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Clear cell renal cell carcinomas (ccRCCs) are highly immune infiltrates, and many of them
respond to immunotherapy with checkpoint inhibitors including anti-PD-L1 or anti-PD1
agents. However, the effect of immune genes on clinical outcomes in ccRCCs has not
been fully studied. Here, we show in this study that an immune-associated gene panel has
a prognostic value for clear cell renal cell carcinomas. We performed single-sample gene
set enrichment analysis (ssGSEA) and cell type identification by estimating subsets of RNA
transcripts (CIBERSORT) algorithms on patient-matched normal renal and RCC tissues to
characterize two immunophenotypes and immunological characteristic subpopulations.
Furthermore, LASSO Cox regression was applied to develop a novel prognosis-
associated model for ccRCC patients based on an immune-gene panel. The results
were verified by the Gene Expression Omnibus (GEO) dataset and coordinated with the
clinicopathological characteristics of ccRCCs, along with genomic signatures. Finally,
based on the above perspectives, we generated a nomogram with a high prognostic
efficiency for ccRCC patients. Overall, this study offers a unique perspective that can
contribute to improving the accuracy of prognosis prediction and treatment with
immunotherapy.
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INTRODUCTION

Renal cell carcinoma (RCC) is a common tumor of the urinary system and accounts for
approximately 3% of all adult cancers (Zarrabi et al., 2017), with an annual increase of more
than 0.40 million newly diagnosed and 0.18 million deaths (Capitanio et al., 2019). RCC exists twice
as often in men as in women, and the highest prevalence of RCC is often observed in patients in their
sixties (Mulders et al., 1997). In addition, the incidence of RCC is higher in developed countries than
in developing countries. The highest levels were observed in Europe, North America, and Australia,
with the lowest levels being found in Africa, India, and China (Hsieh et al., 2017). Most patients are
frequently diagnosed with RCC after presenting with typical symptoms, such as hematuria, flank
pain, and palpable abdominal mass, thereby missing the optimal treatment time (Chevrier et al.,
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2017). Based on histological and cytogenetic characteristics, 80%
of RCC is subclassified as clear cell renal cell carcinoma (ccRCC),
which originates from nephron epithelial cells and has the highest
mortality rate of all urinary tumors (McDougal et al., 2015). The
prognosis of RCC remains poor. Especially for patients with
advanced and metastatic disease, the 5-year survival rate is only
23% after diagnosis (Ljungberg et al., 2015). Presently, surgery is
the main treatment for ccRCC, but this is correlated with a high
incidence of recurrence and metastasis (Sorokin et al., 2017).
Furthermore, ccRCCs are radioresistant (Bielecka et al., 2014),
and more than 80% are chemoresistant (Clerici and Boletta,
2020), with agents producing a positive response only in a
minority of patients. Since ccRCCs are presumed to be
immunogenic (Xu et al., 2020), immunotherapy has been
widely employed and shows promising clinical effects in the
treatment of renal cancer. However, the rapid development of
resistance during applied targeted therapy has become an
increasingly challenging issue (Miao et al., 2018; Braun et al.,
2020).

Currently, the clinical prognosis of ccRCC is predicted by
multiple factors, including clinical, anatomical, molecular, and
histological features, such as DNA methylation genes,
inflammasome-related signatures, Notch signaling pathways,
and RNA-binding proteins (Zhou et al., 2020). However, none
of these approaches have yet improved the current prognostic
systems. Nishida (Nishida et al., 2020) reported that immune
genes were associated with clinical outcomes. Basically, the lack of
reliable and stable prognostic markers has been a great obstacle,
but immune-associated genes may provide a novel insight into
this field (Qi et al., 2020).

In our study, we focused our efforts on illustrating the
interaction between immunity and tumors and the predictive
value of immune genes for ccRCCs. Consequently, by using
machine learning–based approaches, we designed an
immune-associated gene panel to predict the prognosis
status of ccRCC patients and confirmed its stability and
reliability in an independent dataset (Lin et al., 2020).
Thus, it is hoped that this study will lead to a better
understanding of a more effective diagnostic and
therapeutic indicator for ccRCC patients.

MATERIALS AND METHODS

Data Collection and Collation
We acquired transcriptomic data from public databases with
clinicopathological features. TCGA-KIRC (kidney renal clear
cell carcinoma) and GSE29609 (http://www.ncbi.nlm.nih.gov/
geo/query/acc.cgi?acc�GSE29609) datasets were downloaded
in our study (Giraldo et al., 2017). Immune-related genes were
obtained from the ImmPort database (https://www.immport),
and transcription factor–related genes were downloaded from
the CISTROME project (http://www.cistrome.org/) (Meng
et al., 2021). In addition, the tumor mutation burden
(TMB) was calculated according to the number of gene
mutations in each tumor sample (Li et al., 2020).

Evaluation of the Tumor
Microenvironment (TME)
To calculate the immune score, stromal score, and estimate
score, the ESTIMATE (Estimation of STromal and Immune
cells in MAlignant Tumor tissues using Expression data)
algorithm was applied to the TCGA-KIRC dataset with the
“estimate” R package (version 1.0.13) (Yoshihara et al., 2013).
The CIBERSORT (cell type identification by estimating
relative subsets of RNA transcripts) algorithm was
performed to evaluate the relative proportions of 22 tumor-
infiltrating cells for each ccRCC patients (Newman et al.,
2015).

Enrichment and Hierarchical Clustering
Analysis
Depending on 29 immune gene sets (Supplementary Table
S3), the ssGSEA algorithm was conducted to systematically
assess the immunological features with the “GSVA” (version
1.38.2), “GSEABase” (version 1.52.1), and “limma” (version
3.46.0) R packages. Then, the ssGSEA score xi for each ccRCC
patient was transformed into xi’ by the equation xi’� (xi −
xmin)/(xmax − xmin). In addition, hierarchical clustering
analysis was performed to identify the subtypes of ccRCC
patients with Euclidean distance and Ward’s linkage
method (Yi et al., 2020). The t-SNE (T-distribution
stochastic neighbor embedding) algorithm was employed to
demonstrate the accuracy and discrimination of the subtypes
of ccRCC patients with the “Rtsne” (version 0.15) package
(Kobak and Berens, 2019).

The Differential and Prognostic Immune
Gene Analysis
Differentially expressed genes (DEGs) were isolated between the
high- and low-immunity groups via the “limma” R package.
Statistical differences were defined as |log2 fold change| > 0.58
and FDR <0.05. Then, the differentially expressed immunity
genes (DEIGs) were the intersection of genes between DEGs
and the immune gene dataset (Ritchie et al., 2015). Moreover,
based on DEIGs, we performed univariate survival analysis with
the “survival” (version 3.2-13) R package and considered
prognostic immunity genes (PIGs) when p < 0.05.

Functional and Network Analysis
To identify the essential signaling pathways involving DEGs, gene
set enrichment analysis (GSEA, version 4.1.0) was applied to the
TCGA-KIRC dataset, which demonstrated the Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathways that
were increased in the high- and low-immunity groups,
respectively. Statistical significance was defined as FDR <0.01.
In addition, we obtained differentially expressed transcription
factors (DETFs) by extracting the intersection of genes between
DEGs and the TF dataset (Wu and Zhang, 2018).Then,
correlation analysis was performed to establish the regulatory
network of DETFs and PIGs by using the Pearson’s correlation
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coefficient. Moreover, based on the STRING (string-db.org/)
database, we conducted protein–protein interaction (PPI)
analysis (Wang et al., 2020).

Development and Validation of a Prognostic
Model
Based on PIGs, we performed LASSO-Cox regression analysis
to develop an immune gene–associated prognostic model
(IGPM) for ccRCC patients (McEligot et al., 2020). The risk
score of each patient was calculated according to the following
formula: risk score � sum (the expression level of each gene ×
corresponding coefficient). According to the median risk
score, we divided ccRCC patients into high- and low-risk
groups. Then, Kaplan–Meier analysis and log rank tests
were used to demonstrate the survival difference between
the high- and low-risk groups. To test the predictive
capacity of the IGPM-based risk model, the area under the
time-dependent receiver operating curve (ROC) was
calculated to predict the 1-year, 3-year, and 5-year survival
rates of ccRCC patients. We conducted Kaplan–Meier log-
rank tests and ROC analysis to demonstrate the survival
difference and accuracy of the risk signature via the
“timeROC” (version 0.4), “rms” (version 6.2-0), “survival”
(version 3.2-13), and “survminer” (version 0.4.9) R
packages. We used Pearson’s correlation or the Spearman
correlation to confirm the association between the IGPM-
based risk model and clinicopathological features, TMB,
immune checkpoint molecules, and immune cell infiltration
via the “corrplot” (version 0.84) R package (Pesenti et al.,
2019). We considered there to be a significant correlation when
p < 0.05. Finally, based on the risk signature and
clinicopathological features, we performed univariate and
multivariate Cox regression analyses to demonstrate the
independence of the risk signature. We then utilized the
above characteristics to construct a nomogram and
conducted ROC and calibration curve analysis (Iasonos
et al., 2008) to confirm the possibility of its clinical
application for the nomogram.

RNA Extraction and Real-Time Quantitative
Polymerase Chain Reaction
Total RNA were extracted from the ccRCC cell-Line 769-P and
normal cell line HK-2 using TRIzol reagent (Novabio, China).
Cell lines were obtained from the Chinese Academy of Sciences
Committee on Type Culture Collection Cell Bank (Shanghai,
China). RNA (1 mg) was reverse-transcribed to complementary
DNA (cDNA) by using a PrimeScript RT kit (Novabio, China).
According to the manufacturer’s manual, real-time quantitative
polymerase chain reaction (RT-qPCR) was performed with gene-
specific primers to determine the relative expression of genes of
interest using SYBR green and was analyzed by using an ABI
7500 Real-Time PCR system (Applied Biosystems). All
experiments were performed to obtain three independent
measures.

RESULTS

Two Immune Subtypes of ccRCC Were
Identified by Immunogenomic Profiling
Together with 29 immune gene sets, 539 tumor patient samples
from the TCGA-KIRC cohort were comprehensively assessed by
the ssGSEA algorithm to evaluate the immunological features (Xu
et al., 2019a). Two immune subtypes, Immunity_High
(Immunity_H) and Immunity_Low (Immunity_L), were
divided in consonance with the ssGSEA scores and
hierarchical clustering analysis (Figures 1A,B). The results of
the tSNE algorithm confirmed the above classification
(Figure 1C).

The ESTIMATE algorithm was applied to analyze the tumor
microenvironment characteristics of these two subtypes. We
found that the Immunity_H group exhibited more scores for
the stromal score, immune score, and estimate score (Wilcox test,
p < 0.001) than the Immunity_L group (Figure 1D).

Likewise, the infiltration levels of plasma cells, M1
macrophages, dendritic cells, and eosinophils in the
Immunity_H group also varied from those in the Immunity_L
group according to the outcome of the CIBERSORT algorithm
(Figure 1E). Furthermore, we analyzed the expression of HLA-
related genes in each group, and the Immunity_H group
expressed more HLA-related genes than the other group
(Figure 1F). Thus, the two distinct immune groups of ccRCC
patients displayed various features.

Differentially Expressed Immune Genes and
Their Prognostic Value in ccRCC Patients
Based on the abovementioned immunophenotypes, we further
explored the molecular features of cross-talk between tumors and
immunity and their prognostic value in ccRCC patients.

We observed 4445 DEGs in the volcano map (Figure 2A).
Among these DEGs, 2873 DEGs were upregulated, and 1572
DEGs were downregulated. In addition, the expression levels of
these DEGs in ccRCC patients are shown in Figure 2B.
Furthermore, based on the immune gene set, 581 genes were
identified as DEIGs (Figure 2C). Finally, 18 PIGs were screened
using a univariate Cox proportional-hazards model (Figure 2D).
Of these genes in the Immunity_H subtype, 12 genes (CALCRL,
NPR3, TEK, CX3CL1, AR, PDGFD, SLC40A1, PIK3R3, NR3C2,
EDNRB, F2RL1, and KDR) were downregulated and six genes
(PLTP, BMP1, RNASE2, SLC11A1, SAA1, and TNFSF14) were
upregulated.

Cross-Talk Between Tumors and Immunity
in ccRCC Patients
To obtain a comprehensive evaluation of the role that immune genes
play in the biological processes of ccRCC patients, we conducted
GSEA to characterize the pathways in which these DEGs were
engaged (Figure 3A). According to KEGG pathway analysis,
melanoma, basal cell carcinoma, colorectal cancer, and cancer-
related pathways were especially enriched in the Immunity_H
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FIGURE 1 | Two immune subtypes of ccRCC were established via hierarchical clustering. (A) ssGSEA results were used to generated two distinct groups via
hierarchical clustering. (B) Tumor microenvironment characteristics were generated in the TCGA-KIRC cohort. (C) Immunophenotype validation via tSNE. (D) Three
different immune scores of each group. (E) Immune cell infiltration degree of two immunogenic subtypes. (F) HLA-associated gene level of each of the two groups. *p <
0.05, **p < 0.01, ***p < 0.001.
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group, while no significant pathways were enriched in the
Immunity_L group. Briefly, increased activation of the immune
part in the Immunity_H group (Supplementary Table S1) was
positively associated with several cancer-related pathways in
Immunity_H ccRCC patient samples, and it was validated by
GSEA. To further clarify the underlying mechanism between
immune-associated genes and the development or prognosis of
ccRCC patients, we further investigated the upstream PIGs. Then,
by comparing differential expression results with the CISTROME
gene set, we characterized transcription factors (TFs) that are essential
for the development and metastasis of ccRCC.

In the above experiments, we generated 29 upregulated
transcription factors in the Immunity_H group. Subsequently, a
functional network of the TF-PIGs (Figure 3B) was constructed
by correlation analysis. All these TFs of ccRCC were positively

associated with their interrelated PIGs (Supplementary Table S2).
Finally, a PPI (protein–protein interaction) analysis was conducted to
validate the TF-PIG interplay, and the presence of a strong connection
between each of them was proved (Figure 3C).

Establishment and Validation of This
Prognosis-Associated Gene Panel
First, LASSO-Cox analysis was conducted to reduce the
dimensions of these PIGs. Then, to construct an immune
gene–associated gene panel for prognosis prediction, we
employed IGPM to design an eight-parameter formula for
overall survival prediction and prognosis prediction in the
TCGA-KIRC database. This risk value formula was (−0.265) *
expression of TEK + (−0.019) * expression of CX3CL1 + 0.325 *

FIGURE 2 | Expression of DEGs and association with the clinical outcome. (A) Differentially expressed genes within two immune groups. (B) Isolation of
differentially expressed immune genes. (C) PIGs and their hazard ratios were displayed in the forest plot via univariable Cox proportional hazards analysis. (D) Fold
change and the FDR value were displayed in the volcano plot.
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expression of BMP1 + 0.152 * expression of RNASE2 + (−0.248) *
expression of AR + 0.146 * expression of SLC11A1+ (−0.077) *
expression of SLC40A1+ (−0.055) * expression of F2RL1 (Figures
4A,B). Additionally, we determined the risk value of ccRCC
patients, and then, in accordance with the average risk value,
we separated this cohort into two distinct groups: high-risk and
low-risk groups (Figure 4C). The survival analysis revealed that
the low-risk group had a longer survival time and exhibited a
lower mortality rate than the high-risk group (Figure 4D).
Meanwhile, we performed a correlation analysis, and the
previous outcome confirmed that a higher risk value was
associated with a decreased survival time (Figure 4E),
suggesting a negative relationship between the risk value and
survival time in the ccRCC cohort. Kaplan–Meier survival
analysis also showed that the lower-risk group in the ccRCC
cohort was related to better overall survival (Figure 4F).
Moreover, we drew an ROC curve based on time to verify the
stability and accuracy of this panel, and the 1-year, 2-year, and 3-
year AUC values of the ROC curve were 0.790, 0.752, and 0.763,
respectively (Figure 4G). Then, we sought to use the GEO

database to verify the prognostic value of this panel in another
independent cohort. In contrast, Kaplan–Meier survival analysis
suggested that the high-risk group presented a longer survival
time in the GSE29609 cohort (Figure 4H).

Association Between the Immune
Gene–Associated Prognosis Panel and
Immune Compositions, Immune
Checkpoint, and TMB
We then checked the relevance between this predictive gene panel
and several other relevant parameters, including immune
compositions, immune checkpoints, clinical characteristics,
and TMB. Treg cells, resting mast cells, M1macrophages, and
resting dendritic cells were correlated with the eight PIGs,
proving that these immune components have the capability to
influence the clinical outcomes of ccRCC patients (Figure 5A).
Furthermore, CD274, an immune checkpoint–associated gene,
was characterized to analyze the therapeutic value of this eight-
gene panel. The expression level of CD274 was negatively related

FIGURE 3 | Crosstalk networks and pathway characterization between each of the two immune subtypes. (A) GSEA and KEGG analyses between DEGs of two
immune subtypes. (B) TF and PIG regulatory crosstalk were displayed via an alluvial diagram. (C) PPI network between TFs and PIGs.
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FIGURE 4 | IGPM-based prognosis panel was constructed and verified. (A,B) LASSO-Cox regression analysis was applied to construct the prediction model for
ccRCC prognosis. (C,D) Risk value and survival information were shown in KIRC. (E) Correlation analysis of the risk value and survival time in KIRC. (F) Kaplan–Meier
survival analysis of the KIRC and gene panel. (G) The AUC score of the accuracy of the predictive prognosis panel for KIRC. (H)Kaplan–Meier survival analysis of the gene
panel was conducted in GSE29609.
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to the risk value of this model in ccRCC patients, suggesting a
predictive function in treatment (Figures 5B,C). As a
consequence of immune checkpoints, the high-risk group
patients suffer from a poorer survival time and prognosis.

Meanwhile, tumor mutation burden has the potential to predict
the effect of immunotherapy for tumor patients. The TMB level was
proven to be in accordance with the risk value of this prognostic
model (Figure 5D). Nevertheless, Kaplan–Meier survival analysis
revealed a negative relationship between TMB and overall survival
(Figure 5E). This led us to add TMB to our previous model to
construct a better tool to predict the prognosis of ccRCCpatients. All
ccRCC patients were divided into groups including high-risk
patients with high TMB, high-risk patients with low TMB, low-
risk patients with high TMB, and low-risk patients with low TMB.

Kaplan–Meier survival analysis revealed that the overall survival
time varied distinctly between each group, and the low-risk patients
with low TMB has the longest overall survival time (Figure 5F).

Establishment and Validation of a Model
Combined With Clinical Characteristics
The above results demonstrated that the prognostic gene panel
had a strong connection with the clinical outcome. Furthermore,
we employed univariate and multivariate Cox regression analyses
to investigate whether this gene panel could be used as an
independent factor for prognosis prediction in ccRCC patients.
When combining this risk value with several clinical features,
including age, gender, TNM, and molecular characteristics, we

FIGURE 5 | Identification of the communication between the prognosis gene panel and immune associated features. (A) Heatmap showing the relationship of the
prognosis panel with immune compositions. (B) Scatter plots draw a relationship between the prognosis panel and gene expression of CD274. (C) Scatter plots draw a
relationship between the prognosis panel and gene expression of CD274. (D,E) TMB of each group and their association with survival time. (F) Kaplan–Meier survival
analysis of the prognosis gene panel accompanied with the TMB value.
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concluded that this gene panel can be used as an independent
factor for prognosis prediction, as shown in Figures 6A,B.
Furthermore, a more sensitive framework was constructed by
using all parameters mentioned before, and the AUC value was
obtained in the ROC curve, indicating a better prognostic value
(Figure 6C). In the end, a nomogram was established to better
predict the prognosis outcome (Figure 6D).

Prognostic Gene Panel Verified byRT-qPCR
To validate the differential expression of these immune-
associated prognostic genes, RT-qPCR was employed to
analyze the mRNA expression in vitro. The mRNA levels of
TEK, BMP1, AR, SLC11A1, SLC40A1, and F2RL1 were
significantly downregulated in tumor cells compared with
normal cells, and CX3CL1 and RNASE2 were upregulated in

FIGURE 6 | Construction of a nomogram with a predictive value for prognosis. (A,B) A nomogram was constructed based on the prognosis gene panel and other
relevant features. (C) AUC value of the gene panel for 1-year, 3-year, 5-year prognosis prediction in the KIRC database. (D) Calibration plot designed for the KIRC
database.
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FIGURE 7 |RT-qPCR confirmed the difference of the prognostic gene expression in normal renal and renal cell carcinomas. *p < 0.05, **p < 0.01, ***p < 0.001, and
****p < 0.0001.
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tumor cells (Figure 7). However, the mechanism of action of each
gene in ccRCC requires further investigation.

DISCUSSION

Despite targeted therapies, poor survival rates and advanced
metastasis of ccRCC treatment are still challenging issues (Gu
et al., 2020). The advent of immunotherapy against ccRCC, such
as the targeting of PD-1, PD-L1, and CTLA4, has recently been
demonstrated to revolutionize the clinical treatment for ccRCC
(Farkona et al., 2016). Nevertheless, a significant number of
patients still fail to respond to targeted therapy mainly due to
malignant metastasis (Makhov et al., 2018). Additionally,
accurate prognostic biomarkers of treatment efficacy in ccRCC
are still lacking. This situation reflects the urgent need to identify
potential new biomarkers for prognosis prediction and treatment
targets (Xu et al., 2019b; Hu et al., 2020).

Clear cell renal cell carcinoma is one of the most immune-
infiltrated tumors in the urinary system (Şenbabaoğlu et al.,
2016). In reality, it is important to determine the immune
function of each patient to choose the best immunotherapy
strategy and predict prognosis. In recent years, some studies
have established prognostic panels for ccRCC based on immune
genes to predict the prognosis of ccRCC (Şenbabaoğlu et al.,
2016). Immune genes appear as a valuable tool to supplement
prognosis in clinical practice. In this study, ccRCCs were
reclassified into two distinct ccRCC groups, the Immunity_H
and Immunity_L groups, which were defined by immune
characteristics, including immune-associated genes, immune
checkpoint molecules, and immunotherapy. The Immunity_H
group had more immune-associated gene expressions.

Additionally, the Immunity_H group was engaged in
processes related to tumorigenesis and development, including
Wnt signaling, focal adhesion, ECM receptor interaction, and
axon guidance. Altogether, the potential associations between
cancer-related processes and immune infiltration pathways in
ccRCC were validated (Lai et al., 2021).

In our current work, eight genes, TEK, CX3CL1, BMP1,
RNASE2, AR, SLC11A1, SLC40A1, and F2RL1, were found to
be associated with poor prognosis in ccRCC based on the above
methods. The prognosis model was established, and our findings
indicated that the prognosis panel is a promising predictive
indicator for patients with ccRCC.

Among the eight genes used to develop the IGPM-based prognosis
panel,fivewere reported to be associatedwith the prognosis of ccRCC.
TEK, an immune marker that promotes apoptosis by regulating the
phosphorylation of AKT, can be used for risk assessment and survival
prediction (Chen et al., 2021). CX3CL1, an immunoregulatory gene
that is highly expressed in inflammatory ccRCC, provides a tool that
enables individualized treatment of ccRCC (Wang et al., 2021). The
high expression of BMP1, bone morphogenetic protein 1, indicates
poor prognosis in ccRCC (Xiao et al., 2020). RNASE2, ribonuclease A
Family Member 2, an RNA binding protein, indicates a prognostic
value, togetherwith other prognostic differentially expressed immune-
related genes (PDEIRGs) (Wan et al., 2019; Qin et al., 2021). AR, an
androgen receptor, suppresses bone metastasis of renal cancer and

acts as a valuable feature in prognosis in ccRCC (Gong et al., 2021).
This encourages us to further investigate themolecularmechanisms of
these genes in ccRCC in future studies.

Nevertheless, there were a few limitations to our study. First,
all data analyzed in this study were obtained from online
databases, and further laboratory studies and clinical trial
verifications are required to assess the value of this panel in
ccRCC. Second, the immune gene sequence was incomplete;
therefore, future studies are needed to explore whether other
immune-associated genes could be used as diagnostic markers.

This study mainly focused on immune-associated genes and
their association with ccRCC prognosis. This work provided a
novel predictive biomarker for prognosis and clinical outcome
prediction, which could help to identify an optimal prognosis
prediction strategy for ccRCC and guide future immunotherapy
regimens in ccRCC patients.
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