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Abstract
The development of the mammalian skull is a complex process that requires multiple tissue

interactions and a balance of growth and differentiation. Disrupting this balance can lead to

changes in the shape and size of skull bones, which can have serious clinical implications.

For example, insufficient ossification of the bony elements leads to enlarged anterior fonta-

nelles and reduced mechanical protection of the brain. In this report, we find that loss of

Gsk3β leads to a fully penetrant reduction of frontal bone size and subsequent enlarged

frontal fontanelle. In the absence ofGsk3β the frontal bone primordium undergoes

increased cell death and reduced proliferation with a concomitant increase in Fgfr2-IIIc and

Twist1 expression. This leads to a smaller condensation and premature differentiation. This

phenotype appears to be Wnt-independent and is not rescued by decreasing the genetic

dose of β-catenin/Ctnnb1. Taken together, our work defines a novel role forGsk3β in skull

development.

Introduction
The frontal bones develop from neural crest derived mesenchymal cells that initially condense
in a position dorsal to the developing eyes. Following the initial condensation, the frontal
bones grow by expansion and dorsal migration of the initial cellular condensation [1,2]. These
condensations subsequently undergo intramembranous ossification. A number of molecular
signals have been implicated in skull growth and patterning, including bone morphogenetic
protein (BMP), fibroblast growth factor (FGF), Hedgehog (Hh) and Wnt pathways [3]. In par-
ticular, there appears to be a key role for Wnt/β-catenin signaling in the development and ossi-
fication of the skull bones [4–7], as well as a requirement for the Wnt inhibitor Axin2 [4,6–10].
However, to date, there have been no reports of a role for glycogen synthase kinase-3 (Gsk3), a
key Wnt effector, in the initiation of the frontal bone condensation.

GSK3 is a promiscuous serine/threonine kinase initially identified for its role in glycogen
metabolism. In mammals, Gsk3 is encoded by two paralogs, Gsk3α and Gsk3β; each has a
unique developmental expression pattern in the skull [11]. During embryogenesis, GSK3 is
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thought to function primarily in the Wnt signaling pathway, where β-catenin degradation is
controlled by GSK3 dependent phosphorylation. However, GSK3 has many potential sub-
strates, including GLI proteins, which transduce Hedgehog signaling ([12–14], the insulin
receptor IRS-1 and TWIST1 [15,16]. Given the broad function of the two GSK3 proteins, it is
surprising that single gene knockouts have minimal phenotypes: the Gsk3α knockout animals
are viable [11,17], while Gsk3β knock out animals survive to birth and die due to cleft palate
[18–21].

In humans, malformations of the craniofacial skeleton are among the most common con-
genital anomalies seen in live births. These anomalies include defects in osteogenesis in the
skull vault. Premature closure of the cranial sutures fuses the bones of the skull vault together
and results in craniosynostosis, while prolonged patency of the sutures results in enlarged fon-
tanelles and unossified regions between the bones in the skull vault. Both of these abnormalities
may be caused by disruptions in the intramembranous ossification programme and indeed,
key pathways such as BMP and FGF signaling are implicated in disease pathology [22,23]. Sev-
eral important genes,Msx2 and Twist1, have been directly linked to enlarged fontanelles, but
clearly these cannot be the only candidates [22].

Here, we describe the requirements for Gsk3β during development of the neural crest
derived frontal bones. In the absence of Gsk3β, the frontal bone primordia are small, leading to
enlarged fontanelles. In Gsk3βmutants, we observe reduced proliferation and increased apo-
ptosis at E13.5. Concurrently, the expression of key differentiation markers Fgfr2-IIIc and
Twist1 are increased. These data imply premature differentiation of the frontal bones leading
to a depletion of the endogenous store of differentiating osteoblasts. Thus, GSK3β appears to
be a key regulator of the balance between growth and differentiation in the embryonic skull.

Materials and Methods

Animals
All animals were housed in the New Hunt’s House Biological Services Unit at King’s College
London. There are three null alleles of Gsk3β [11,18,20]. We have previously shown that these
three lines are allelic and phenotypically identical [11,18]. In brief, all three alleles lead to a loss
of function protein. The original allele of Gsk3β (Gsk3βtm1Jrw) is a conventional null with a neo-
mycin cassette replacing the ATP-binding loop [20]. Although this allele was initially reported
to be lethal in mid-gestation, further analysis by us and others demonstrate that these animals
undergo late gestational or perinatal death [11,18,19,21]. This is confirmed by perinatal lethal-
ity in a second null allele (Gsk3βtm1Dgen) which has a lacZ gene replacing the first exon of the
protein [11]. Finally, the GSK3βtm1Grc allele has a protein destabilization domain fused to the 3’
end of the protein which renders it phenotypically null until restored by administration of
rapamycin or rapamycin analogues [18,24]. We have verified via western blot that no GSK3β
protein is detected in any of the alleles and therefore, all three lines have been used inter-
changeably in these analyses and, for simplicity, are referred to as Gsk3β-/-. All conclusions
from Gsk3βmutants were based on at least three animals of the same genotype, with compari-
son to littermate controls. For neural crest lineage tracing, theWnt-1::cre driver and R26RlacZ

reporter lines were used as previously reported [25–27]. In order to generate heterozygous
deletions of β-catenin, β-cateninfl/fl mice were crossed to β-actin::cre driver mice[28,29].

Mouse husbandry
Gestation dates were determined by observation of a vaginal plug, which was designated as
embryonic day 0.5 (E0.5). On the indicated days, the pregnant dams were euthanized by CO2
inhalation, or cervical dislocation and the embryos were then collected by caesarian section. All
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conclusions were based on a minimum of 3 animals per genotype and the phenotypes that we
are reporting here are consistent amongst all of the animals that we analyzed. All animal work
was approved by the Ethical Review Board at King’s College London and performed in accor-
dance with United Kingdom Home Office Licenses 70/6607 and 70/7441.

mRNA in situ hybridization
Embryos were fixed overnight at 4°C in 4% paraformaldehyde in phosphate buffered saline.
Embryos were processed for paraffin embedding and sectioning according to standard proto-
cols, and 10 micron thick sections were mounted on 3-triethoxysilylpropylamine (TESPA)
treated Superfrost slides. mRNA in situ hybridization was performed according to standard
protocols and revealed with BM Purple [27]. For each probe, control and mutant sections were
treated and developed together, and the conclusions were based on at least 3 animals/genotype
per gene. The following probes were used: alkaline phosphatase, Cbfa1, Osx1 [30], Fgfr2-IIIc
[31], Twist1 [32],Msx1 andMsx2 [33], Gsk3α clone (accession #BC111032, Open Biosystems
clone ID 5369444) and Gsk3β (accession #BC006936, Open Biosystems clone ID 2648507).

Skeletal staining
Whole mount E18.5 bone and cartilage preparations were performed as previously described
[18]. E15.5 skull preparations were fixed overnight in 4% PFA to maintain tissue integrity.
These skulls were subsequently stained with alizarin red and cleared in 1% potassium hydrox-
ide. Histological identification of bone and cartilage on sections was performed using tradi-
tional picrosirius red/alcian blue staining protocols [34].

Wholemount lacZ staining
In the lineage tracing experiments, β-galactosidase activity was visualized by X-gal staining as
previously described [27]. Cre negative littermates were used to ensure specificity of staining.

Cell death and cell proliferation
Cell death was examined by TUNEL staining on slides using the ApopTag Peroxidase kit
(Millipore). Mitotic cells were identified by antibody staining for phospho-histone H3 (PHH3,
Cell Signaling) using a standard citrate buffer antigen retrieval and detection with a peroxidase
conjugated secondary antibody. To track DNA synthesis, 10 mg/kg bromo-deoxyuridine
(BrdU) was administered to pregnant dams by intraperitoneal injection two hours prior to har-
vesting. Briefly, sections were pre-treated with proteinase K, exonuclease III and DPN1, and
BrdU was detected with the anti-BrdU antibody (RPN202; GE Healthcare) [35]. In each case,
at least 1 section from 2 animals was counted per genotype. We counted the positive cells in
each frontal bone primordia, and because it consists of ordinal data, it cannot be averaged. We
found that the data fell naturally into two categories. With the PHH3 data, there were 8 sec-
tions that were below 6 positive cells, while the remaining sections were greater than 6 cells.
For the TUNEL data, no wildtype section had greater than 3 apoptotic cells, therefore we ana-
lyzed the data using these categories.

Western Blotting
Tissues were lysed in RIPA, and proteins were separated on a 4–12% NuPAGE Bis-Tris gel
with MOPS running buffer (Invitrogen). They were transferred to PVDF membranes and incu-
bated with the activated β-catenin (CTNNB1) antibody (Millipore 8E7), followed by GSK3α /β
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antibody (Santa Cruz 0011-A) and HSP-90 (Santa Cruz). The signal was detected using the
Millipore Immobilon Western Chemiluminescent HRP substrate detected with X-ray film.

Results

Loss ofGsk3β results in congenital craniofacial anomalies
In the mouse, deletion of both Gsk3 genes is catastrophic, resulting in pre-implantation lethal-
ity [36]. This is unsurprising, given the reported ubiquitous expression of both genes [37].
Since then, we have shown that the phenotypes in single knockouts of Gsk3α and Gsk3β are
very different, suggesting tissue specific functions of the two genes [11,18]. Gsk3αa is dispensi-
ble for life [11,17]. While original knockout of Gsk3β (Gsk3βtm1Jrw) appeared to be lethal at
mid-gestation stages [20], multiple recent reports have shown that Gsk3βmutants die at birth,
from a complete cleft of the secondary palate [11,18,19,21,36]. However, other associated cra-
nial phenotypes have not been well documented. Thus, we examined the phenotypes of all
three Gsk3β null alleles during embryogenesis. As previously noted, all three alleles had a fully
penetrant cleft secondary palate [11,18] and data not shown). Externally, the most obvious
phenotype was ocular coloboma (Fig 1F). The cranial base was also cleft, with diminished ossi-
fication of the presphenoid (PS) (compare Fig 1G to 1B) and a reduction in ossification of the
inner ear bones (compare Fig 1H to 1C). Finally, we observed malformations of the skull vault;
specifically, the frontal bones are smaller compared to control littermates at E15.5, leading to
an enlarged fontanelle (compare Fig 1I, 1J to 1D, 1E).

Gsk3mRNAs and GSK3 proteins are expressed in the frontal bone
primordia
Because of the clear decrease in frontal bone size in Gsk3βmutants, we decided to examine
expression of both Gsk3α and Gsk3β in the condensing mesenchyme destined to form the fron-
tal bone. Both GSK3B protein and transcript are expressed in frontal bone primordia at E13.5
(Fig 2A and 2B). Importantly, Gsk3βmRNA expression is absent in the Gsk3βmutant (Fig

Fig 1. Deletion ofGsk3β results in ocular, cranial base and skull vault defects. (A-E) ControlGsk3β +/+ mice. F-J)GSK3β -/- mice. Alizarin red staining
marks the bone and alcian blue staining marks the cartilage. (A, F) Loss ofGsk3β results in ocular coloboma (F, arrow). (B, G) At E18.5, in the cranial base,
the basioccipital and basisphenoid are cleft and the presphenoid is smaller (arrows, G). (C, H) Ossification of the ear is delayed in the mutant (arrow, H). (D, I)
At E15.5 the frontal bone is smaller with a concomitant increase in the width of the metopic suture (m). (E, J) Coronal sections at E15.5. Mutant frontal bones
(in J) are smaller than in wildtype (in E). Arrows mark apical extent of frontal bones. bo, basioccipital; bs, basisphenoid; f, frontal; m, metopic; p, parietal; ps,
presphenoid.

doi:10.1371/journal.pone.0149604.g001
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2E). Although Gsk3α is also expressed in the E13.5 frontal bone, we found that this expression
was unchanged in the Gsk3βmutant animals (Fig 2F).

Neural crest migration follows appropriate paths but is reduced in the
Gsk3β-/- mutants
As mentioned above, the frontal bones are formed from neural crest derived mesenchyme
[1,38]. Therefore, we considered the possibility that defects in neural crest migration or cell
number could lead to a smaller condensation. To test this, we performed a lineage tracing
experiment using the neural crest specific driver Wnt1::cre combined with the R26RlacZ

reporter [25,26]. We found only subtle changes in the neural crest cells. At e9.5 migration
appeared normal, with similar levels of positive cells adjacent to the eye (n = 4/4 mutants; black
arrows, Fig 3A and 3B). However, by E13.5, there appears to be a decrease in the β-galactosi-
dase activity in frontal bone condensation in mutant animals (n = 2/2 mutants; blue staining,
black arrows, Fig 3D). This suggests that the frontal bone phenotype arises in the condensing
neural crest cells after E9.5 and before E13.5.

Fig 2. Gsk3β is expressed in the E13.5 frontal bones, andGsk3α expression is not affected inGsk3βmutants.Coronal cross-sections of E13.5 mouse
heads, through the frontal bones (outlined by dotted lines). (A-C) E13.5 control embryos stained for GSK3β protein (A), and mRNA expression (B).Gsk3α
mRNA is also found in the frontal bone primordia (C). (D-F) InGsk3βmutants, we do not observe any residual GSK3β protein (D), or mRNA (E). There is no
obvious change inGsk3αmRNA expression in theGsk3βmutant frontal bone (F). Scale bars = 100 mm, A applies to D; B applies to C, E, F.

doi:10.1371/journal.pone.0149604.g002
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At E12.5, mutant frontal condensations express appropriate osteoblast
markers
We then considered whether differentiation of osteoblasts was occurring at the right time and
in the right place. To do this, we performed mRNA in situ hybridization at E12.5, when the
condensations are histologically similar in mutants and controls. First, we examined expression
of Cbfa1/Runx2 and alkaline phosphatase (AP). We found that although there was no signifi-
cant difference in intensity in the in situ signals, both Cbfa1 and AP domains are misshapen
(n = 3/genotype; Fig 4C and 4D, arrow). The mutant AP and Cbfa1 domains do not extend as
far apically and are expanded in the mediolateral domain compared to the wildtype littermate
control (Fig 4C and 4D). Both control and mutant frontal bones also expressMsx1 andMsx2
in appropriate, but smaller domains (data not shown). We concluded that although slightly
diminished, mutant bones are undergoing appropriate osteoblastic differentiation at E12.5.

Loss ofGsk3β triggers premature differentiation at E13.5
By E13.5, the frontal bone compartments were markedly different between mutant animals
and littermate controls (Fig 5). These data suggested that GSK3β is critically important between
E12.5 and E13.5. At these stages, both wildtype and mutant condensations continue to express
AP in the appropriate domains (Fig 5A and 5F), with some decrease in Cbfa1 (Fig 5F and 5G).
We hypothesized that in the mutant animals, frontal bone osteoblasts might be differentiating
prematurely, rather than maintaining a growth and expansion phase. To test this idea, we
looked at markers of osteogenic differentiation, Fgfr2-IIIc and Twist1, by mRNA in situ hybrid-
ization. We observed that Fgfr2-IIIc expression was significantly upregulated in the mutant

Fig 3. The neural crest derived frontal bone primordia inGsk3βmutants is reduced by E13.5. Lateral
views of LacZ staining (in blue) marks the Wnt1::cre positive neural crest population. Cranial regions are
shown in E9.5 mouse embryos (A, B) and at E13.5 (C, D). (A, B) At E9.5, cranial neural crest in controls (A)
and mutants (B) appear similar (n = 4/4 mutants). (C, D) At E13.5, the mutant neural crest derived frontal
bone condensation (D, arrow) is smaller than wildtype littermate (n = 2/2 mutants C, arrow). Scale bars = 1
mm.

doi:10.1371/journal.pone.0149604.g003
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frontal bone (Fig 5I). Correlating with the increased Fgfr2-IIIc expression, we also noted a
change in the domain of Twist1 expression (Fig 5E and 5J). In the wildtype situation, a stripe of
Twist1 expression at the ectocranial border of the frontal condensation distinguishes the frontal
bone anlagen from the dermis (arrowheads, Fig 5E). In mutant embryos, we observed that the
mesenchyme is not divided into these two compartments; instead, Twist1 expression expands
throughout (Fig 5J). From these data we conclude that the subsequent reduced ossification in
the mutants is associated with either premature differentiation or aberrant compartmentaliza-
tion of the frontal bone anlagen.

Changes inGsk3βmutants are not due to Wnt signaling
Since loss of GSK3β function is predicted to increase the amount of activated β-catenin in the
embryo, we tested whether expression of the Wnt targets Osterix-1 (Osx1) and Axin2 was
increased in the mutants. Both markers showed no change in the levels of expression in the
frontal bone primordia (compare Fig 5C to 5H, and data not shown). We also tested whether
the levels of activated β-catenin was changed in the mutants. We found that Gsk3βmutants
had no difference in the amount of activated β-catenin at E8.5 embryos or in E18.5 frontal and
parietal bones (Fig 6C). Furthermore, heterozygosity of β-catenin did not rescue the wide

Fig 4. Osteogenic differentiation is occurring in the smaller frontal bone primordium at E12.5.mRNA
in situ hybridization on coronal cross-sections through the frontal bone primordia (outlined in yellow). (A, B)
Gsk3β+/+ animals. (C, D)Gsk3β-/-mutants. (A, C) Cbfa1/Runx2mRNA in situ hybridization. (B, D) Alkalkine
phosphatase (AP)mRNA in situ hybridization. (C, D) Note that the domain of expression of both genes is
marginally smaller in theGsk3β null animals. Scale bar = 100 mm.

doi:10.1371/journal.pone.0149604.g004
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fontanelle at E15.5 (compare Fig 6D to 6B). However, the size of the Osx1 domain is much
smaller, consistent with the diminished size and shape of the overall condensation.

Decreased proliferation and increased cell death in the frontal bone
condensation
Finally, we thought that premature differentiation might be accompanied by decreased prolifera-
tion. To test this, we examined the number of cells in S-phase by pulsing animals with bromo-
deoxyuridine (BrdU). We also counted mitotic cells by labeling with a phosphorylated histone
H3 (PHH3) antibody. At E13.5 we found a decreased number of cells in S-phase via BrdU stain-
ing in the frontal bone (Fig 7E, p<0.05). Surprisingly, we observed an increased number of
mitotic cells (Fig 7B and 7F). As GSK3 is known to phosphorylate p27kip1 [39,40], one possibil-
ity is that the loss of GSK3β leads to a mild arrest at the G1/S checkpoint. We also considered the
possibility that there could be increased cell death in the mutants. Indeed, TUNEL assays
revealed more cell death in the mutant frontal bones (Fig 7C). Thus, we observe precocious dif-
ferentiation and decreased cell numbers inGsk3βmutants. Taken together, these two mecha-
nisms lead to an overall reduction in the pool of osteoprogenitor cells and a smaller frontal bone.

Discussion
Pathological changes in skull development are among the most frequent congenital anomalies
associated with live births; thus, calvarial perturbations present a major medical challenge[23].

Fig 5. Disorganized frontal bone differentiation inGsk3βmutants.mRNA in situ hybridization for indicated mRNAs on coronal cross-sections through
the condensing frontal bone. (A-E)Gsk3β+/+ animals. (F-J)Gsk3β-/- mutants. (A-B, F-G) The frontal bone condensation expresses AP (F) andCbfa1/Runx2
(G) in both wildtype and mutant littermates. Mutant condensations (B, G) remain smaller. (C, H) There is no increase in the Wnt dependent osteogenic gene
Osx1, which is expressed normally in mutant frontal bone (H). (D, I) Fgfr2-IIIc is upregulated in the mutant frontal bone (I, arrow). (E, J) In wildtype animals (E)
Twist1 expression marks the ectocranial edge of the frontal bone condensation (arrowheads, E), and borders on an adjacent Twist1-negative region. (J) In
mutants, Twist1 is expanded diffusely, leading to an absence of a clearly demarcated, Twist-positive ectocranial border. Scale bar = 100 mm.

doi:10.1371/journal.pone.0149604.g005
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Insufficient cranial bone is frequently attributed to brain abnormalities [41,42]; however, in
recent years, it has become clear that mutation in a number of key genes can disrupt the pro-
gression of the intrinsic ossification programmes. Here, we demonstrate a requirement for
Gsk3β in the initiation and expansion of the frontal bone primordium. We find that Gsk3β
mutants display premature osteoblastic differentiation in the frontal bone compartment. This,
combined with changes in cell proliferation and increased cell death, leads to smaller frontal
bones and a wide fontanelle.

We also considered the possibility that the smaller osteoblastic compartment could arise
due to neural crest migration defects. Both Xenopus Twist1 and mammalian Snail1 proteins
are reported to be Gsk3 substrates; these are key regulators of neural crest cell migration
[16,43–45]. Embryos with a complete loss of Twist1 (Twist1-/-) have a severe cranial phenotype,
stemming from earlier defects in cranial neural crest migration [46,47]. This is consistent with
an evolutionarily conserved role for Twist1 during the critical migratory stages, which then
obscures a later role in the ossification and migration of the neural crest derived skull vault
mesenchyme. Snail1mutation also leads to midgestational lethality and thus, roles in the skull
are unclear [48,49]. Using lineage tracing to examine migration of the neural crest, we noted
no significant changes in the frontal bone-directed cranial neural crest. This may reflect func-
tional redundancy between mammalian Gsk3α and Gsk3β which warrants further study.

Twist1 heterozygotes (Twist1+/-) develop coronal craniosynostosis, owing in part to abber-
ant migration of Wnt-1cre positive cells into the mesodermal compartment of the coronal
suture [50–52]. Coronal synostosis in the Twist1 heterozygotes is thought to result from a

Fig 6. Skull phenotypes inGsk3βmutants are not due to increase activated β-catenin. (A, B and D) Alizarin red staining marks the calvarial bones at
E15.5. (A)Gsk3β+/+ animals. (B)Gsk3β-/- mutants. (D)Gsk3β-/-; β-catenin+/-mutants. (C) Western blot analysis of protein lysates from whole E8.5 embryos
(left lanes) and E18.5 frontal and parietal bones (right lanes). We observed no difference in the amount activated β-catenin (actbcat), or GSK3α in the mutant
animals. HSP-90 (heat shock protein-90) is a loading control. Note that null alleles ofGsk3β produce no detectable protein.

doi:10.1371/journal.pone.0149604.g006
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switch of Twist/E2A heterodimers in wildtype animals to Twist homodimers. Twist homodi-
mers preferentially upregulate expression of FGFR2 and subsequent differentiation at the oste-
ogenic front [53,54]. In our studies, the loss of compartmentalization of the Twist1 expression
domain may also prevent preosteoblasts from migrating and populating the growing osteo-
genic front. Instead, pre-osteoblasts may differentiate in situ in the forming frontal bone anla-
gen. Though we cannot exclude subtle defects in cell migration, precocious differentiation of
osteoblast precursors in the frontal bone primordia will certainly lead to a smaller frontal bone.

The defects we observe in the Gsk3βmutant skulls are more similar to two other mouse
models: transgenic dominant negative BMPR1a, and compoundMsx2+/-; Twist1+/- mutants
[22,55]. Several reports suggest that human BMP receptor 1A mutations also lead to craniofa-
cial dysmorphism [56,57], and mutations in human MSX2 lead to persistent calvarial foramina
[58]. In the mouse, expression of dominant-negative Bmpr1a in the neural crest leads to severe

Fig 7. Loss ofGsk3β leads to decreased proliferation and increased cell death in the frontal bone primordia. (A-D) Coronal cross-sections through
the condensing frontal bone, outlined in yellow. (A-B) Mitotic cells were detected by antibody staining detecting phosphorylated histone H3 (pHH3). Mutant
sections showed more mitotic cells (B). (C-D) Cell death was detected by TUNEL staining. Mutant sections showed increased cell death (D), (E) BRDU
staining revealed a small but significantly lower ratio of cells in S-phase in the mutant frontal bone (p <0.05). (F) Antibody staining for pHH3 positive cells
showed more mitotic cells in the mutants. Slides were scored with sections with greater than six (red) or less than six positive cells (blue). (G) AllGsk3β+/+

frontal bone sections had fewer than three apoptotic cells, while theGsk3β-/- animals showed increase in cell death, based on the number of cells that have
TUNEL-positive staining.

doi:10.1371/journal.pone.0149604.g007
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apoptosis of the frontal bone primordia accompanied by facial clefting [55]. Similarly, enlarged
foramina are present in human Saethre-Chotzen patients [59]. In the mouse models for
Saethre-Chotzen syndrome (single or compoundMsx2-Twistmutants), osteoblastic differenti-
ation markers were reduced by E12.5, while proliferation is not reduced until E14.5 [22]. In
contrast, our data suggest a novel etiology for smaller skull vault bone formation, namely pre-
mature expression of differentiation markers, and changes in the cell cycle. This implies an
acceleration of the ossification programme, leading to a depletion of the osteoblastic progenitor
compartment of the frontal bone.

Finally, we considered the possibility that Gsk3β is required for a Wnt/β-catenin dependent
function during development of the neural crest derived skull. As we saw no change in Wnt-
dependent target genes such as Axin2, and we found no rescue when decreasing the genetic
dose of β-catenin (Fig 6), we propose that these functions of Gsk3β are β-catenin-independent.
Gsk3α expression may be sufficient to compensate for Gsk3β in Wnt signaling, especially given
the critically important roles for Wnt signaling in stem cell maintenance and early develop-
ment [36]. However, it is worth noting that postnatal deletion of Gsk3β in osteoblasts appears
sufficient to increase levels of activated β-catenin [60]. Furthermore, Gsk3β has been reported
to phosphorylate and inactivate Cbfa1/Runx2 [21]. Both of these observations could reflect a
difference in the prenatal intramembranous ossification programme versus postnatal Wnt-
dependent ossification programmes. As the majority of craniofacial congenital anomalies man-
ifest in utero, future studies should focus on distinguishing between temporal and tissue spe-
cific substrates of Gsk3.
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