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Abstract
Medical ultrasound imaging technology is currently the preferred method for early diagno-
sis of thyroid nodules. Radiologists’ analysis of ultrasound images is highly dependent on
their clinical experience and is susceptible to intra- and inter-observer variability. Although
end-to-end deep learning technique can address these limitations, the difficulty of acquir-
ing annotated medical image makes it very challenging. Transfer learning can alleviate the
problems, but the large gap between source and target domain will lead to negative transfer.
In this paper, a novel transfer learning method with distant domain high-level feature fusion
(DHFF) model is proposed. It reduces the distribution distance between the source domain
and the target domain while maintaining the characteristics of respective domains, which
can avoid excessive feature fusion while enabling the model to learn more valuable transfer
knowledge. The DHFF is validated by multiple public source and private target datasets in
experiments. The results show that the classification accuracy of DHFF is up to 88.92% with
thyroid ultrasound auxiliary source domains, which is up to 8% higher than existing transfer
and distant transfer algorithms.
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1 Introduction

Ultrasound imaging technology is a non-invasive, non-radiation, low cost and real time detec-
tionmethod. It has widely used in the detection of thyroid, fetal, mammary gland and gonadal
tissue [1]. However, due to its low contrast, Manual image analysis is time-consuming and
laborious. At the same time, it will be affected by subjective factors such as radiologists’
experience and mental state, which is prone to misdiagnosis. Automatic medical image anal-
ysis techniques can effectively overcome the above limitations. Generally, it can be roughly
classified into two main categories: hand-crafted feature-based methods and the data-driven
methods. The pipeline of hand-craft feature methods frequently involves feature extraction
and classification. Despite their rapid development in recent years, handcrafted features are
highly dependent on expert knowledge. Moreover, handcrafted features in some sense ignore
high-level abstract information that is not visible to the human eye in ultrasound images and
it can only exploit the low-level information, such as image texture [2, 3], geometry mor-
phology [4], and statistical distributions [5]. Such methods usually require further employ
classifiers to conduct classification. Therefore, only given the highly discriminative features,
this method can solve the recognition problem well. On the contrary, data-driven methods,
without the need of hand-crafted feature description, can greatly improve the classification
performance of medical images by using the convolution neural networks (CNNs) [6]. At
present, deep learning technology in data-driven approaches has become the mainstream
method of image analysis and understanding [7]. It depends on large-scale labeled training
data. However, compared with natural scene images, the collection and annotation of medical
images is difficult and expensive, which brings great challenges to the application of deep
learning technology in medical domain. Transfer learning [8] is one of the effective methods
to solve small data learning, which has been widely used in medical image analysis [9]. The-
oretically, it attempts to build a robust model by transferring the knowledge learned from the
source domain with large-scale training data to the target domain with a small amount of data.
However, low or even irrelevance between the source and target domainsmay lead to negative
transfer [8], which causes the knowledge generated by the source domain negatively affects
the target domain. How to transfer the knowledge beneficial to medical image analysis from
the source domain is a challenging problem. In this paper, we propose a method to transfer
valuable knowledge from distant domains which have low correlation or even seemingly
unrelated with target domain, and apply it to thyroid ultrasound image classification.

Distant domain transfer learning (DDTL) [10] is a new transfer learning method. It is
inspired by the human ability to learn new things by integrating knowledge obtained from
several seemingly independent things. Considering the variation between distant domain
and target domain, the auxiliary domain is served as an intermediary bridge to narrow the
gap between them. Most of the existing methods [10–13] apply simple auto-encoders as
feature extractors. The extracted features are more representative of the low-level details of
the image and lack the ability to represent the domain Therefore they are greatly affected by
the variation among domains. The performance and stability are unsatisfactory. The existing
distant domain transfer learning methods in the past are summarized as listed in Table 1 and
we introduce the limitation of these methods. Inspired by feature-based [12] and instance-
based [11] DDTL methods, we propose a DDTL method which extracts high-level semantic
features from different domains and performs distant domain feature fusion. An auxiliary
domain is also adopted as a bridge to reduce the gap between source domain and target
domain. It can transfer valuable knowledge to the target domain, reduce the cost and effort
of collecting training data in target domain, and suppress the negative effects resulting from
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Table 1 Summary of distant domain transfer learning method

DDTL Techniques Method Limitations

TTL [10] Instances-based Highly dependent intermediate
domain, which is selected by users
manually

SLA [11] Instances-based Need to adjust the conditions for
selecting instances according to
different tasks

Xie et al. [21] Feature-based Requires a large amount of labeled
intermediate data, which can be too
expensive to apply

DFF [12] Feature-based Knowledge transfer only for
low-level semantic features

AM-DDTL [13] Feature-based The feature extraction is
computationally expensive

the irrelevant parts of distant domains. The flow chart of our method is shown in Fig. 1.
Firstly, crop region of interest in thyroid ultrasound dataset and augment the source and
the target domain dataset. Secondly, source and target domain high-level semantic features
are extracted by high-level semantic features extractor (CNN). And then utilize an auto
encoder-decoder to perform high-level semantic feature fusion, and the decoder is applied to
maintain the diversity of each domain. Finally, a target classifier is deployed for target domain
classification. The effectiveness of this method is verified on thyroid ultrasound dataset. Our
main contributions are summarized as follows:

• The feature extraction network is redesigned tomine the information transferred from the
source domain to the target domain that is beneficial to the target task.Based on resnet50, a
lightweight feature extraction network is designed to extract high-level semantic features
that can better represent the source and target domains.

• Propose a novel distant domain high-level semantic feature fusion method. A high-level
semantic feature adaption encoder with domain distance measure is designed to discover
valuable knowledge across different domains.

• To improve the generalization performance of transfer learning, the diversity of source
and target domains is preservedwhile narrowing the difference between source and target
domains. A decoder and content loss are added to narrow the content gap between the
reconstructed features and the input features, which helps maintain the invariance of the
source domain and the target domain.

• The effectiveness of the proposed method is verified by extensive experiments on open-
source datasets, thyroid and breast ultrasound images.

The rest of the paper is organized as follows. In Sect. 2 and Sect. 3, we briefly describe the
recent work of DDTL and formulate the DDTL problem definition. In Sect. 4 we present
the details of the proposed method. In Sect. 5, we present experimental results and analysis.
Finally, in Sect. 6, we conclude our work.
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Fig. 1 The flow chart of our method

2 RelatedWork

Deep learning models, especially convolutional neural networks (CNN), have shown advan-
tages over other traditional learning methods in thyroid ultrasound image tasks [6, 14]. Many
scholars use CNN to achieve the task of thyroid nodule image classification and segmentation
[15–17]. Unfortunately, the lack of annotated training data limits the performance of most
models. The transfer learning method can effectively solve the above problems, and has been
applied to thyroid ultrasound image task [14, 18, 19].

However, traditional transfer learningmethods are still limited by the distribution variation
between the source and target domains. Recent studies [20] have shown that fine-tuning a pre-
trainedmodel on natural imagesmay not help to significantly improve the accuracy ofmedical
image classification. Unlike fine-tuning, DDTL focuses on making use of the knowledge in
distant domains to improve the performance of the task in the target domain. Moreover,
in the previous research of DDTL algorithm, Tan [10, 11] introduced two instance-based
algorithms: Transitive Transfer learning (TTL) and Selective Learning Algorithm (SLA).
TTL transfers knowledge between text data in the source domain and the image data in the
target domain by using annotated image data as a bridge. SLA select helpful instances from
several unrelated auxiliary domains to expand the source domain’s volume. However, the
limitations of these two methods are that they are unstable and can only be used for binary
classification. Xie [21] proposed a feature-based method to predict poverty using satellite
imagery. This method exploits nighttime light intensity as an intermediate domain to transfer
the knowledge learned from natural images during the day to high-resolution satellite images,
but this method requires a large amount of annotated data in auxiliary domain. Niu [12] pro-
posed another feature-based method (DFF) to the classification and diagnosis of COVID-19
images. DFF does not require labeled data in source and intermediate domains, it can solve
multi-classification problems as well. However, DFF cannot perform high-level semantic
features fusion, and its model is only used to process low-noise lung CT images. Qin [13]
added an attention mechanism into DDTL for extraction more effective information from
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satellite images, however the processing of this method feature extraction is computationally
expensive and it still unable to extract sufficient high-level semantic features.

Recent work [20] shows that low-level image features are more likely to be reused in
transfer learning. However, these low-level image features in different domains are very
similar, which cannot provide additional valuable domain knowledge to be transferred. On
the contrary, high-level semantic features can better represent the essential characteristics of
the domain. Therefore, extracting and fusing the high-level semantic features of the domain
can maximize the learning of additional valuable knowledge in the distant domain.

In this paper, we aim to implement efficient transfer of high-level semantic information
in distant domain through DDTL. The layer that can extract high-level semantic features is
retained in CNN model, and a lightweight network is designed to realize efficient high-level
semantic feature fusion between distant domain and target domain. Then an encoder-decoder
network is utilized to retain the high-level features of each domain, increase the diversity and
improve the generalization of the model. Finally, multiple loss functions are integrated to
make a trade-off among classification, transferring knowledge and preserving the diversity.

3 Preliminary

3.1 Problem Definition

The goal of DDTL is to transfer the valuable information in distant source domains to target
domain. An auxiliary domain is also used as a bridge between the source domain and the
target domain.

According to the DDTL problem, we assume that a small amount of target domain data
is not enough to train a robust model. The target domains T with fewer annotated data are
denoted as:

T = [(x11 , y11 ), ..., (x
nT1
1 , y

nT1
1 )], ..., [(x1TN , y1TN ), ..., (x

nTN
TN

, y
nTN
TN

)] (1)

where nTi and TN represent the number of samples in i th target domain and the number of

target domains, x j
i is the j th sample of the i th target domain, y j

i is corresponding label.
Then we denote the unlabeled source domain S as:

S =
{
(x11 , ..., x

nS1
1 ), ..., (x1SN , ..., x

nSN
SN

)

}
(2)

where nSi and SN represent the number of samples in i th source domain and the number of
source domains, furthermore, we denote the unlabeled auxiliary domain A as:

A =
{
(x11 , ..., x

nA1
1 ), ..., (x1AN

, ..., x
nAN
AN

)

}
(3)

where nAi and AN represent the number of samples in i th auxiliary domain and the number
of auxiliary domains. Let the marginal distribution and conditional distribution of source
domain data be denoted as pS(x),pS(y|x) the distribution of target domain data be denoted
as pT (x),pT (y|x), and the distribution of auxiliary domain be denoted as pA(x), pA(y|x) ,
we have the following assumptions:

pS(x) �= pT (x), pT (x) �= pA(x) (4)

pT1(y|x) �= pT2(y|x) �= ... �= pTN (y|x) (5)
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3.2 MaximumMean Discrepancy

Maximum Mean Discrepancy (MMD) [22] is an important statistical indicator to measure
the discrepancy between the source and target domain distributions ( pS(x) and pT (x) ).
Given the distributions s and t over two domains, MMD is presented as:

MMD(s, t) = sup
‖ϕ‖H≤1

‖EXs∼S[ϕ(Xs)] − EXt∼s[ϕ(Xt )]‖H (6)

where ϕ represents the kernel function that maps the original data to the Reproduced Kernel
Hilbert Space (RKHS) [22]. The empirical estimate of MMD is defined as:

MMD(S, T ) =
∣∣∣∣
∣∣∣∣
1

M

M∑
i

ϕ(si ) + 1

N

N∑
j

ϕ(t j )

∣∣∣∣
∣∣∣∣
H

(7)

where M and N are the number of instances in the source and target domains.

4 Distant High-Level Feature FusionModel (DHFF)

In this section, we present the proposedDHFF. Firstly, we introduce the redesigned high-level
semantic feature extractor. After that, we present the implementation details of the encoder-
decoder network and define the content loss for maintaining different domains invariance.
And then, we denote high-level semantic feature adaption methods. Finally, the classification
loss and the overall loss of DHFF are defined.

Our proposed model DHFF is shown in Fig. 2. It mainly consists of four parts: High-level
Semantic Feature Extraction, High-level Semantic Feature Encoder-Decoder, High-level
Semantic Feature Adaption and Target domain Classification. The last three parts correspond
to three types of losses: content loss, domain loss, and classification loss.

Fig. 2 DHFF model
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4.1 High-level Semantic Feature Extraction

Inspired by a recent study [20], we use hybrid approaches to transfer learning where a subset
of pretrained weights are used, and the high-level parts of the network are redesigned and
made more lightweight. In this paper, we design a lightweight feature extraction network
based on ResNet50 [23]. In the structure of ResNet50, the closer to the output, the more the
features can reflect the high-level semantic information of the input, which is more conducive
to the classification task, and the greater the correlation with the domain. In DDTL, we want
to transfer features from the source domain to the target domain to improve the performance
of tasks in the target domain. Therefore, the correlation between the transferred features
and the source domain should be reduced. In the structure of ResNet50, the features closer
to the input can reflect the low-level features of the image, such as edge, texture and other
information. These features cannot represent the domain well. As a trade-off, we retain the
first three layers of ResNet50, extract the information that can both reflect the source domain
and target domain. The redesigned feature extractor can also prevent the large fluctuation of
weight when trained on different domain data and accelerate the convergence.

4.2 Encoder-Decoder Network and Content Loss

In order to maintain the diversity of features, avoid excessively narrowing the inter-domain
distribution distance. In [24], it exploits autoencoder pair tominimize the reconstruction error
on all the training instances. Autoencoder is an unsupervised feedforward neural network
capable of efficient feature extraction and dimensionality reduction. However, using the it
directly may not be able to effectively learn valuable high-level semantic information, and
its performance is unstable. Therefore, an encoder-decoder network is applied to our study
to extract and preserve inter-domain high-level semantic features. Generally, a convolutional
autoencoder pair includes an input layer, an output layer, an up-sampling layer and multiple
convolutional layers. The output from feature extractor in 4.1 is encoded with encoder and
decoded by the decoder to reconstruct the high-level semantic features. The specific structure
of the encoder-decoder is shown in Fig. 3. The encoder includes two pooling layers and two
convolutional layers, conv layer4 and conv layer5 respectively. Specifically, a 3x3 convolution
kernel with pad of 1 and stride of 1 is applied, and a 2x2 max pooling layer is used for down-
sampling. The decoder consists of two convolutional layers and two up-sampling layers. We
adopt 2x2 for up-sampling to maintain the same quality of reconstructed feature maps. The
standard process of encode-decode can be demonstrated as:

Encoding : fabstract = Encoder( f ), Decoding : f̂ = Decoder( fabstract ) (8)

Fig. 3 The specific structure of the encoder-decoder
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where f is the output of redesigned ResNet50 model, fabstract is a higher-level abstract
feature of f , f̂ is the high-level semantic feature after reconstruction. Our motivation is
that, if the knowledge transferred from the source domain is helpful to the target domain,
the encoder and decoder can be learned to maintain the integrity of the respective domain
features while minimizing the difference between the high-level semantic features of the
source and target domains. The auxiliary domain is also used to prevent excessive fusion of
high-level semantic features between different domains. Inspired by style transfer, we adopt
content loss to measure the difference between reconstruction features and input features. It
is defined as:

Lcontent = 1

nS

nS∑
i=1

( f̂ iS − f iS) + 1

nT

nT∑
j=1

( f̂ j
T − f j

T ) (9)

when adding a auxiliary domain, the content loss objective function to be minimized is
formulated as:

Lcontent = 1

nS

nS∑
i=1

( f̂ iS − f iS) + 1

nT

nT∑
j=1

( f̂ j
T − f j

T ) + 1

nA

nA∑
k=1

( f̂ kA − f kA) (10)

where f iS , f
j
T and f kA represent the high-level semantic features of a sample in source domain,

target domains and auxiliary domains respectively, f̂ iS , f̂
j
T and f̂ kA are the reconstructed fea-

tures of the sample in the corresponding domains, nS ,nT ,nAare the number of samples in
source domain, target domain and auxiliary domain.

4.3 High-Level Semantic Feature Adaption

Minimizing the content loss can preserve the integrity of the respective domain features and
ensure the diversity. However, in order to use the knowledge transferred from distant domain
to help the target domain task, it is necessary to narrow the distance from the distant domain
to the target domain. We introduce the Maximum Mean Discrepancy (MMD) mentioned in
3.2 as domain loss to measure the distribution distance between distant domain and target
domain. It is defined as:

Ldomain = MMD

(
1

nS

nS∑
i=1

f iSabstract ,
1

nT

nT∑
j=1

f j
Tabstract

)
(11)

when adding auxiliary domains, it is formulated as:

Ldomain =MMD

(
1

nS

nS∑
i=1

f iSabstract ,
1

nA

nA∑
k=1

f kAabstract

)

+ MMD

(
1

nT

nT∑
j=1

f j
Tabstract

,
1

nA

nA∑
k=1

f kAabstract

) (12)

where f iSabstract , f
j
Tabstract

and f kAabstract
represent the high-level semantic features extracted by

encoder in 4.2.
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4.4 Target Domain Classification

Two fully-connected layers are added after the encoder in Fig. 2 to build a target classifier.
They can find the best combination of high-level semantic abstraction features for the target
task. The cross-entropy loss Lclassi f ication is adopted as classification loss. It is defined as
follows:

Lclassi f ication = 1

nT

nT∑
i=1

−(yi log(p
i
T ) + (1 − yi )log(1 − piT )) (13)

where piT is the prediction result of sample i th in target domain, yi is the label corresponding
to the sample i th.

Finally, the overall loss of DHFF can be expressed as:

Minimize
θF ,θE ,θD ,θC

L = Lclassi f ication + Lcontent + Ldomain (14)

where θF ,θE ,θD ,θC are the parameters of the high-level semantic feature extractor, encoder,
decoder and the classifier. Finally, all parameters in the network are optimized byminimizing
the objective function L.

5 Experimentation

5.1 Datasets

As shown in Table 2, We evaluate the DHFF model with five datasets, three of which are
open source datasets: Catech-256 [25], Office31 [26] and Stanford Open Source Thyroid
Nodule Ultrasound Image Dataset (Thyroid Ultrasound Cine-clip) [27], private datasets:
thyroid and breast ultrasound datasets acquired from different ultrasound machines at the
Affiliated Hospital of QingdaoUniversity. Catech-256 is a natural image dataset that includes
labeled data of 256 different class. Then, Office-31 includes 31 different common office
items and is composed of a collection of three different domains: “Webcam”, “Dslr” and
“Amazon”. Furthermore, the Stanford open-source thyroid nodule dataset consists of 17,412
thyroid ultrasound images provided by 167 patients.Moreover, the thyroid ultrasound dataset
provided by Affiliated Hospital of Qingdao University consists of 3,003 images collected by
different ultrasound machines, 2268 malignant samples and 735 benign samples. And the
breast ultrasound dataset consists of 725 images.

Some ultrasound thyroid images are shown in Fig. 4. Fig. 4a shows the benign nodules,
and most of them have irregular shapes, smooth regions, and boundaries. Fig. 4b shows the
malignant nodules, and most of them have irregular shapes, coarse regions, and boundaries.
As can be seen from Fig. 4, there is some overlap in the image characteristics between benign
and malignant thyroid nodule. Therefore, it is difficult to differentiate thyroid nodules based
on low-level features such as gray scale and shape.

5.2 Baseline Model and Experiment Setups

As shown in Fig. 5, themodifiedResNet50model (ResNet50-baseline) is used as a baseline to
verify the rationality and effectiveness of our proposedmethod (DHFF). It exploits ResNet50
as a feature extractor and implements domain-adaptive transfer learning by minimizing the
marginal distribution of the two domains.
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Table 2 dataset

Data Set Classes num Samples num Label Mask

Catech-256 256 30670 Yes No

Office31 31 4110 Yes No

Thyroid Ultrasound Cine-clip 2 17412 Yes Yes

Thyroid Ultrasound 2 3003 Yes Yes

Breast Ultrasound 2 725 Yes Yes

Fig. 4 Illustration of thyroid nodules: (a) Benign nodules; (b) Malignant nodules

In single distant source domain transfer learning category, we choose six transfer learning
algorithms including Deep Transfer Learning (DTL) [28], Co-Tuning [29], Selective Learn-
ing Algorithm (SLA) [11], feature adaption baseline model (ResNet50-baseline), Distant
Feature Fusion (DFF) [12] and AM-DDTL [13]. The ResNet50-baseline and DHFF are ini-
tialized with parameters pretrained on the ImageNet dataset [30], while the other methods are
trained from scratch respectively. For DTL, we first train a deep model in the source domain,
and then train another deep model for the target domain by reusing the first several layers of
the source model. And for Co-Tuning, we use ResNet50 as a source domain pretrain model.
For SLA, DFF, DHFF, ResNet50-baseline and AM-DDTL, we use all the source domain, tar-
get domain data to learn a model. Meanwhile, in multiple source domains transfer learning
category, we choose four transfer learning algorithms including SLA, ResNet50-baseline,
DFF and AM-DDTL. We use all the source domain, target domain and auxiliary source
domains data to learn a model.

In all experiments, as shown in Fig. 6, according to the ground truth boundary of the
thyroid nodule delineatedby the radiologist, theminimumcircumscribed rectangle containing
the nodule area is cropped from the image as the input. Meanwhile, in experiments 1-3,
we use the full thyroid ultrasound dataset for experiments. In experiment 4 we conduct
experiments with a small thyroid ultrasound dataset, which has 716 images. Specifically, it
consists of 360 malignant samples and 356 benign samples. Besides, in our 1-3 experiments,
the thyroid dataset is split by 6:2:2 for training, validating and testing respectively.Meanwhile,
in our 4 experiments, the thyroid dataset is split by 7:2:1 for training, validating and testing
respectively. Moreover, the random cropping and horizontal flipping are used for natural
images, and horizontal flipping is used for medical ultrasound images data augmentation.
Furthermore, each experiment was run eight times and the accuracy was averaged to remove
performance fluctuations due to parameter initialization.
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Fig. 5 baseline model based on Resnet50

Fig. 6 thyroid ultrasound datasets preprocessing

In Experiment 1, six datasets, Catech-256, Amazon, Dslr, Webcam, Thyroid Ultrasound
Cine-clip, and breast ultrasound datasets, are served as unlabeled source domains to explore
the correlation of natural scene images and ultrasound images with targets domains. The
experimental results are shown in Table 3. Then in Experiment 2, four datasets, Catech-256,
Amazon, Dslr, Webcam are used as unlabeled source domains and breast ultrasound images
is served as auxiliary domain, which can be regarded as related to target domain (thyroid
ultrasound images). This experiment is utilized to verifywhether the auxiliary domain close to
the target domain is helpful for distant domain transfer. The experimental results are shown
in Table 4. Finally, in Experiment 3, five datasets, Catech-256, Amazon, Dslr, Webcam,
and breast ultrasound datasets are used as unlabeled source domain and Stanford thyroid
ultrasound datasets is served as auxiliary domain. The experimental results are shown in
Table 5.

5.3 Experimental Result Analysis

For single-source domain experiment, as shown in Table 3, we can see that the transfer
learningmethods such as DTL, DFF and ResNet50-baseline achieve worse performance than
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Table 3 Accuracies (%) of models with single source domain

Source domain Catech256 Amazon Webcam Dslr Breast Tucc

DTL 82.99 77.37 73.63 74.72 80.34 81.43

Co-Tuning 83.93 80.88 79.09 78.93 82.18 86.27

DFF 75.32 76.96 76.99 76.46 73.13 76.02

SLA 79.40 80.49 79.87 79.25 80.03 79.71

AM-DDTL 80.49 80.40 80.19 79.40 81.12 83.46

Resnet50 74.70 74.87 76.04 77.48 80.05 85.58

DHFF 78.53 76.14 79.54 82.50 84.14 87.20

Table 4 Accuracies (%) of models with breast ultrasound auxiliary source domain

Source domain Catech256 Amazon Webcam Dslr

Auxiliary Source Domain Breast ultrasound

DFF 76.70 77.20 76.17 77.17

Resnet50 77.98 76.52 77.00 82.93

SLA 81.74 82.21 82.21 80.03

AM-DDTL 82.83 82.52 81.27 81.43

DHFF 82.68 83.44 84.39 86.66

Table 5 Accuracies (%) of models with thyroid ultrasound auxiliary source domain

Source domain Catech256 Amazon Webcam Dslr Breast

Auxiliary Source Domain Thyroid Ultrasound Cine-clip

DFF 76.36 75.78 76.59 78.75 74.76

Resnet50 83.06 79.19 75.23 85.50 87.33

SLA 82.83 82.05 82.68 81.12 80.49

AM-DDTL 83.61 82.52 81.59 82.05 83.93

DHFF 84.39 82.74 84.73 86.73 88.92

SLA, AM-DDTL and DHFF by using the Office 31 (distant domains) as the source domain,
because the source domain and the target domain have huge distribution gap, which leads to
negative transfer. SLAperformswell because it selects knowledge valuable for distant transfer
learning based on instance and AM-DDTL benefits from the CBAM (Convolutional Block
Attention Module) attention mechanism which making use of the channel and the spatial
attention for better feature extraction. In addition, our proposed DHFF model performs well
on different datasets, DHFF can not only extract appropriate high-level semantic features, but
also use content loss to avoid negative transfer caused by excessive feature fusion between two
different domains. It achieves the highest accuracy (87.20%) using the Thyroid Ultrasound
Cine-clip dataset (TUCC) as the source domain, which has the highest correlation with
the target domain. Moreover, compared with DTL, Co-Tuning, applying the collaboratively
supervise the fine-tuning process, can ameliorate the negative transfer effect of traditional
fine-tuning on distant domains, however themethod is still not enough to obtainmore valuable
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transfer knowledge on the source domain (Breast and Tucc) which has high correlation and
the same categories with the target domain. And when the target domain dataset is small, the
Co-Tuning is easy to overfit to the limited labeled train data. Furthermore, compared with the
DHFF,DTL andResNet50-baseline, the feature extraction structure of DFF, SLA is so simple
and cannot extract enough high-level semantic information in ultrasound imaging dataset,
so its results are not satisfactory. Although AM-DDTL alleviates this problem, its feature
extraction relying on attention mechanism is still insufficient. It is proved that high-level
semantic information plays an important role in distant domain transfer learning.

When the correlation between the source domain and the target domain is low, the trans-
ferred knowledge is not helpful for the task of the target domain, andmay even cause negative
transfer. In experiment 2, we adopt breast ultrasound images as the auxiliary domain and nat-
ural images as the source domain. The results in Table 4 shows that the auxiliary domain
which closer to the target domain may help to narrow the gap between the source and target
domain and is beneficial to improve the performance of the target task. In this experiment,
compared with ResNet50-baseline, the SLA, DFF and AM-DDTL which belongs to DDTL
methods can alleviate distant domain negative transfer. But they cannot sufficiently extract
high-level semantic features and the performance is lower than that of the method proposed
in this paper. In contrast, DHFF achieves the highest accuracy (86.66%) when breast ultra-
sound images are served as auxiliary domain. It further proves DHFF can effectively transfer
valuable knowledge compared with other models.

In addition, we also experiment with thyroid ultrasound images as the auxiliary domain
in experiment 3. The results shown in Table 5 prove that using the thyroid ultrasound images
as the auxiliary domain which share the most useful knowledge with the target domain can
maximize the model classification accuracy. This shows that the auxiliary domain which
is more relevant to the target domain can help distant transfer learning. Surprisingly, when
the breast dataset and thyroid datasets are adopted as source domain and auxiliary domain
respectively, the highest classification accuracy (88.92%) is achieved. This shows that when
the thyroid dataset is used as a bridge, the breast dataset with relatively strong correlation
can provide the most valuable knowledge to the target domain. On the contrary, SLA is
not satisfactory in the high correlation source domains, which proves that the instances-
based method may ignore the potentially valuable transfer knowledge. Moreover, although
highly correlation auxiliary domain facilitates the valuable information transfer, DFF and
AM-DDTL which extract low level features to fusion cannot provide effective information
for the classifier.

Finally, we conduct experiments with a small thyroid ultrasound dataset (716 images). The
results are shown in Table 6. OurmethodDDHF can still achieve best results (86.27%), which
benefits from the transfer of valuable knowledge from the source and auxiliary domains to
the target domain. However, negative transfer occurs on all five source domains based on
the DFF, SLA and AM-DDTL model. The reason is that due to the simple feature extractor
and few samples, DFF and SLA cannot effectively learn high-level semantic features from
different domains, making the features of different domains excessive overlap, ultimately
lead to the model underfitting the target domain data. In addition, the attention mechanism
model AM-DDTL which relies on a large amount of data cannot achieve good results.

Further, we analyzed the samples which misclassified by the model. Fig. 7 shows that
benign samples are misclassified as malignant, and Fig. 8 shows that malignant samples are
misclassified as benign.

In Fig. 7, each sample shows some malignant features, such as no cyst, hypoechoic, rough
edge. They are classified as Ti-rads4 by radiologist. In Fig. 8(a), the internal echo attenuation
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Table 6 Accuracies (%) of models with few samples

Source domain Catech256 Amazon Webcam Dslr Breast

Auxiliary Source Domain Thyroid Ultrasound Cine-clip

DFF 70.24 69.26 71.30 69.22 70.33

Resnet50 80.75 79.46 83.63 85.05 85.11

SLA 76.47 75.49 75.49 78.43 77.45

AM-DDTL 77.56 77.07 78.53 79.02 81.46

DHFF 85.23 80.97 85.09 85.27 86.27

Fig. 7 benign samples misclassified as malignant

Fig. 8 malignant samples misclassified as benign

is too great, which is close to cyst. In Fig. 8(b), there is some wall structure, which is benign
feature.

From the analysis, it can be seen that overlap in the image characteristics between benign
andmalignant thyroid nodule is one of the causes of classification errors. The limited number
of training samples also affects the generalization performance of the model. In addition, the
static image only reflects one section of the nodule, and cannot reflect the whole picture of the
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nodule. Using the dynamic image or multiple static images of a nodule can help to improve
the accuracy.

6 Conclusions

This paper proposes a novel method to solve the problem of distant domain transfer learning.
The purpose is to transfer valuable information in the distant domain to improve the task
performance in target domain. A lightweight feature extractor is proposed to extract high-
level semantic features in both source domain and target domain. TheMMD loss is to narrow
the distribution distance of source domain and target domain. Then, an encoder-decoder
network and content loss are proposed to maintain the diversity of the source domain and the
target domain. Experiments show that this method can effectively transfer knowledge from
distant domain and improve the accuracy of thyroid ultrasound image classification.

When the samples in the target domain are difficult to collect and annotate, ourmethod can
effectively transfer the knowledge in the distant domain, which is conducive to improving
the task in the target domain. This makes the deep learning model more applicable to small
sample scenarios. Generally, we think that training data and test data are independent and
identically distributed (IID), but this is not the case in practical applications. For example,
the thyroid ultrasound images collected by different machines usually are not IID, which
brings difficulties to the learning task. The proposed method can partly solve the problem by
transfer the knowledge of the distant domain, to improve the generalization of the model. For
example, in the experiment, using breast ultrasound image as the source domain can improve
the classification performance of thyroid ultrasound image.

Due to the high cost of collecting and labeling data in medical imaging, algorithms in
this field usually use small data for training. To improve performance, transfer the model
trained in big data to the target task is a simple and effective method. But if the source and
target domain are not similar enough, it will be difficult to use transfer learning directly.
From the perspective of target task, we hope to shorten the distance between source domain
and target domain; from the perspective of generalization, we hope to retain the differences
between the source domain and the target domain, and transfer high-level semantic features
which is helpful to the target task. This is a trade-off. The method proposed in this paper
makes a useful exploration to solve this problem. Although some good results have been
achieved, there are still several limitations: 1) Lack of means to guide the selection of the
source domain to maximize the performance of the target domain. 2) The auxiliary domain
needs to use unlabeled ultrasound images with high similarity to the target domain, which is
relatively difficult to collect.

In future research, we will further analyze which knowledge transferred by the model is
helpful to improve performance of target domain tasks and which knowledge will have an
adverse impact on target tasks. So as to further improve the performance of the model, reveal
the internal working principle of the model and improve the interpretability of the model.
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