distances within Africa, but most returned to a point near the

location or region as where they first settled for long periods,

and initiated spring migration from there (electronic sup-

plementary material, figure S1). Assuming that immature

honey buzzards rely on a simple innate migration programme

on their first return migration, we would then expect individ-

uals that settled non-breeding grounds in West Africa to take

a western route on their first return migration. However, at

some point, immature honey buzzards migrate at the same

time as adults from whom they then learn complex detours

through the wind regimes and around the geographical bar-

riers that characterize the African-Eurasian flyways [24,34].

By now, the juveniles we tracked have all died or reached adult-

hood, and we are working to determine how many birds

eventually manage to learn the traditional detours, at what

age learning takes place and how early-life experiences such

as those described in this paper ultimately affect development

of individual migration routes and natal dispersal.

(c) Implications for other migrants
We expect that wind conditions and geography will shape the

first outbound migrations and non-breeding distributions of

many other migrant landbirds in similar ways as we described

here, at least for species that rely on a simple innate vector-

based navigation during their first migration. It is possible that

the influence of wind is relatively more important in the Afro-

Palaearctic flyways compared with, for example, the Americas,

where geography strongly affects migratory connectivity [1,2].

If so, we would also expect that there is stronger selection for sto-

chastic rather than deterministic (cf. [27]) migration tactics in the

Old World compared with the New World, because in the latter,

breeding and non-breeding grounds are connected only by a

narrow land mass, whereas in the former, metaphorically speak-

ing, ‘all flyways lead to Rome’. However, theoretical studies

have shown that a high within-clutch variability of innate

migratory headings is also advantageous for migrants breeding

in North America, because it increases the likelihood that at least

one chick will be able to contend with stochastic atmospheric

conditions [61]. Our results suggest that pairs of long-lived

honey buzzards with small clutch size (2 eggs) benefit from a

similar bet-hedging strategy across multiple years.

There are migrant landbirds in the Old World that learn

complex detours without adult guidance that are not necess-

arily optimal with respect to seasonal winds [62], often to

reach a specific non-breeding area [26]. It remains unclear,

however, why and how such a high degree of migratory special-

ization is maintained. Red-backed shrikes Lanius collurio, for

example, appear to back-track the routes along which ancestors

colonized Iberia from East Europe and Africa [62], while other
migrant birds have developed innovative migration strategies

over much shorter time scales after colonizing new breeding

areas [63]. It could be that certain innate or environmental

factors constrain the ability of juveniles of conservative

migrants to learn alternative strategies, and lifelong tracking

studies will be crucial to understand under what conditions

bet-hedging and deterministic migration strategies ultimately

emerge. This matters also for conservation, because breeding

populations of migrant landbirds like honey buzzards are

unlikely to be conserved through protected areas but rather

by innovative landscape-based conservation approaches on

the wintering grounds [4,64,65].

Non-breeding distributions of migrant birds are strongly

determined by connectivity to breeding areas [66] and evolution

of migratory links depends on the distance birds have to travel

over barriers [67]. Atmospheric circulation patterns can strongly

impact on this connectivity, as favourable winds can turn a for-

midable barrier into a freeway for migrant birds, and vice versa

[34,68]. Models that simulate juvenile migrations of birds

show that it is possible for birds to reach their non-breeding

areas through real-life wind fields using simple vector-based

orientation [25]. Similarly, we can replicate the distribution of

non-breeding adult sea-turtles and eel by modelling drift trajec-

tories of their hatchlings or larvae through extant ocean currents

[69–71]. This suggests that non-deterministic, go-with-the-flow

migration strategies are highly adaptive in the juvenile life-stage

of many flying and swimming organisms, even if they need to

compensate for the drift they accumulated as juveniles to

return to their natal site in a later stage of life [72,73].
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Škorpilová J, Gregory RD. 2014 The decline of Afro-
Palaearctic migrants and an assessment of potential
causes. Ibis 156, 1 – 22. (doi:10.1111/ibi.12118)

65. Osinubi ST, Hand K, Van Oijen DCC, Walther BA,
Barnard P. 2016 Linking science and policy to
address conservation concerns about African land
use, land conversion and land grabs in the era of
globalization. Afr. J. Ecol. 54, 265 – 267. (doi:10.
1111/aje.12355)
66. Somveille M, Rodrigues ASL, Manica A. 2015 Why
do birds migrate? A macroecological perspective.
Glob. Ecol. Biogeogr. 24, 664 – 674. (doi:10.1111/
geb.12298)

67. Henningsson SS, Alerstam T. 2005 Barriers and
distances as determinants for the evolution of bird
migration links: the arctic shorebird system.
Proc. R. Soc. B 272, 2251 – 2258. (doi:10.1098/rspb.
2005.3221)

68. Gill RE, Douglas DC, Handel CM, Tibbitts TL, Hufford
G, Piersma T. 2014 Hemispheric-scale wind selection
facilitates bar-tailed godwit circum-migration of the
Pacific. Anim. Behav. 90, 117 – 130. (doi:10.1016/j.
anbehav.2014.01.020)

69. Mencacci R, Bernardi E, Sale A, Lutjeharms JRE,
Luschi P. 2010 Influence of oceanic factors on long-
distance movements of loggerhead sea turtles
displaced in the southwest Indian Ocean. Mar. Biol.
157, 339 – 349. (doi:10.1007/s00227-009-1321-z)

70. Hays GC, Fossette S, Katselidis KA, Mariani P,
Schofield G. 2010 Ontogenetic development of
migration: Lagrangian drift trajectories suggest a
new paradigm for sea turtles. J. R. Soc. Interface 7,
1319 – 1327. (doi:10.1098/rsif.2010.0009)

71. Chang Y-L, Miyazawa Y, Béguer-Pon M. 2016
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