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Characterization of dynamic DNA methylomes in diverse phylogenetic

groups has attracted growing interest for a better understanding of the evol-

ution of DNA methylation as well as its function and biological significance

in eukaryotes. Sequencing-based methods are promising in fulfilling

this task. However, none of the currently available methods offers the ‘per-

fect solution’, and they have limitations that prevent their application in the

less studied phylogenetic groups. The recently discovered Mrr-like enzymes

are appealing for new method development, owing to their ability to collect

32-bp methylated DNA fragments from the whole genome for high-

throughput sequencing. Here, we have developed a simple and scalable

DNA methylation profiling method (called MethylRAD) using Mrr-like

enzymes. MethylRAD allows for de novo (reference-free) methylation analy-

sis, extremely low DNA input (e.g. 1 ng) and adjustment of tag density, all of

which are still unattainable for most widely used methylation profiling

methods such as RRBS and MeDIP. We performed extensive analyses to vali-

date the power and accuracy of our method in both model (plant Arabidopsis
thaliana) and non-model (scallop Patinopecten yessoensis) species. We further

demonstrated its great utility in identification of a gene (LPCAT1) that is

potentially crucial for carotenoid accumulation in scallop adductor muscle.

MethylRAD has several advantages over existing tools and fills a void in

the current epigenomic toolkit by providing a universal tool that can be

used for diverse research applications, e.g. from model to non-model

species, from ordinary to precious samples and from small to large genomes,

but at an affordable cost.
1. Background
DNA methylation, which occurs at the C5 position of cytosines within CpG and

at non-CpG cytosines in plants and mammalian embryonic stem cells, is a

common mechanism of epigenetic regulation in eukaryotes [1]. It plays a

vital role in many biological processes such as embryogenesis, cellular differen-

tiation, X-chromosome inactivation, genomic imprinting and transposon

silencing. In addition, perturbed methylation patterns are sometimes a hall-

mark of important human diseases such as imprinting disorders and

cancers [2].

Characterization of dynamic DNA methylomes in diverse phylogenetic

groups is an emerging and exciting research area that has attracted considerable

interest for a better understanding of the evolution of DNA methylation as well

as its function and biological significance in eukaryotes. Profiling the DNA

methylation landscape and its dynamics enables researchers to look deeply
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into key epigenetic mechanisms that modulate development

and diseases. With recent rapid advances in sequencing tech-

nologies, sequencing-based methods have been increasingly

used to identify DNA methylation sites and to measure

methylation levels on a genomic scale [3]. Although it is

desirable to achieve whole methylome profiling at single-

base resolution by performing whole genome bisulfite

sequencing (WGBS), it is cost prohibitive to use this strategy

in a large number of samples. Instead, most widely used

methods address this issue by adopting various strategies

to reduce sequencing costs. According to their methodologi-

cal principles, these methods can be classified into three

main categories: (i) bisulfite conversion-based methods

(e.g. RRBS [4]), (ii) immunoprecipitation-based methods

(e.g. MeDIP-seq [5]; MethylCap-seq [6]) and (iii) restriction

enzyme-based methods (e.g. MethylSeq [7]). Unfortunately,

none of them offers the ‘perfect solution’, and each one has

its own strength and weakness. RRBS is based on bisulfite

sequencing of size-selected DNA fragments and can quanti-

tatively measure methylated cytosine in any sequence

context. Mapping RRBS data to a reference genome is, however,

computationally challenging owing to the low complexity of

bisulfite-treated DNA [8]. MeDIP-seq sequences the methylated

fraction of the genome to achieve whole genome coverage at an

affordable cost, but the resolution of MeDIP-seq is currently low

as it conflates cytosine methylation in any context (CpN) into

one signal and it often displays a bias towards highly methyl-

ated regions [9]. MethylSeq relies on the use of methylation-

sensitive restriction enzymes (e.g. HpaII) and their insensitive

isoschizomers (e.g. MspI) to interrogate the methylation status

of restriction sites. However, MethylSeq is a simple approach

that assigns binary calls of methylated versus unmethylated,

and therefore it is difficult to quantitatively measure DNA

methylation levels by MethylSeq [7].

Methylation-dependent restriction enzymes are seldom

used in epigenomic studies; however, their enzymatic fea-

tures make them appealing for the development of new

methods. Similar to affinity-based methods, these enzymes

can directly assess the DNA methylation status without the

aid of chemical conversion, but with much higher specificity

and sensitivity. Zheng et al. [10] have recently characterized

an Mrr-like family of methylation-dependent restriction

enzymes. These enzymes have the unique ability to produce

32-base-long fragments around fully methylated restriction

sites, which are suitable for high-throughput sequencing to

profile cytosine methylation on a genomic scale. Although

previous studies have proved the ability of Mrr-like enzymes

for qualitative DNA methylation analysis (i.e. for the deter-

mination of the methylation status [11,12]), quantification

of methylation levels seems to be difficult based on the obser-

vation of relatively low reproducibility of relative abundance

of each site (r ¼ 0.69 for two replicate libraries [12]). This

issue may stem from the complicated library preparation pro-

cedures that are used in these studies, which involve many

enzymatic treatments and purification steps that may contrib-

ute to the distortion of relative abundance of the sites.

Recently, a simple and flexible protocol (called 2b-RAD)

was developed for sequencing type IIB enzyme-produced

fragments for genome-wide genotyping [13], which features

high reproducibility and tunable representation of sites. In

essence, the fragments produced by Mrr-like enzymes

resemble those produced by type IIB restriction enzymes. It

therefore inspired us to develop a 2b-RAD-like protocol for
Mrr-like enzymes (called MethylRAD thereafter) in the

hopes that the new protocol would inherit the advantages

of the 2b-RAD protocol. In this study, the technical perform-

ance of MethylRAD was thoroughly evaluated using the

model plant Arabidopsis thaliana. Furthermore, we demon-

strated the power of MethylRAD in identification of a gene

that is potentially responsible for carotenoid accumulation

in scallop adductor muscle.
2. Results
2.1. Overview of the methodology for MethylRAD
MethylRAD uses one of the Mrr-like enzymes (e.g. FspEI,

MspJI, LpnPI, AspBHI, etc.) to perform reduced methylome

sequencing for cost-efficient DNA methylation profiling.

Here, we used the Mrr-like enzyme FspEI to demonstrate

the methodological principle of MethylRAD. FspEI can

recognize 5-methylcytosine (5-mC) and 5-hydroxymethylcy-

tosine (5-hmC) in the CmC and mCDS sites (in the presence

of an activator; D ¼ A or G or T; S ¼ C or G) [11]. As Mrr-

like enzymes are blocked by glucosylated 5-hmC (5ghmC)

[11], further discrimination of the two modification types is

possible if glucose is added to the hydroxyl group of

5-hmC (e.g. using T4 b-glucosyltransferase). FspEI generates

a double-stranded DNA break on the 30 side of the modified

cytosine at a fixed distance (N12/N16). If the target sites are

symmetrically methylated, FspEI can cleave bidirectionally

to generate 32-base-long fragments with the methylated site

in the middle. This enzymatic feature allows nearly every

restriction site in the genome to be screened in parallel, with-

out the limitation of sequenceable fragment size (usually less

than 500 bp) as is commonly seen in conventional restriction

enzyme-based methods where only a subset of restriction

sites can be targeted. In addition, unlike affinity-based

methods, MethylRAD can discriminate between CG and

non-CG methylation, because the methylation status of each

site is interrogated independently. As shown in figure 1,

the library preparation procedure for MethylRAD is relatively

simple and can be carried out in a 96-well plate for rapid pro-

cessing of a large number of samples. FspEI fragments have

arbitrary four-base 50 overhangs at each end, and in our

approach, adaptor ligation is fulfilled by cohesive-end ligation

using adaptors with fully degenerate ends (50-NNNN-30).

In certain circumstances, using degenerate adaptors provides

an additional advantage for MethylRAD. For example, the

density of target sites can be scaled down to enable cost-

effective methylation analysis of large genomes by using

adaptors with less degenerate ends (e.g. 50-NNNG-30 targets

1/16th of all FspEI sites).

2.2. Benchmarking MethylRAD in Arabidopsis thaliana
We benchmarked the MethylRAD method using the model

plant A. thaliana, for which the whole methylome has been

sequenced [14] and multiple epigenomic resources are pub-

licly available. We performed multiple analyses to evaluate

the specificity, sensitivity and reproducibility of MethylRAD.

In addition, we demonstrated that MethylRAD allowed

for adjustment of tag representation, de novo methylation

analysis and library preparation from very low amounts of

input DNA.
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Figure 1. Schematic overview of the procedure for MethylRAD library preparation. Genomic DNA is digested with the restriction enzyme FspEI, producing 32-bp
fragments including four-base 30 overhangs. Adaptors with compatible overhangs (NNNN) are ligated to each end of these fragments. Tag density can be adjusted
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2.2.1. In silico analysis of FspEI sites

There were 20 884 683 potential FspEI sites in the A. thaliana
genome with a density of 6 bp, of which 2 571 046 (12.3%),

if symmetrically methylated, were able to produce 32-bp

fragments (table 1). These 32-bp FspEI sites had a density

of 46 bp in the genome and covered 19.8% of total CGs and

67.5% of total CHGs (H ¼ C, T or A). For two primary

target sites (CCGG and CCWGG, W ¼ T or A), the numbers

were 137 669 and 71 647 with genome-wide densities of 865

and 1663 bp, respectively, and covered 4.9% of total CGs

and 3.6% of total CHGs.
2.2.2. Sequencing MethylRAD libraries

To validate the MethylRAD method, two replicate libraries

were constructed independently using the same A. thaliana
sample. Each sequencing library produced more than

12 million reads (electronic supplementary material, table

S1), of which 99.4% were retained in both libraries as high-

quality (HQ) reads for further analyses. Of the HQ reads,

97.6% (rep1) and 97.7% (rep2) could be mapped to the
A. thaliana reference genome (TAIR10). Of the mapped

reads, 36.1% (rep1) and 34.5% (rep2) have unique genomic

locations. The unique mapping ratios are comparable to

those (38–43%) reported in a previous WGBS study on

A. thaliana [14], and the relatively low rate of unique mapping

is to be expected as repetitive regions are usually highly

methylated in plants. For 32-bp sites, 72 338 and 73 548

were detected in the two libraries, respectively (table 2).

CCGG and CCWGG sites exhibited much higher sequencing

depth than other 32-bp sites, indicating that these two types

of sites are primary targets of FspEI. Therefore, CCGG and

CCWGG sites were focused on in subsequent analyses.
2.2.3. Specificity, sensitivity and reproducibility

Of the mapped reads, only 4.33% did not contain any FspEI

sites, suggesting the high cleavage specificity for FspEI

enzyme. Base composition analysis of CCGG and CCWGG

sites revealed similar patterns between the sequenced sites

and all possible sites (electronic supplementary material,

figure S1), indicating that the sequenced sites are uniformly

collected from the genome. The chloroplast genome is



Table 1. In silico analysis of FspEI sites in the Arabidopsis genome.

number density % CG % CHG % CHH

all sites

CC/ CDS 20 884 683 6 58.3 100 52.0

32-bp sitesa

CCGG 137 669 865 4.9 1.2 0.0

CCWGG 71 647 1663 0.0 2.4 0.0

others 2 361 730 50 14.9 63.9 0.0
a32-bp sites refer to those that can be cut by FspEI to produce 32-bp fragment if symmetrically methylated (experimentally determined by Cohen-Karni
et al. [11]). Note CCCGG is classified into CCGG sites, which can possess two possible forms of cytosine methylation (CCmCGG and CmCCGG) that are difficult to
be distinguished from each other based on sequencing reads.

Table 2. 32-bp FspEI sites and related depth for the two replicate libraries.

replicate 1 replicate 2

number depth number depth

CCGG 24 500 78 24 022 69

CCWGG 8237 76 8127 67

others 39 601 32 41 399 30
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generally not methylated, and thus it can be used as an

internal control for measuring the specificity of MethylRAD

for DNA methylation detection. As shown in table 3, the

false-positive rate (FPR) of methylation detection by FspEI

enzyme was quite low, as low as 0.1% when requiring each

site to be supported by at least five reads.

MethylRAD sensitivity was evaluated for detection

rates of CCGG and CCWGG sites at different methylation

levels (measured by M-index, see Methods for details) in

the two libraries. Our results showed that at methylation

levels of 20–100%, CCGG and CCWGG sites could be readily

detected by both libraries, with detection rates of 93.8–100%

and 93.9–100%, respectively. While lower detection rates

were seen at the low methylation level (less than 20%),

more than 79% of the CCGG and CCWGG sites could still

be detected (tables 4 and 5). MethylRAD sensitivity was

further evaluated by comparison with the previously pub-

lished WGBS data [14]. Although substantial methylation

difference may exist between the two datasets because differ-

ent samples were sequenced, our results showed that sites

with high and medium methylation levels (40–100%) in the

WGBS dataset could be largely recaptured by MethylRAD,

with detection rates of 72.3–85.2% and 83.7–87.4% for

CCGG and CCWGG sites, respectively (tables 4 and 5). For

WGBS sites with low methylation levels (less than 30%), the

detection rates of MethylRAD were relatively low. However,

when subsetting the WGBS sites and including only those

with small methylation difference between the two DNA

strands, the detection rates of MethylRAD were remarkably

increased for sites with low methylation levels (e.g. up to

20.8% and 22.1% increase for CCGG and CCWGG sites at

the methylation level of less than 20%), suggesting that

many low-methylation sites detected by WGBS were due to

single-strand methylation for which MethylRAD is unable

to produce double digested fragments (32 bp) for sequencing.
As for technical reproducibility, we found that a great

majority of FspEI sites could be reproducibly detected in

both libraries. CCGG and CCWGG sites exhibited higher

reproducibility than other 32-bp sites, accounting for more

than 91% in library 1 and 93% in library 2 (figure 2). In

addition, the sequencing depth for the shared sites showed

very high correlation (r . 0.95 for both CCGG and

CCWGG sites; figure 2).

2.2.4. Methylation patterns across the genome

To evaluate whether MethylRAD has the potential to provide

an overview of DNA methylation landscape across the whole

genome, we profiled the genome-wide DNA methylation

patterns for A. thaliana using MethylRAD data and compared

them with those generated from the WGBS data. Highly con-

sistent methylation patterns were revealed between the two

datasets for both CG and non-CG sites (figure 3). The results

showed high methylation levels in heterochromatic regions

around centromeres and pericentromeres where many trans-

posons and other repeat elements are usually clustered, and

relatively low methylation levels in euchromatic regions

that are usually composed of genes and non-repetitive inter-

genic sequences. Note there is a spike at chromosome 2 that

showed a disparity between the two datasets. Such disparity

should be attributed to epigenetic difference between

sequenced samples as it did not appear when using Methyl-

RAD datasets generated from a different cohort of Arabidopsis
samples for comparison (electronic supplementary material,

figure S2). Our results suggest that even though MethylRAD

only captures a fraction of CG and non-CG sites from the

genome, it can infer genome-wide methylation patterns that

resemble those generated by WGBS at single-base resolution.

2.2.5. Reduced tag representation

MethylRAD is able to flexibly adjust the tag density using

adaptors with less degenerate ends, ranging from one quarter

(NNNR overhang on both adaptors) to 1/256th of all sites

(NNGG overhangs on both adaptors). To evaluate the

reduced tag representation (RTR) approach, an RTR library

was prepared for the same A. thaliana sample using adaptors

with 50-NNNT-30 and 50-NNNC-30 overhangs that targeted

about one-eighth of all CCGG and CCWGG sites (figure 4

and electronic supplementary material, table S2). A total of

7.9 million reads were produced, representing about half of

the reads obtained from the standard libraries. For the



Table 3. MethylRAD specificity evaluated by using the unmethylated chloroplast genome. There were 1948 possible 32-bp FspEI sites in the chloroplast
genome. False-positive rates (FPRs) were scored under different methylation-calling thresholds.

�1 read �2 reads �3 reads �4 reads �5 reads

replicate 1

sites detected 57 18 11 4 2

FPR (%) 2.93 0.92 0.57 0.21 0.10

replicate 2

sites detected 61 23 8 3 2

FPR (%) 3.13 1.18 0.41 0.15 0.10
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standard libraries, 2268 RTR-targeted CCGG sites and 857

RTR-targeted CCWGG sites were detected, of which 81.6%

and 88.6% were also detected in the RTR library (figure 5),

but the sequencing depth was 2.7-fold (2.1-fold for CCGG

and 3.4-fold for CCWGG) enriched in the RTR library relative

to the standard libraries. Methylation levels estimated by the

RTR library correlated with those estimated by the standard

library (figure 5). High concordance of methylation calls

(91.1% for CCGG and 96.9% for CCWGG) was observed

between the two libraries under three-level classification

(high/medium/low methylation) at the cut-off of 0.80–0.20

(table 6).
2.2.6. Rarefaction analysis

To determine the optimal sequencing requirement for

standard and RTR libraries, rarefaction analyses were per-

formed. The results revealed that for the detection of at

least 80% of the target sites, the standard library would

require 5.5 million reads for CCGG sites and 5.3 million

reads for CCWGG sites, whereas only about half of

such sequencing effort was required for the RTR library

(3.3 million reads for CCGG sites and 2.6 million reads for

CCWGG sites; figure 6a,b). The reliability of methylation

quantification was evaluated for standard and RTR libraries

at different sequencing scales. With the minimal amount of

sequencing required for the detection of at least 80% of the

target sites, the correlation coefficient between the reduced

sequencing scale and full sequencing scale was 0.97 for the

standard library, whereas it was 0.98–0.99 for the RTR library

(figure 6c,d ). These results suggest that methylation levels

can be reliably measured for both standard and RTR libraries

at reduced sequencing scales.
2.2.7. De novo analysis of MethylRAD data

Unlike RRBS and affinity-based methods, a reference genome

is not a necessity in MethylRAD analysis. Reference sites can

be constructed de novo from MethylRAD data, which makes

MethylRAD appealing for genome-wide methylation profil-

ing applications in the non-model organisms without

reference genomes. We have developed an approach for de

novo MethylRAD analysis, and its performance was evalu-

ated by comparison with the reference-based approach. In

total, 25 954 and 7424 reference sites were constructed for

CCGG and CCWGG sites, respectively, representing 81.1%

and 66.2% of the unique sites detected by the reference-

based approach (figure 7). Note that a substantial number
of additional sites were detected by the de novo approach,

which largely represent repetitive sites (43.6% for CCGG

sites and 44.0% for CCWGG sites). For commonly detected

sites, their methylation levels quantified by each approach lar-

gely agreed with each other (r ¼ 0.98 for CCGG and r ¼ 0.94

for CCWGG), suggesting that for a majority of sites methyl-

ation levels can be reliably estimated by the de novo approach.

2.2.8. Input DNA requirement

To determine the minimal amount of input DNA required for

MethylRAD library preparation, six levels of input DNA con-

tent were tested, including 1, 5, 10, 50, 100 and 200 ng. As

shown in the electronic supplementary material, figure S3,

successes of first PCR amplification with 16 cycles were

observed for input DNA levels equal to or higher than

5 ng, whereas for 1 ng input DNA a very weak band was vis-

ible on the gel. By increasing to 22 PCR cycles, a single clear

band appeared on the gel for 1 ng input DNA with the yield

of PCR product enough for subsequent experimental steps.

Sequencing of libraries prepared from 1, 5 and 10 ng input

DNA based on 22 PCR cycles revealed high reproducibility

not only between technical replicates (r ¼ 0.93–0.96;

figures 8a and 9a), but also between different levels of

input DNA (r ¼ 0.95–0.97; figures 8b and 9b). Our results

suggest that the MethylRAD library can be reliably prepared

from very low amounts of input DNA (as low as 1 ng).

2.3. MethylRAD analysis of carotenoid accumulation in
scallop adductor muscle

Carotenoids are essential nutrients for animals and humans.

More than one-third of carotenoids found in nature are of

marine origin [15], but our knowledge of carotenoid absorp-

tion, storage and metabolism in marine animals remains

limited. In bivalves, adductor muscles are normally white.

Previously, our group identified a rare orange variant of

Yesso scallop (Patinopecten yessoensis, Jay 1857), which was

caused by accumulation of carotenoids (pectenolone and pec-

tenoxanthin) and occurred in about 0.2% of the natural

population [16]. Because carotenoid accumulation naturally

occurs in female gonads of Yesso scallops, we suspect there

may exist an epigenetic switch that controls accumulation of

carotenoids in scallop adductor muscle. To further evaluate

the utility of MethylRAD in practical applications, Methyl-

RAD standard libraries were prepared and sequenced for

12 Yesso scallops with orange adductor muscle (O-samples)

and 12 with white adductor muscle (W-samples), based on
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which differential DNA methylation analysis between the

two groups was conducted. In total, 258.5 million HQ reads

were obtained for the 24 samples, with a range from 6.8 to

14.8 million HQ reads for each sample (electronic supplemen-

tary material, table S3). On average, 92.8% of HQ reads for

each sample was mapped to an unpublished Yesso scallop

genome assembly and 56.7% was uniquely mapped. As

expected for animals, DNA methylation predominantly

occurred at CCGG sites, but not CCWGG sites in scallop.

On average, 63 462 methylated CCGG sites and 464 methyl-

ated CCWGG sites were detected for each O-sample,

whereas 60 431 methylated CCGG sites and 425 methylated

CCWGG sites were detected for each W-sample. In total,

148 sites showed significantly differential DNA methylation
between the two groups ( p , 0.05, after Bonferroni cor-

rection), of which 85 showed higher methylation level in

the W-samples than O-samples and 63 showed higher

methylation level in the O-samples than in the W-samples

(electronic supplementary material, table S4). As shown in

figure 10a, differentially methylated sites were enriched on

chromosome 8, including the four most significant sites. All

four most significant sites were situated in gene regions repre-

senting lysophosphatidylcholine acyltransferase 1 (LPCAT1,

p ¼ 1.56 � 10258), protein disulfide-isomerase TMX3 ( p ¼
1.25 � 10258), NEDD8-activating enzyme E1 regulatory

subunit 1 (NAE1, p ¼ 5.53 � 10247) and ATP-dependent

RNA helicase DDX1 ( p ¼ 8.43 � 10241). Gene expression pro-

filing based on RNA-seq experiments (Li et al., unpublished)
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revealed that only LPCAT1 showed significant differential

expression between the two groups, with higher level in the

O-samples than W-samples (figure 10d ). For LPCAT1, the

methylation difference between the two groups primarily

occurred at the 50 end of the gene body (figure 10b,c) but

not in the presumed promoter region (unmethylated in

both groups). Such methylation pattern is consistent with

general observations from the DNA methylomes of Pacific

oyster (Crassostrea gigas) where promoter regions are usually

unmethylated and gene body methylation is dominant and in

some circumstances shows the 50 end bias [17,18]. It has been

shown that LPCAT1 can catalyse the production of phospha-

tidylcholine [19,20], which is a crucial component in the

formation of lipid droplets [21], the primary sites for intra-

cellular carotenoid storage [22]. We speculate that the

epigenetically enhanced LPCAT1 expression may facilitate

the formation of more lipid droplets in cells and therefore

provide more cellular space for carotenoid storage in adduc-

tor muscle. It is therefore expectable that the ‘orange’

phenotype would occur when the accumulation rate of caro-

tenoids exceeds the metabolism rate. Further investigation

of functional roles of LPCAT1 may deepen our understand-

ing of the molecular basis of carotenoid accumulation in

marine bivalves.
3. Discussion
3.1. Technical improvements
The MethylRAD protocol possesses several important techni-

cal improvements, making it advantageous over previous

protocols [11,12]. First, the MethylRAD protocol is substan-

tially simpler than previous protocols as it eliminates many

enzymatic treatments and purification steps, including

DNA fragment end repair, dA-tailing, one step of gel purifi-

cation and four steps of phenol/chloroform extraction and
ethanol precipitation. In particular, MethylRAD omits the

gel purification step for digested DNA, eliminating the possi-

bility of very short fragments (23–24 bp) with low melting

temperatures being denatured or partially denatured owing

to heating effect during gel electrophoresis [23]. The stream-

lined MethylRAD protocol can easily be carried out in a

96-well PCR plate and the whole procedure can be finished

within two days, which makes MethylRAD ideally suited

for large-scale methylation profiling projects where a large

number of samples need to be efficiently processed in paral-

lel. Second, owing to the elimination of multiple purification

steps, MethylRAD library preparation can use extremely low

amounts of input DNA (e.g. 1 ng), which is in contrast to

the 1–1.5 mg required in previous protocols [11,12]. This fea-

ture makes it possible to analyse samples with low DNA

producibility, such as precious samples, formalin-fixed

samples or paraffin-embedded samples. Last, MethylRAD

allows researchers to adjust the tag density using selective

adaptors to maximize sample throughput while minimizing

costs, a unique feature derived from the 2b-RAD method

[13,24–26]. This feature would be especially useful for analys-

ing a large number of individuals with large genomes for

whom sequencing would be cost prohibitive if all 32-bp

FspEI sites are targeted. For example, 32-bp FspEI sites in a

human-sized genome (approx. 3 Gb) would be approximately

20-fold more than those in the A. thaliana genome. This means

that at least 100 million reads would be required for analysing

a standard library of such a sample if the sample has methyl-

ation profiles similar to A. thaliana. In contrast, the RTR

library requires much less sequencing effort than the standard

library and, as demonstrated in this study, approximately

50% reduction in sequencing can be achieved when using

adaptors with single selective base. Further reductions are

expected if using adaptors with additional selective bases

(e.g. NNGG). Therefore, sequencing RTR libraries represents

an advisable option for large-scale methylation profiling

studies dealing with species with large genomes.
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Table 6. Concordance of methylation quantification between the standard
library and the RTR library.

methylated
sites

target sites
detected by
both libraries

% concordance
(0.80 – 0.20
cut-off )

CCGG 1850 91.1

CCWGG 759 96.9
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3.2. Specificity, sensitivity and reproducibility
Specificity is an important factor that determines the accuracy

of methylation sites detection. In essence, Mrr-like enzymes

possess two kinds of specificity, one for restriction site

sequence recognition and the other for cytosine methylation

recognition. Because these two kinds of specificity are

mutually connected, previous studies did not distinguish

them specifically, i.e. all of the fragments produced by

Mrr-like enzymes were believed to be methylated. However,

it remains unknown how well such an assumption stands on

a genome-wide scale. Through evaluation of the unmethy-

lated chloroplast genome, we were able to distinguish the

two kinds of specificity and for the first time, to the best of

our knowledge, determine the false-positive rate of methyl-

ation detection for Mrr-like enzymes. The observation of

low detection rates (less than 0.1%) of unmethylated chloro-

plast sites proves the high specificity of the FspEI enzyme

for the recognition of cytosine methylation and substantiates
the robustness of the MethylRAD method. For plant appli-

cations, it is advisable to use the chloroplast sites as

internal control sites to adjust the false discovery rate of

detected methylation sites to the desired level.

Sensitivity is an important factor that determines the

detection rate of methylated sites. There are two kinds of sen-

sitivity for Mrr-like enzymes: sensitivity for detecting

different types of restriction sites and sensitivity for detecting

sites with low methylation level. Like other Mrr-like

enzymes, FspEI can recognize several types of restriction

sites to produce 32-bp fragments if the sites are symmetrically

methylated. Although all types of restriction sites were

detected in MethylRAD datasets, a cutting preference for

CCGG and CCWGG sites was observed. Because overrepre-

sented sites can be more reliably captured, we recommend

that high priority should be given to these sites in Methyl-

RAD analysis, though sites other than CCGG and CCWGG

may be more suitable for qualitative methylation analysis.

Sensitivity for detecting sites with low methylation level

would heavily depend on the sequencing depth. With the

current sequencing effort (approx. 12 M reads for each stan-

dard library), the performance of MethylRAD for detecting

lowly methylated sites is very encouraging, with more than

79% of sites with low methylation level (less than 20%)

being detected by each standard library.

Reliable methylation profiling would also rely on high

reproducibility. Compared with the previous study [12], tech-

nical reproducibility is significantly improved in this study as

a result of the streamlined protocol employed by Methyl-

RAD. For example, 91–93% of sites were commonly
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detected in replicate libraries in our study, in contrast to only

58–73% in the previous study [12]. In addition, our study

revealed that the correlation coefficient of site depth was

more than 0.95 for replicate libraries, in contrast to 0.69 in

the previous study (even though approx. 30 million reads

were generated for each library). The improved technical

reproducibility supports the reliability of MethylRAD for

methylation profiling.
3.3. De novo MethylRAD analysis
For the vast majority of species studied in ecology and evol-

ution an assembled genome sequence is not available, and

this presents a challenge for sequencing-based methylation

profiling techniques because there is no reference genome

for read alignment. We have developed a procedure for de

novo MethylRAD analysis, which creates a cluster-derived

reference (CDR) from HQ reads. We found strong agreement

between de novo and reference-based analyses such that

most CDR sequences (87% for CCGG and 84% for CCWGG

sites) showed clear one-to-one matches with target sites

detected by the reference-based approach and compari-

son of trinary methylation calls at these sites revealed good

agreement between the two approaches (table 6). While refer-

ence-based analysis is clearly preferable in model systems,

sufficient power and accuracy was achieved in our de novo

analysis, making MethylRAD a valuable tool for organisms

lacking a reference genome.
3.4. Comparison of MethylRAD with other sequencing-
based methods

A detailed technical comparison between MethylRAD and

other sequencing-based methylation profiling methods is

shown in table 7. The MethylRAD library can be reliably pre-

pared using very little input DNA (as low as 1 ng), whereas

the other methods usually require much larger amount of

input DNA (0.01–5 mg). Generally, three to five days are

required for the other methods, whereas MethylRAD library

preparation can be finished within two days. Further time

shortening is also expectable, as a simplified version of the

2b-RAD protocol can be finished in as little as 4 h [13].

MethylRAD allows nearly every restriction site in the

genome to be screened in parallel, whereas RRBS and

MethylSeq only target a subset of total restriction sites

owing to the size limit of restriction fragments (usually less

than 500 bp) for PCR amplification and sequencing. Like affi-

nity-based methods, MethylRAD cannot provide direct

estimation of absolute methylation levels. MethylRAD can

recognize both CG and non-CG methylation, whereas all

other methods except RRBS either only recognize CG methyl-

ation or recognize both CG and non-CG methylation but

cannot distinguish them. Tag density can be adjusted in the

MethylRAD protocol to meet specific research needs, which

is unattainable or has not yet been tested for other methods.

MethylRAD analysis can be performed using either a refer-

ence-based approach or a de novo approach, while for most

of the other methods the reference genome is indispensable.
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4. Conclusion
We have developed a simple and flexible method for

genome-wide DNA methylation profiling using Mrr-like

enzymes. MethylRAD exhibits high specificity, sensitivity

and reproducibility, and allows for de novo methylation

analysis, extremely low DNA input, and flexible adjustment

of tag density. Application of MethylRAD on a marine

bivalve identified a gene that is potentially crucial for caro-

tenoid accumulation in adductor muscle. MethylRAD fills a

void in the current epigenomic toolkit by providing a univer-

sal tool that can be cost-effectively used for characterization

of dynamic DNA methylomes in diverse phylogenetic

groups without restriction of genome size and DNA source

or requirement of a reference genome.
5. Methods
5.1. DNA sample
The seeds of A. thaliana ecotype Columbia (Col-0) were grown

in MS medium [29] at 238C under a 16 h light/8 h dark cycle

for about three weeks. Genomic DNA was extracted from

aerial tissues using the conventional cetyltrimethyl

ammonium bromide method.

5.2. MethylRAD library preparation and sequencing
MethylRAD library preparation began with digestion of

1–200 ng genomic DNA in a 15ml reaction containing 4 U

FspEI (NEB) at 378C for 4 h. Five ml of the digested product

was run on a 1% agarose gel to verify digestion. Then, 10 ml

ligation master mix containing 0.2 mM each of two adaptors,

1 mM ATP and 800 U of T4 DNA ligase (NEB) was added
to the digestion solution, and incubated for 6–12 h at 48C.

All adaptor and primer sequences are provided in the elec-

tronic supplementary material, table S5. Ligation products

were amplified in 20ml reactions containing 7 ml ligated

DNA, 0.2 mM of each primer (p1 and p2), 0.3 mM dNTP,

1 � Phusion HF buffer and 0.4 U Phusion high-fidelity

DNA polymerase (NEB). PCR was conducted using a MyCy-

cler thermal cycler (Bio-Rad) with 16–22 cycles of 988C for 5 s,

608C for 20 s, 728C for 10 s, and a final extension of 5 min at

728C. The target band (approx. 100 bp) was excised from an

8% polyacrylamide gel, and the DNA was diffused from the

gel in nuclease-free water for 6–12 h at 48C. For multiplex

sequencing, sample barcodes were introduced by means of

PCR. Each 20 ml PCR contained 25 ng of gel-extracted PCR

product, 0.2 mM of each primer (p3 and index primer), 0.3 mM

dNTP, 1 � Phusion HF buffer and 0.4 U Phusion high-fidelity

DNA polymerase (NEB). Five to seven PCR cycles with the

same profile outlined above were performed. PCR products

were purified using QIAquick PCR purification kit (Qiagen)

and were subjected to single end sequencing (1 � 36 bp) on an

Illumina HiSeq2000 sequencer.
5.3. Data analysis
Raw reads were first trimmed to remove adaptor sequences

as well as the terminal 2-bp length from each site to elimi-

nate artefacts that might have arisen at the ligation position.

Reads containing ambiguous base calls (N) or an excessive

number of low-quality bases (more than five bases with qual-

ity less than 10) were removed. The HQ reads were used for

subsequent analysis.

MethylRAD data were analysed using reference-based

and de novo approaches. For the reference-based approach,

FspEI sites extracted from the A. thaliana genome (TAIR10)
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were built as reference sites and HQ reads were mapped

against these reference sites using the SOAP program [30]

with two mismatches allowed. The de novo approach was

similar to the reference approach, except that the reference

sites were constructed de novo from MethylRAD data using

the program USTACKS (parameters 2m 2, 2M 2 [31]). HQ

reads were first pooled together to assemble into exactly

matching read clusters, and then these clusters were further

merged into ‘locus’ clusters by allowing two mismatches in

order to group tags derived from different alleles at the

same site. The representative sequences from these ‘locus’

clusters comprised the de novo reference sites.

For relative quantification of MethylRAD data, DNA

methylation levels were determined using the normalized

read depth (reads per million, RPM) for each site. To facilitate

comparisons between different methylation profiling methods

(e.g. WGBS versus MethylRAD) or different MethylRAD

libraries (e.g. STD versus RTR), M-index was used to measure

methylation levels. For each restriction site, its methylation

level was estimated by dividing the log-transformed depth

of each site by the log-transformed maximum depth (repre-

senting 100% methylation; i.e. M-index ¼ log(depthsite)/

log(depthmax)), where depthmax was summarized from the

top 2% of sites (approx. 500 for the standard library) with
the highest sequencing coverage. For the de novo approach,

depthmax was similarly calculated except exclusion of sites

that possibly represent repetitive sites (more than 2 standard

deviations above the mean log(depthsite)). Pearson correlation

was used to compare methylation levels estimated by differ-

ent methylation profiling methods or different MethylRAD

libraries. Comparison of methylation calls for three methyl-

ation levels (high/medium/low) was carried out by

following the method of Harris et al. [32], which applied a

0.80–0.20 cut-off to make calls on methylation status and

then calculated concordance as the percentage of CGs or

non-CGs with a methylation level difference less than 0.1.

Genome-wide DNA methylation patterns were deter-

mined by summarizing the mean methylation level of each

200 kb window across the genome. The methylation patterns

were then compared with those obtained from the publicly

available WGBS data (Col-0 aerial tissues, downloaded

from NGSmethDB [33]; Dataset ID: aerial_col0).

5.4. MethylRAD analysis of scallop adductor muscles
Twenty-four adult Yesso scallops (2 years old) consisting of 12

with white adductor muscle and 12 with orange adductor

muscle were collected from a wild Yesso scallop population
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in the Yellow sea around Zhangzidao Island. All the exper-

iments on scallops were conducted following the institutional

and national guidelines. Genomic DNA was extracted from

adductor muscles using the standard phenol/chloroform

extraction method. Standard MethylRAD libraries were pre-

pared by following the protocol described above and were

subjected to single end sequencing (1 � 36 bp) on an Illumina

HiSeq2000 sequencer. MethylRAD data were analysed by fol-

lowing the reference-based approach (described above) based

on an unpublished Yesso scallop genome assembly. Relative

quantification of DNA methylation levels was performed

using the normalized read depth (RPM) for each site. The

sites detected in at least eight samples were used for differential

DNA methylation analysis. Differential DNA methylation

analysis between groups (orange muscle versus white

muscle) was conducted based on the quantile-adjusted con-

ditional maximum-likelihood (qCML) method implemented

in the R package edgeR [34]. Bonferroni correction was adopted

to control the false discovery rate in multiple comparisons.
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