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We examine how policymakers react to a pandemic with uncertainty around key
epidemiological and economic policy parameters by embedding a macroeconomic SIR
model in a robust control framework. Uncertainty about disease virulence and severity
leads to stricter andmore persistent quarantines, while uncertainty about the economic
costs of mitigation leads to less stringent quarantines. On net, an uncertainty-averse
planner adopts stronger mitigation measures. Intuitively, the cost of underestimating
the pandemic is out-of-control growth and permanent loss of life, while the cost of
underestimating the economic consequences of quarantine is more transitory.
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The rapid spread of COVID-19 at the beginning of 2020 was accompanied by a vigorous
debate over the costs and benefits of actions taken to mitigate the pandemic’s spread. This
debate occurred under significant uncertainty regarding key parameters relating to the
threat posed by the virus, including death rates and infection rates, as well as uncertainty
about the costs and effectiveness of mitigation efforts (1). Many policymakers, academics,
and commentators in the media suggested that this uncertainty argued for a laxer
quarantine and lockdown response. We examine this claim by formally exploring how
optimal pandemic mitigation policies change when faced with significant uncertainty.

We account for two types of model uncertainty channels in our analysis. The
first channel is uncertainty around the epidemiological model. We focus on two
epidemiological parameters that characterize the severity of a contagious disease: the
case fatality rate (CFR), or the fraction of individuals infected who die due to the
disease, and the basic reproduction numberR0, or the number of people in an otherwise
healthy population that a single disease carrier is expected to infect. Early estimates of the
CFR ranged from a flu-like .08% to a catastrophic 13.04%. Estimating a CFR for a new
disease while cases are ongoing is inherently difficult as cases must be closed through either
recovery or death before a CFR can be computed (2). Similar difficulties* in estimating
R0 led to estimates ranging from 1.5 to 12 (6). To highlight the wide variation in these
estimates, Fig. 1 shows initial CFRs andR0 across many countries and US states.†

The second channel is uncertainty around the impacts of the policy response. In
particular, we focus on the effectiveness and costs of mitigation policies. Experience
revealed significant ex ante uncertainty in how effective various measures would be and
how stringently households would follow them. Additionally, the unprecedented nature
of global stay-at-home orders in a modern economic setting led to vast uncertainty
about how they would limit productivity and disrupt supply chains. Acemoglu et al. (7),
for example, state that “We hasten to emphasize that there is considerable uncertainty
about... the exact economic damages caused by lockdowns (in part because neither the
extent to which work from home can substitute for workplace interactions nor the knock-
on effects of current measures on supply chains and worker-firm relations are yet well
understood).”

Knowledge of both epidemiological parameters and the effectiveness and costs of
mitigation policies informs the central trade-off of an optimal response: how to balance
the public health benefits (and the resultant downstream economic benefits) of mitigation
policies against their economic costs. Confronted with this uncertainty yet facing a
concrete decision, policymakers and politicians speculated on the role that uncertainty

∗Many academic papers, e.g., ref. 3, note thatR0 is difficult to estimate because the provision of tests is not random but
rather targets those showing symptoms or those thought to be at higher risk. Manski et al. (4) discuss in detail the wide
range of estimates and highlight how a lack of testing and the presence of many asymptomatic carriers made measurement
difficult. Atkeson et al. (5) provide a model explaining the range of estimates through behavioral responses.
†The insights of this model apply not only to new epidemic diseases but also to new strains of existing diseases. While we
focus on exposition on the initial emergence of the new virus, throughout 2020 and 2021, new variants emerged. Like with
the initial disease, there has been significant uncertainty about the death rates and the rate of transmission of these new
variants, resulting in persistent uncertainty about the pandemic more generally. The introduction of vaccines led to a new
source of uncertainty.
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highly contagious, spreading
rapidly, and exceedingly lethal.
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Fig. 1. Estimated CFR rates and R0. Panel A shows estimated CFRs for
all countries with more than 1,000 cases and 100 deaths. Panel B shows
estimated R0 across countries and states given different incubation periods
(�) and durations (). Source: European Centre for Disease Prevention and
Control and ref. 6.

should play in their decision-making: New York Mayor De
Blasio in a March 9 press conference said “I am very resistant
to take actions that we’re not certain would be helpful, but that
would cause people to lose their livelihoods.” Epidemiologist
John Ioannidis remarked “In the absence of data, prepare-for-
the-worst reasoning leads to extreme measures of social distancing
and lockdowns. Unfortunately, we do not know if these measures
work.... This has been the perspective behind the different stance
of the United Kingdom keeping schools open.”

Dynamic decision theory applied to economic models offers
a rigorous way forward when confronted with parameter uncer-
tainty. In particular, refs. 8 and 9, and more recently (10) suggest
a max–min criteria whereby a policymaker selects the policy that
would be optimal under a worst-case scenario. The worst-case sce-
nario under consideration must be disciplined by what is reason-
ably consistent with the data. For example, an extremely conta-
gious disease with an eventual 100% fatality rate is indeed a worst-
case scenario but—parameter uncertainty notwithstanding—is
not consistent with even the most pessimistic estimates. A CFR
of 5%, however, while toward the upper end of estimates, may
be a reasonable worst-case scenario to consider.

In our paper, we adopt a formalization of this idea through a
smooth ambiguity approach, which provides a tractable frame-
work to select a reasonable worst-case scenario. There are two key
distinguishing features of the uncertainty-averse model. First,
uncertainty aversion tilts the policymaker’s model weighting
toward parameters with more substantial utility consequences.
Therefore, the planner gives stronger consideration to worst-
case scenarios, with the strongest tilts occurring for the most
uncertain parameters. Second, this tilting evolves endogenously
as the pandemic unfolds. The planner observes the state of the
pandemic and, without learning about or knowing the true model
parameters, adjusts the worst-case prior toward new potential
worst-case outcomes based on how the pandemic has evolved
over time.

We begin with a simple macroeconomic model with an
epidemic without model uncertainty. The epidemic spreads
according to a standard susceptible-infectious-recovered (SIR)
process employed in epidemiology and more recently in macroe-
conomic models.‡ Infected individuals are less productive, spread
the disease, and may die. A policymaker can impose a quarantine
of varying strictness. The quarantine slows the disease’s spread
by removing individuals from the working population at the cost
of temporarily reducing output. The optimal policy balances
spread reduction against temporary economic losses and depends
critically on the epidemiological parameters, the effectiveness
of mitigation policies, and the cost of mitigation policies. We
first show the wide range of optimal responses across different
underlying parameters. These wildly varying comparative statics
drive home the potential costs of model ambiguity yet by
themselves do not offer a prescription for how a policymaker
facing this uncertainty might actually respond.

To provide an answer, we adopt a smooth ambiguity approach
to explicitly introduce parameter uncertainty into the policy-
maker’s decision problem. As a critical first step, we differentiate
risk from uncertainty. Following refs. 11 and 12, risk refers to
the range of possible outcomes in a model where the parameters
are known. In contrast, uncertainty refers to the possibility that
the model’s parameters are unknown or that the model itself is
misspecified.§ In our context, we introduce risk by allowing the
disease to spread and kill nondeterministically. This risk gives
rise to uncertainty by obscuring the true parameters governing
the disease’s spread and lethality as well as the effectiveness and
costs of mitigation policies. Facing this uncertainty, the poli-
cymaker considers possible outcomes across alternate parameter
settings when making decisions. The set of parameters under
consideration is disciplined by how far these parameters lie from
the policymaker’s prior beliefs. We calibrate the model to match
the US economy and explore how uncertainty influences optimal
quarantine policy.

Our analysis shows that compared to a benchmark ambiguity-
neutral planner, ambiguity aversion leads the optimizing plan-
ner to adopt a stronger and more persistent quarantine.

‡SIR models are standard tools in epidemiology used to model the spread of infectious
diseases. The epidemiological SIR model computes the theoretical number of people
infected with a contagious disease in a closed population over time. The models have
three key elements: S is the number of susceptible, I is the number of infectious,
and R is the number of recovered, deceased, or immune individuals. Recent studies in
macroeconomics have incorporated SIR models into macroeconomics models. Stanford
Earth System Sciences notes provide an introduction to the standard epidemiological SIR
model.
§A large body of literature refers to Brownian shocks and time variation in exposure to
Brownian shocks as uncertainty, for example, refs. 13 and 14. Our model does not directly
include a behavioral private agent response, and instead, this is captured by the damage
function, a modeling simplification we make for tractability. If agents respond to policy, this
could either mitigate the economic damages or reduce the effectiveness of quarantine.
Ref. 15 provides a more complex model in which households respond to policy.
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An ambiguity-neutral planner with an equal-weighted prior
across models¶ adopts a relatively modest quarantine, with the
quarantine isolating roughly 50% of the population around 8
wk into the pandemic and ending after roughly 15 wk. In
contrast, an ambiguity-averse policymaker with the same prior
immediately implements a quarantine policy of isolating 25% of
the population, increasing it to 60% in 10 wk, and maintaining
some level of quarantine for just under 25 wk. When simulating
these policies under the true model parameters, which match the
values implied by the prior, the ambiguity-averse policies lead to
fewer deaths and a flatter infection curve.

Uncertainty about disease infectivity, fatality rates, and quar-
antine effectiveness pushes the planner to adopt more stringent
quarantines, while uncertainty about the economic costs of
quarantine pushes the planner to adopt less stringent measures.
Our results make clear that the former are (endogenously) the
planner’s primary concern, while the latter are of secondary
concern. Intuitively, underestimating the disease’s severity or
overestimating the quarantine’s effectiveness can lead to the
out-of-control spread of the virus and permanent pandemic
deaths. In contrast, underestimating the economic consequences
of quarantine leads to costs that are more transitory in nature.
Thus, the planner is more willing to place greater probability
weights on model distortions where these convex and permanent
costs are potentially larger. While the model and probability
distortions leading to these results can be quite substantial, we
show that the distortions are statistically reasonable based on
model detection error probabilities.

Our paper primarily links to literature on ambiguity and robust
control beginning with refs. 8 and 9 and continued by refs. 10
and 16–20.# Recent work in finance and macroeconomics has
emphasized the importance of different forms of ambiguity and
uncertainty, for example, refs. 13, 14 and 24–29. Robust control
methods have also been used to study the economic impacts
of climate change, as in refs. 30–33, where climate damages
can have both permanent growth effects and transitory level
effects. However, in the pandemic context, policy decisions trade
off temporary (through quarantine and temporary illness) and
permanent (through death) implications based on how model
uncertainty amplifies concerns about the worst-case outcome.

A key contribution of our paper is to introduce uncertainty
to the discussion on economic responses to the COVID-19
epidemic. A number of studies have built macroeconomic
frameworks, combining SIR models from epidemiology with
macroeconomic models, such as refs. 15 and 35–40. These
studies rely on calibrated parameters, which are often unknown.
Parameter uncertainty is widely acknowledged by these studies,
and authors typically use a range of values. For example, (7)
note that: “We stress that there is much uncertainty about many
of the key parameters for COVID-19 (4), and any optimal
policy, whether uniform or not, will be highly sensitive to these
parameters e.g., refs. 3, 41, and 42. So, our quantitative results
are mainly illustrative and should be interpreted with caution”.
Ref. 34 is one important paper that has considered the issues
and importance of incorporating model uncertainty for decision
makers confronting COVID-19. Our paper complements this

¶We also explore three additional sets of prior beliefs over the models in SI Appendix:
i) underestimating the pandemic, ii) correctly estimating the pandemic, and iii) over-
estimating the pandemic. These results reinforce the baseline model outcomes, while
highlighting asymmetries that arise in these alternative scenarios that are relevant for
policymakers to consider. In particular, ambiguity aversion is the most relevant when
initially underestimating the pandemic because a larger fraction of the population gets
the virus quickly and thus potential spread under the worst-case scenario is much faster.
#There is an important and extensive body of theoretical study on uncertainty of various
forms dating to 11 and 21–23.

Fig. 2. Expected transition rates between states in the augmented SIR
model.

work by solving a theoretical model that explicitly evaluates the
implications of multiple sources of ambiguity.

The remainder of this paper is organized as follows. A Simple
Economic Model of an Epidemic presents our model. Model
Solutions describes how to account for uncertainty. Numerical
Results presents simulation results and Concluding Remarks
concludes.

1. A Simple Economic Model of an Epidemic

We introduce a simple economic model of an epidemic without
model uncertainty before incorporating uncertainty in subse-
quent sections. Our model embeds a simple SIR framework into
an economic model that allows us to speak to the costs of the
disease as well as the costs and benefits of mitigation efforts.

A. Epidemic Model. A standard SIR model is characterized by
three state variables: the number of susceptible individuals St , the
number of infected individuals It , and the number of recovered
individuals Rt . In addition, we include a state variable for the
total population Nt to account for deaths from the pandemic.
To simplify the model solution, we use in our analysis the SIR
state variables defined as fractions of the total population, i.e.,
st = St

Nt
, it = It

Nt
, andrt = Rt

Nt
. Transitions between the different

states in the model depend on βt , the rate at which a susceptible
becomes infected, ρt , the rate at which an infected recovers,
and δt , the rate at which an infected dies. We have abstracted
from births and deaths not related to the epidemic for simplicity,
which can be easily incorporated into our framework but has no
qualitative impact on our results.

Fig. 2 illustrates the transition rates between states in our
model. Under our specification, the transition rates βt , ρt , and
δt are directly linked to the key structural disease parameters
mentioned previously, the CFR andR0, as follows:

R0 =
βt

γt
, CFR =

δt

γt
, γt = ρt + δt .

We assume constant values, conditional on a given model,
for the expected time of infection and rate of infection, i.e.,
γt = γ and βt = β. For the death rate of infected individuals
δt , a critical issue that has been at the forefront during the
COVID-19 pandemic is the fact that increased infections have
led to an increased death rate due to limited resources for
treatment resulting from increased hospitalizations. Similar to
the frameworks used by refs. 40 and 39, we specify δt as an
increasing function of it given by δt = δ + δ+it . By definition,
the recovery rate of infected individuals ρt will depend on this
specification as well.
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Departing from the standard model, we introduce Brownian
shocks through Wt

||. Two dimensions of Wt , which we denote
Wi and Wd , are incorporated as parameter perturbations for βt
and δt with volatilities σi and σd , respectively. These shocks
capture, for example, variability in exposure, comorbidities,
mismeasurement, and random fluctuations in the number of
susceptible, infected, recovered, and population size.

The state evolution equations we use in our analysis are given
as follows:

dst = −βst itdt + st itδtdt
− st itσidWi + st itσddWd ,

dit = βst itdt − γ itdt + i2t δtdt

+ σist itdWi − itσddWd + i2t σddWd ,
rt = 1− st − it ,

dNt

Nt
= −itδtdt − itσddWd .

While we specify these state evolution equations directly here,
SI Appendix provides the evolution processes St , It , and Rt as well
as the derivation of the evolution processes for st , it , and rt by
way of Ito’s lemma.
A.1. Pandemic mitigation. We allow for pandemic mitigation
through quarantine measures. Let qt be the fraction of the pop-
ulation in quarantine at any period of time, where “quarantine”
captures a wide range of policies such as school closures, business
closures, and shelter-in-place orders. Quarantine prevents suscep-
tible individuals from becoming infected. Given the mitigation
policy qt , the population laws of motion for the susceptible and
infected become as follows:

dst = −βst it(1− ζqt)2dt + st itδtdt
− st itσidWi + st itσddWd ,

dit = βst it(1− ζqt)2dt − γ itdt + i2t δtdt

+ σist itdWi − itσddWd + i2t σddWd .

This specification mirrors that in ref. 40 in terms of the impact
of the quarantine. st(1 − ζqt) and it(1 − ζqt) are the masses
of susceptible and infected that meet. ζ ∈ [0, 1] captures the
incomplete effectiveness of quarantine measures, e.g., meeting
with family, shopping, or ignoring the policy altogether.

B. Economic and Public Health Model.
B.1. Preferences, production, and consumption. We focus our
analysis on a social planner’s problem, highlighting the optimal
quarantine policy choice of a benevolent government or policy-
maker who internalizes any externalities and seeks to maximize
social welfare while confronting uncertainty. The planner has
flow utility that depends on consumption Ct and a subjective
discount rate κ and is given by**

Ut = κ logCt .

Log utility allows us to incorporate risk aversion in the
simplest way into our framework, a relevant feature given the
inclusion of Brownian shocks for our state variables. A linear
||Formally, W .

= {Wt : t ≥ 0} is a multidimensional Brownian motion where the
corresponding filtration is denoted by F .

= {Ft : t ≥ 0} and Ft is generated by the
Brownian motion between dates zero and t.
**We discuss the impact of including nonpecuniary losses for deaths from the pandemic
as in refs. 15, 35, and 40 in SI Appendix. Such costs, and uncertainty about these costs,
should serve to enhance the results we find in our main analysis.

production technology produces output Yt with labor Lt and
labor productivity At . Here, At includes the capital stock, which
we hold fixed. Households consume everything that is produced
so that

Ct = Yt = AtLt .

The labor supply is determined by the total population,
which varies with shocks and deaths from the pandemic, and
the magnitude of the quarantine measures put in place to
mitigate spread of the pandemic. The effective supply is therefore
defined by:

Lt = Nt [(1− qt)(st + φit + rt)]
= Nt [(1− qt)(1− (1− φ)it)] ,

where st +φit + rt is the effective available labor force, φ ∈ (0, 1)
represents the amount by which an infected worker’s productivity
is reduced, and 1 − qt is the nonquarantined fraction of the
available labor force.††

B.2. Productivity costs of mitigation. Beyond the clear costs of
mitigation in reducing the available labor force, economic costs
in the form of reduced productivity have also been of first-order
concern. That is, even individuals who are not locked down may
become less productive due to economic disruptions caused by
lockdowns. To incorporate this additional channel, we assume
that mitigation efforts can lead to economic costs in the form
of reduced productivity. We model this formally by expanding
our expression of productivity to follow a modified Ornstein–
Uhlenbeck process as follows:

At = Ā exp(zt),
dzt = (−αqt − zt)dt + σzdWz ,

where Wz is the third dimension of the vector Brownian motion
Wt . This process is mean-reverting, and so, shocks to productivity
are transitory. Without quarantine, the long-term mean of zt is
zero. When quarantine measures are introduced, the new-long
term mean is given by −αqt . The productivity impact persists
while quarantine measures are in place, and as soon as they are
ended, the process mean-reverts back to the long-term mean of
zero. Thus, mitigation can have significant costs to economic
productivity, but those costs are transitory as long as mitigation
efforts are not permanent. This additional channel of economic
costs to mitigation will interact with the existing forces of reduced
labor force from mitigation and concerns about the costs of the
pandemic, adding to the key trade-offs that the social planner
must consider when determining optimal policy responses.
B.3. Arrival of a vaccine and cure. We assume that there is a
constant arrival rate λ of a resolution of the epidemic arriving
at some unknown time in the future T . Our specification,
consistent with others in this area of research such as refs. 35
and 40, assumes that upon the realization of the resolution
shock taking place, a cure and a vaccine are found so that all
susceptible individuals are immune and all infected individuals
recover. The arrival rate is set so that this resolution is expected
to occur in about 1.0 y. The main impact of this assumption
is that expectations about a resolution of the pandemic lead
to amplification of the subjective discount rate of the planner,
providing quantitatively more realistic policy responses. We
provide the full details for the derivation of the model under
this assumption in SI Appendix.
††An alternate specification could target only infected or susceptible and infected workers
for quarantine. Because most quarantine policies in practice have been untargeted,
we adopt the untargeted specification. The results are easily extended to the targeted
quarantine setting and are qualitatively similar.
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C. Parameter Uncertainty. We motivated our paper with un-
certainty over the pandemic model parameters as well as the
quarantine policy model parameters. We incorporate uncertainty
into our setting by assuming a discrete set 2 of possible
models θ . Each θ ∈ 2 corresponds to a set of parameters
{β(θ), δt(θ), ζ (θ),α(θ)}. The interpretation is that each model
θ comes from an existing estimate for the true pandemic model
and the true impacts of quarantine policy inferred from historical
data, real-time information, or other sources. Each θ characterizes
the state evolution equations as follows:

dst = −β(θ)st it(1− ζ (θ)qt(θ))2dt + st itδt(θ)dt
− st itσidWi + st itσddWd ,

dit = β(θ)st it(1− ζ (θ)qt(θ))2dt − γ itdt + i2t δt(θ)dt

+ σist itdWi − itσddWd + i2t σddWd ,
dzt = −α(θ)qt(θ)dt − ztdt + σzdWz ,
dNt

Nt
= −itδt(θ)dt − itσddWd .

Crucially, the Brownian shocks we introduce into the dynamic
evolution equations used in our analysis prevent the policymaker
from immediately inferring the fundamental transition rates of
the disease and the effectiveness and cost of quarantine measures
as we explore the impacts of uncertainty and ambiguity in the
model. How the planner confronts this uncertainty depends upon
the decision framework implemented by the planner to determine
social optimality. In what follows, we derive the model solutions
for the planner’s problem with and without aversion to model
uncertainty as captured by the smooth ambiguity framework
from the dynamic decision theory toolkit.

2. Model Solutions

We solve the social planner’s problem with and without
ambiguity-based model uncertainty. From this, we are able to
make a direct comparison of the impact of uncertainty on
the optimum quarantine choice to highlight the key forces
behind the planner’s uncertainty-adjusted policy decisions and
the difference it has on the economic and pandemic outcomes
in the model. In each case, the solution to the infinitely-lived
social planner’s problem is a recursive equilibrium defined by a
socially optimal quarantine policy q∗t that maximizes the social
welfare or expected lifetime utility of the planner subject to
the evolution of the stochastic process for the state variables
st , it , Nt , zt , as well as the pandemic and economic adding
up constraints.‡‡ The equilibrium solution has a Markovian
structure such that the value function that characterizes the
solution, and the optimal quarantine policy are functions of
the state variables st , it , Nt , and zt . To derive the model’s
socially optimal outcomes, we solve for the social planner’s value
function from the Hamilton–Jacobi–Bellman (HJB) equation
representing their optimization problem in a recursive format.
First-order conditions characterizing the optimal policies are
derived from this HJB equation and used to solve for the value
function and the optimal quarantine choice.

We first solve the planner’s problem conditional on a given
model θ , deriving an optimal policy qt(θ) without reference to
ambiguity. The typical analysis would end here with a comparison
of policies across θ ∈ 2. This “outside-the-model uncertainty”
‡‡We can omit the state variable rt from our framework because the explicit adding-up
constraint of the SIR model means that rt is the residual after accounting for st , it , and Nt
and is therefore redundant.

or sensitivity analysis exercise often undertaken in economics
and other fields does not account for the social planner making
decisions while confronting this uncertainty explicitly. In our
numerical results, we show how disperse the optimal quarantine
policy and pandemic outcomes can be across the set of models
we consider.

The ambiguity-averse planner’s solution incorporates concerns
about uncertainty directly into the social planner’s decision
problem, building on the continuous-time smooth ambiguity
framework developed in ref. 19, and applied in the analysis of
ref. 32. The result is a minimum–maximum problem where the
planner optimizes over constrained worst-case model distortions
(minimization) and optimal mitigation policy (maximization).
In contrast to a simple model averaging framework, this form of
uncertainty for the decision maker incorporates the fact that the
planner does not know what weights to place on the different
potential models of the pandemic and explicitly incorporates
this ambiguity into the planner’s decision problem. The decision
maker chooses an initial distribution of prior weights to place
on the models and then distorts these baseline weights based
on endogenously determined optimal adjustments arising from
their aversion to uncertainty in the form of model ambiguity. As
a result, uncertainty is explicitly incorporated into the planner’s
optimal policy choice through probability adjustments used to
weigh the different models θ , providing an uncertainty-adjusted
optimal policy that arises from the minimum–maximum problem
optimization.

A. Optimal Policy Without Uncertainty. We first solve the social
planner’s problem conditional on a given model θ ∈ 2. The
social planner’s problem is to maximize lifetime expected utility
by choosing the optimal mitigation or quarantine policy qt(θ).
The planner’s problem can be expressed as

V (st , it , Nt , zt ; θ) = max
qt

E0[e−κ(T−t)V̂ (NT , zT )

+
∫ T

0
e−(κ+λ)tκ logC (qt) dt|θ ],

subject to economic and pandemic constraints. Note that
C(qt) = At × L(qt) and V̂ (NT , zT ) is the continuation value
postpandemic. We represent the social planner’s problem using
a Hamilton–Jacobi–Bellman (HJB) equation for the value func-
tion resulting from the social planner’s optimization. There is an
analytical solution for V̂ (NT , zT ) and an analytical simplification
for the value function given by

V (st , it , Nt , zt ; θ) = log(Ā) + logNt +
κ

κ + 1
zt + v(st , it ; θ).

After incorporating these simplifications, the simplified PDE
we solve for the planner’s problem is given by

(κ + λ)v(st , it)
= max

qt
κ log(1− qt) + κ log(1− (1− φ)it)

− δt it −
1
2
i2t σ

2
d −

κ

κ + 1
αqt + vsst itδt − viit [γ − δt it ]

+ viβst it(1− ζqt)2
− vsβst it(1− ζqt)2

+
1
2
[vss(σ 2

d + σ 2
i )s2t i

2
t + vii(σ 2

i s
2
t i

2
t + (1− it)2i2t σ

2
d )]

− vsi[σ 2
i s

2
t i

2
t + σ 2

d st(1− it)i2t ],
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where we drop the θ notation for brevity. See SI Appendix for
full details on the derivation and analytical simplification of the
HJB equation. The optimal choice of mitigation qt is the solution
to a quadratic equation resulting from the first-order condition
and is given by

qt(θ) =
−B −

√
B2 − 4C
2

,

B = −
1 + ζ (θ)
ζ (θ)

−

κ
κ+1α(θ)

2β(θ)ζ (θ)2(vi − vs)st it
,

C =
κ + κ

κ+1α(θ)

2β(θ)ζ (θ)2(vi − vs)st it
+

1
ζ (θ)

.

The policy function depends on the parameters associated with
θ , {β(θ), δt(θ), ζ (θ),α(θ)}. We discuss these optimal policies
without uncertainty in subsequent sections.

B. Optimal Policy with Uncertainty. To analyze the impact of
model uncertainty, we implement a smooth ambiguity frame-
work.§§ To do this, we return to the full discrete set2 of possible
models θ for the pandemic as noted above. We first specify prior
probability weights for the set of models θ ∈ 2, by assigning a
probability weight π(θ) to each model θ , satisfying

π(θ) ≥ 0 ∀θ ∈ 2,
∑
θ∈2

π(θ) = 1.

Like the alternative models in our set, the prior probability
weights are assumed to come from historical data or real-time
observational inference.

We then allow for uncertainty aversion by using a penalization
framework based on conditional relative entropy. This frame-
work allows the planner to consider alternative distributions or
sets of weights π̃(θ) across the set of conditional models in a
way that is statistically and quantitatively reasonable in order to
derive optimal policy that is robust to possible worst-case models
that the planner is concerned with due to the model uncertainty.
In essence, the social planner considers worst-case distributions
but penalizes probability weights that are far from the planner’s
prior beliefs. This penalization is based on an ambiguity aversion
parameter, which penalizes the magnitude of the deviation of
the distorted probability weights from the prior weights. The
parameter ξa is the ambiguity parameter that determines the
magnitude of this penalization, calibrated to ensure that worst-
case models considered by our decision maker are statistically and
quantitatively reasonable. Large values of ξa imply low aversion
to ambiguity, while small values of ξa imply strong aversion to
ambiguity. Relative entropy, defined as the expected value of the
log-likelihood ratio between two models or the expected value
of the log of the Radon–Nikodym derivative between models, is
the measure used to determine the magnitude of the deviation of
the distorted probability weights from the prior weights. See ref.
19 for details about relative entropy in this setting. Using relative

§§The most common alternative to a smooth ambiguity approach is a robust preference
approach as in ref. 16. A key advantage of our approach is that the uncertainty here is
structured into alternative models as characterized by explicit sets of key parameters and
distorted probabilities. This type of structured uncertainty analysis allows us to examine
explicitly how prior model weights are distorted and therefore determine which models
are of most interest to the uncertain planner when making optimal policy choices that
are robust to the existing ambiguity. In SI Appendix, we provide an extension of the model
where we apply the continuous-time robustness framework studied in refs. 10, 16, 17,
and others. While we are able to demonstrate the theoretical differences in how the
different types of decision theoretic frameworks impact the structure of the planner’s
problem, there are potentially interesting quantitative differences that we leave for future
research.

entropy means that we are considering only relatively small
distortions from the baseline model, but even small distortions
can have significant impacts on optimal policy. To give a concrete
example in the context of COVID-19, it may be relatively easy to
observe the number of people who died from the pandemic but
difficult to observe the number of people who were infected. On
the basis of this data, it is difficult to tell whether the disease has
a very high spread rate (R0) and a low death rate (CFR), or a low
spread rate and a very high death rate, yet the optimal response
is likely to be very different under these scenarios.

While we have incorporated additional structure and complex-
ity to the model to account for model uncertainty, the resulting
household or social planner problem remains tractable and similar
to the previous, no uncertainty problem, and is given by

V (st , it , Nt , zt)

= max
qt

min
π̃(θ)

E0

[
e−κ(T−t)V̂ (NT , zT ) +

∫ T

0

∑
θ∈2

π̃(θ)

×

{
e−(κ+λ)t

(
κ logC(qt) + ξa log

π̃(θ)
π(θ)

)}
dt
]
,

subject to the economic and pandemic constraints and the
dynamics of the state variables relevant to the model. Note
that the planner problem now has two layers of expectation and
optimization. The outer expectation is over unknown outcomes
of the Brownian shocks, while the inner expectation is over
the possible models and is denoted by the sum over θ ∈ 2
for probabilities π̃(θ). The inner minimization represents the
planner considering the worst-case outcomes across possible
models given the policy qt , while the outer maximization
represents the planner choosing the optimal quarantine policy
qt , understanding that it will be evaluated against the worst-
case probability distribution. The term ξa log π̃(θ)

π(θ)
is the relative

entropy penalization term with uncertainty parameter ξa, prior
probability π(θ), and distorted probability π̃(θ).

As before, the social planner’s solution is characterized by a
recursive Markov equilibrium for which an equilibrium solution
is defined as before. The HJB equation resulting from this
modified household or social planner optimization problem
which characterizes the socially optimal solution is now given by

(κ + λ)v(st , it)
= max

qt
min
π̃(θ)

κ log(1− qt) + κ log(1− (1− φ)it)

+
∑
θ∈2

π̃(θ)
{
−

ακ

κ + 1
qt + δt [−it + (viit + vsst) it ]

+ (vi − vs)βst it(1− ζqt)2
− viitγ

}
−

1
2
i2t σ

2
d

+
1
2
[
vss
(
σ 2
d + σ 2

i
)
s2t i

2
t + vii

(
σ 2
i s

2
t i

2
t + (1− it)2i2t σ

2
d
)]

− vsi
[
σ 2
i s

2
t i

2
t + σ 2

d st(1− it)i2t
]
+ ξa

∑
θ∈2

π̃(θ) log
π̃(θ)
π(θ)

,

where again, except for the π ’s and π̃ ’s, we have suppressed
the notation for θ for brevity. Taking the first-order condition
for this problem, and imposing

∑
π̃(θ) = 1, we find that the

optimally distorted probability weights are given by

π̃(st , it ; θ) ∝ π(θ) exp(−
1
ξa
{−
α(θ)κ
κ + 1

qt
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+ δt(θ)(−it + vsst it + vii2t )

+ β(θ)st it(1− ζ (θ)qt)2(vi − vs)}).

As the π̃(st , it ; θ) in the model are optimally determined and
state dependent, the magnitude of the ambiguity considered
by the social planner when making optimal policy decisions
will depend on the current state of the pandemic and evolves
dynamically.

The optimal choice of mitigation qt has a similar functional
form, given by

qt =
−B −

√
B2 − 4C
2

,

B = −
β̃ζ + β̃ζ 2

β̃ζ
−

α̃κ
κ+1

2β̃ζ 2(vi − vs)st it
,

C =
κ + α̃κ

κ+1

2β̃ζ 2(vi − vs)st it
+
β̃ζ

β̃ζ 2
,

where the terms β̃ζ , β̃ζ 2, and α̃ are given as before by

β̃ζ =
∑
θ

π̃(st , it ; θ)β(θ)ζ (θ),

β̃ζ 2 =
∑
θ

π̃(st , it ; θ)β(θ)ζ (θ)2,

α̃ =
∑
θ

π̃(st , it ; θ)α(θ).

Now that ambiguity is incorporated into the optimal policy
choice, the planner tilts the probability weights toward certain
models based on potential worst-case outcomes so that the
planner can respond in a robustly optimal way in the face of
uncertainty. Importantly, the policy function depends on the
parameters associated with the various θ models. But rather
than solving for an optimal policy for each model and choosing
either our preferred specification or taking a weighted average
across model solutions based on a prior weighting, the optimally
uncertainty-adjusted parameters are incorporated directly into
the solution for the value function and the optimal policy choice.

We note that this analysis abstracts from any form of Bayesian
learning. While learning is certainly an interesting consideration
when thinking about the planner’s optimal response to a
pandemic, we find our setting valuable to consider for a number of
reasons. First, the tractability of the smooth ambiguity framework
in our analysis is particularly valuable for providing intuition
about the implications of uncertainty. The characterization of
ambiguity is condensed to a single dimensional parameter for
uncertainty aversion rather than the potentially high-dimensional
complexities or additional state variables than can arise from mod-
els of learning. Second, the rapid development of the COVID-19
pandemic and extreme difficulty in determining the true model
for policymakers responding in real-time based on imperfect
data, numerous virus variants, and an incomplete understanding
of the effectiveness of certain factors influencing infections and
deaths make this assumption a reasonable and realistic starting
point. Recent work by Baek et al. (43) shows that, even with
fixed parameter values, one can only hope to predict SIR model
outcomes once a pandemic has nearly reached its peak infection
rate due to limited testing and asymptomatic individuals. Finally,
the arrival of new variants after the initial spread, each with
unknown infectiousness and lethality, highlights the point that

uncertainty over the parameters of the disease overall may remain
even as epidemiologists learn about individual variants.

3. Numerical Results

We now provide numerical results from simulations based on
the theoretical solutions provided. Calibration of parameters is
discussed first, followed by solutions for the models without un-
certainty or “outside-the-model uncertainty” sensitivity analysis,
and then by solutions for the model with uncertainty or “inside-
the-model uncertainty” sensitivity analysis.

A. Parameter Values. This section discusses the parameter values
used in the main calibration. These parameters are shown in the
table below, and we discuss the parameter choices now. For
the economic side of the model, we normalize the working
population so that L0 = 1 and set initial productivity to
A0 = 20/12 = 1.667 so that output in the nonpandemic version
of the model (A0×L0) matches recent, prepandemic data on US
GDP of $20 trillion dollars annually or $1.667 trillion dollars
monthly. We choose an annual discount rate of 3%, and so
the subjective discount rate κ is given by κ = 0.0025 for the
baseline analysis. We assume that the expected arrival time for a
vaccine is 1.0 y, so that the value of the arrival rate is given by
λ = 1

1.0 ×
1

12 = 0.083.
For values of the mitigation effectiveness ζ and productivity

costs of mitigation α parameters, we rely on estimates from the
literature. Yamamoto et al. (44) estimate the effectiveness of
quarantine measures for US states over time using an SIRD
model and data on infections and stay-at-home orders. We choose
our set of ζ values to be {0.35, 0.65}, which are close to their
estimated upper and lower bounds. Barrot et al. (45) estimate the
GDP losses for numerous European countries based on 6-wk of
social distancing measures. We choose values for α in order to
match GDP impacts of mitigation close to the average (≈6%) and
near the upper end (≈8%) of the (45) estimates based on a fixed
value of qt = 0.5 over 6 wk. The GDP impact of social distancing
measures in our model when there are no productivity impacts,
and so α = 0, is 6.25%. The GDP impact of social distancing
measures in our model when α = 0.8 is approximately 9.0%.
Thus, we choose our set of values for α to be {0, 0.8}.

For the pandemic model parameters, we use values from
various studies (including refs. 6, 41, 46, and 35, and estimates
from the European Centre for Disease Prevention and Control)
to set the expected time infected γ , the case fatality rate CFR,
and basic reproduction numberR0, which allows us to pin down
the infection rate β, the death rate δ, and the recovery rate ρ.

Table 1. Parameter values
Parameter Variable Value

Subjective discount rate � 0.0025
Nonpandemic output A× L̄ 1.667
Productivity costs of mitigation � {0,0.8}
Infection severity � 0.4
Quarantine effectiveness � {0.35,0.65}
Arrival rate of vaccine � 0.0833
Reproduction number R0 {1.5,4.5}
Initial case fatality rate CFR {0.005,0.020}
Infection half-life  30/18
Death rate convexity �+ 5× CFR


Volatility �i , �d , �z {0.075,0.030,0.005}
Ambiguity parameter �a {∞,0.0032}
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The value of γ is held fixed at γ = 30
18 or an expected duration

of infection of 2.5 wk. The set of underlying models used in our
analysis use initial values of CFR in the set {0.005, 0.02} and
values ofR0 in the set {1.5, 4.5}. For the state-dependent death
rate, rather than adding an additional set of parameters, we choose
to scale the initial CFR values so that δ+ = 5×δ×it . This means
that if 20% of the population were to become infected, i.e., if
it = 0.2, then the CFR would be double the initial value. These
values are well within the range of values across these different
studies. The value of φ is 0.4, consistent with estimated values for
the fraction of infected individuals who are asymptomatic given
by the CDC COVID-19 Pandemic Planning Scenarios website.

For σi, which is the volatility associated with β, we use the
estimated reproductive number values Rt of ref. 47 available
through the Tracking R website. To calculate a monthly time
series standard deviation. This is done by taking the standard
deviation calculated from the first 7 d of the COVID-19
outbreak for countries with outbreaks that occurred before global
lockdown orders were implemented in order to capture the value
for R0, converting those values to a monthly frequency, and
then averaging across these values to get a global value.¶¶ For the
volatility σd , which is the volatility associated with δt , we use
data from the Center for Systems Science and Engineering in
the Whiting School of Engineering at Johns Hopkins University
available through the CSSE GitHub repo. To derive the global
CFR, calculate the time series standard deviation using daily data
from March 1, 2020, to March 31, 2020, and then convert this
value to a monthly frequency.## For σz , we use a value that
matches that of ref. 32, in which the authors calculate a time
series standard deviation of output from aggregate data.

Finally, we must also specify values for the uncertainty
parameter in our model ξa for smooth ambiguity. Our main value
of the uncertainty parameter, ξa = 0.0032, imposes what we view
and aim to show is a reasonable amount of uncertainty aversion
to demonstrate the potential magnitude of uncertainty impacts.
This value can be difficult to interpret on its own and is best
interpreted by way of model detection error probabilities implied
by these parameter choices and the distorted model probabilities
provided in the analysis. Furthermore, anecdotal evidence on
model spreads implied by the recent estimates of COVID-19
parameter values which guide the values we use verify that our
distorted values remain within a reasonable region for the given
choice of ξa.

B. Outside-the-Model Uncertainty: Sensitivity Analysis. We
first provide simulated outcomes of the model based on different
pandemic models without the planner accounting for uncertainty
in their optimal decision. This corresponds to what is typically
termed a sensitivity analysis and illustrates the wide range of opti-
mal responses that depend on the underlying model parameters.
Fig. 3 shows the spread of outcomes for dt and qt across the
different model cases. The spreads are across all model outcomes
for R0 ∈ {1.5, 4.5}, initial CFR ∈ {0.005, 0.02}, quarantine
effectiveness ζ ∈ {0.35, 0.65}, and quarantine productivity cost
parameter α ∈ {0, 0.8}.

¶¶We further constrain the list of countries to only those with daily volatility less than 0.25
to remove outliers and those withR0 to remove countries who implemented preemptive
lock-down orders
##While there is likely to be substantial measurement error impacting these volatility
calibration calculations, the values of σi and σd have no qualitative impact and essentially
no quantitative impact on qt . The values do matter when we calculate the detection error
probabilities, as they determine how large of a model distortion can be masked by the
Brownian shocks. We therefore choose values of σi and σd that are conservative in order
to avoid overstating what is a statistically reasonable amount of uncertainty to consider
based on our choice of ξa .

Fig. 3 indicates very different policies q and outcomes d
depending on parameters. Generally speaking, a higher repro-
duction rate, a higher death rate, a lower cost of quarantine,
and a higher effectiveness of quarantine measures lead to more
quarantine, all else being equal. Thus, we can anticipate that these
models represent the worst-case from the planner’s perspective
when making optimal policy choices. In terms of the differences
in policy choices across models, optimal quarantine policies
are anywhere between no quarantine at all up to 80% of
the population under quarantine, with the duration of policy
measures lasting between 0 wk and approaching 1 y. The fraction
of death in the population resulting from these policies varies by
an order of magnitude, running between nearly 0.0025% and
almost 4%. Observe that these quarantine choices and resulting
death rates are made by a policy maker who knows the true
parameters and is reacting optimally, and in that sense, they are
best-case outcomes under each scenario. However, the dramatic

Fig. 3. Outside the model uncertainty, Notes: These figures show the
range of outcomes and policy responses across 16 potential models of the
pandemic that vary by R0 , CFR, �, and � . The Left column shows optimal
quarantine policies by model, and the Right column shows the fraction of
the population that dies by model. The Top row shows model results where
R0 = 1.5, CFR = 0.005, � ∈ {0.0,0.8}, and � ∈ {0.35,0.65}. The second row
shows model results where R0 = 4.5, CFR = 0.005, � ∈ {0.0,0.8}, and � ∈
{0.35,0.65}. The third row shows model results where R0 = 1.5, CFR = 0.02,
� ∈ {0.0,0.8}, and � ∈ {0.35,0.65}. The Bottom row shows model results where
R0 = 4.5, CFR = 0.02, � ∈ {0.0,0.8}, and � ∈ {0.35,0.65}.
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variation in the magnitude and duration of quarantine policies
suggests that an inappropriate response could lead to even more
dramatically different outcomes. These differences highlight the
likely significant role that accounting for model uncertainty will
play in determining an optimal quarantine policy when the social
planner incorporates ambiguity aversion.

C. Inside-the-Model Uncertainty: Smooth Ambiguity. The pre-
vious section highlighted drastically different responses and out-
comes given different parameters as well as the likely worst-case
outcomes for the model from the social planner’s perspective. In
this section, we examine how a policymaker explicitly accounting
for these differences might respond. We assume that the true
values match the simple averages of the possible parameters,
with R0 = 3.0, initial CFR = 0.0109, costs of quarantine
measures α = 0.4, and quarantine effectiveness ζ = 0.5.
We then examine the optimal quarantine and resulting deaths
from an “uncertainty neutral” solution where the policymaker
simply applies the assumed prior weights to the models and the
“uncertainty averse” policy where the planner starts from the
same prior parameters but adjusts these weights due to concerns
about ambiguity to derive the optimal solution. The assumed
prior belief we consider in our main results is for the case
where the planner gives equal weight to each possible model. In
SI Appendix, we compare three additional sets of prior beliefs over
the models: i) underestimating the pandemic, ii) split-estimating
the pandemic, and iii) overestimating the pandemic. Each case
highlights important scenarios the planner may face and how
uncertainty influences policy choices and model outcomes in
those different scenarios.

Fig. 4 shows the infected, dead, and quarantine outcomes for
the uncertainty neutral and uncertainty averse cases of the equal-
weighted prior scenario. Fig. 5 shows how the uncertainty averse
planner’s prior probabilities over each model are adjusted and
distorted over time. Fig. 6 shows how the planner’s beliefs over
R0, the CFR, the mitigation policy costs α, and the mitigation
policy effectiveness ζ evolve correspondingly.

Starting with the uncertainty neutral results in red in Fig. 4,
we see that quarantine policy starts at 0, then quickly moves
up to around 50% near 8 wk, and then quickly drops back to
0 by 15 wk. The underlying pandemic peaks at around 15%

Fig. 4. Outcomes with and without uncertainty, equal weighted prior, Notes:
These figures show the fraction of the population quarantined (Top), infected
(Bottom Left), and dead (Bottom Right) under (i) the uncertainty neutral model
response (red) and (ii) the uncertainty averse model response (blue).

Fig. 5. Uncertainty aversion distorted model probabilities, Notes: This
figure shows the distorted probability weights for the uncertainty averse
planner. The dashed lines are the probability weights on the most severe
epidemiological scenario (CFR = 0.02,R0 = 4.5) with the least effective
pandemic mitigation scenario (� = 0.35). The red dashed line is the model
with the lowest economic cost of quarantine (� = 0.0), and the yellow dashed
line is the model with the highest economic cost of quarantine (� = 0.8).
The red-shaded area shows the range of distorted probability weights for the
remaining models.

infected near 8 wk and results in about 1.5% dead overall. The
impact of uncertainty aversion in blue is an emphatic increase
in quarantine measures in terms of initial mitigation (around
25%), overall magnitude (above 60%), and in persistence of
mitigation measures (just under 25 wk). The resulting impact on
the evolution of the pandemic is that infections never go above
10%, and deaths are reduced by between a quarter to a half a
percentage point.

These results demonstrate clearly that the concerns related
to uncertainty that prompt the planner to implement stronger
mitigation (lower quarantine effectiveness, higher death, and
infection rates) dominate the concerns related to uncertainty
that motivate the planner to reduce mitigation efforts (concerns
about the cost of mitigation measures). Examining the distorted
probabilities in Fig. 5 and the distorted model parameters of the
uncertainty-averse planner in Fig. 6 highlights why this is the
case. The two models in Fig. 5 that receive the largest increase
in their prior probability weight are precisely those models with
high R0, high CFR, and low mitigation effectiveness ζ (yellow
and red dashed lines). And while the model of these two that also
assumes the highest economic costs of quarantine (yellow dashed
line) receives the highest weight distortion, and is therefore the
clear worst-case model in the planner’s mind, the model from
these two with the lowest economic costs of quarantine (red
dashed line) is not too far behind. This result suggests that
the economic costs are secondary to the other worst-case model
concerns. It is also clear that the effects of model uncertainty
are dynamically evolving and amplified as infections and deaths
increase. The remaining model probabilities (red-shaded region)
remain relatively low throughout, with some dropping to allow
for a shift in probability to the worst-case models.

Fig. 6 shows the distorted model parameters implied by the
planner’s aversion to model ambiguity (blue lines) compared with
the true model parameters (red lines). First, the uncertainty-averse
planner responds as if the infection rate is persistently higher,
with the distortion amplified as infections spike, and deaths
increase. The dynamics of the death rate distortion are similarly
influenced by the severity of the pandemic, though the spike
in CFR is not as high as the uncertainty neutral case where the
elevated number of infections has a more pronounced effect. The
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quarantine effectiveness parameter is distorted downward, with
the effect again amplified by the pandemic severity. However, this
distortion quickly dissipates once the planner stops implementing
quarantine measures around 25 wk. The distortions for the
infection and death rates also distinctly drop off at this same
time when mitigation measures are stopped and infections are
quickly declining; however, these distortions persist longer than
the quarantine effectiveness parameter distortion. The parameter
for the economic costs of quarantine measures is persistently
distorted up but lacks dynamic variation as the pandemic
progresses. These results reemphasize what was highlighted by
the distorted probability weights shown in Fig. 5, that the
dominating concerns about model uncertainty, and therefore
the model dimensions where the most probability weight is
shifted to create the most prominent model distortions as the
epidemic evolves, are the infection and death rates, followed by
the quarantine effectiveness, and then the costs of quarantine
measures. Because the equal-weighted prior on the possible
models used in this setting avoids persistent biases created by
alternative assumed priors, such as those used in the cases
examined in the appendix, the effects of model uncertainty are
demonstrated quite sharply here.

A useful diagnostic is to examine whether the optimal proba-
bility distortions are reasonable in the sense that they could not
be rejected by observed data. We utilize the tool of detection error
probabilities, shown in Fig. 7, for this. These probabilities, now
commonly used in the literature on model uncertainty, are based
on the model discrimination methods proposed by Chernoff (48)
and Newman et al. (49). The bound quantifies the probability
of making a type I or type II error when choosing between
two models where the prior between the two models is 50–50.
Following ref. 16, the detection error probabilities are calculated
using a log-likelihood ratio-based model selection criterion that
compares model outcomes for repeated simulations using the
baseline and worst-case models. Under a standard heuristic, a
value below 10% or 5% would indicate that a policymaker should
reject the distorted model in the light of data generated by the
baseline model. Fig. 7 shows clear dynamic shifts in the detection
error probabilities for the uncertainty averse, with the probability
starting just above 10% and then converging toward 50% after

Fig. 6. Distorted model parameters: R0 , CFR, �, � , Notes: The figures show
the implied R0 (Top Left), CFR (Top Right), � (Bottom Left), and � (Bottom Right)
for the uncertainty neutral case (red lines) and the uncertainty averse case
(blue lines). Each case uses the simulation path resulting from its own optimal
policy.

Fig. 7. Detection error probability comparison, Notes: The figure shows the
detection error probability for model discrimination between the worst-case
and baseline models in the uncertainty-averse (blue line) setting as well as
the assumed prior weight on the baseline and worst-case models (dashed
black line).

52 wk as infections converge toward zero. At that point, when
the pandemic has largely run its course and the distorted weights
are converging back toward the equal-weighted prior, the two
models are nearly indistinguishable and the weighting on the
worst-case and true models is close to the original 50% values.
We find that the detection error probability never drops below a
standard statistical significance value of 10%, let alone the often-
used 5% or 1% values, and thus we interpret this magnitude of
uncertainty distortion as statistically reasonable.

The central driving force in determining optimal policy choices
under uncertainty aversion in our model setting is the trade-
off between permanent and transitory costs in the model. The
costs of a more severe pandemic are additional deaths as well as
additional infections that can lead to more deaths, which has a
permanent negative economic cost, whereas the economic costs
of quarantine measures in the model are transitory. As a result,
the uncertainty averse social planner places more emphasis on
the worst-case epidemiological models which have the highest
permanent costs, while still accounting to some degree for the
transitory economic costs of increased quarantine measures.
The result of the planner’s optimal uncertainty adjustment is
quarantine policy that is amplified and more persistent than in
the uncertainty neutral setting in order to limit the number
of infections and minimize the permanent cost of deaths.
This amplification effect of uncertainty aversion on optimal
quarantine measures is restrained by increasing marginal costs of
additional quarantine measures, as well as the uncertainty about
how severe those costs could be. Eventually, as the pandemic
winds down enough that the planner no longer entertains the
most severe potential worst-case epidemiological outcomes that
seemed plausible during the peak of the pandemic, enhanced
quarantine measures drop as well.

4. Concluding Remarks

In this paper, we embrace the admonition of ref. 50, that “[s]ince
all models are wrong, the scientist must be alert to what is
importantly wrong,” by studying optimal quarantine policy when
allowing for uncertainty in models of epidemics or pandemics.
Our main results focus on the role of uncertainty aversion in a
smooth ambiguity-based decision problem. With new diseases,
or diseases that have had only small outbreaks, there is often
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significant uncertainty about key parameters which determine
the overall consequences of an epidemic. The uncertainty-averse
planner tilts the prior toward deviations with more substantial
utility consequences, and this tilting evolves endogenously as
the pandemic unfolds. The planner consequently emphasizes
the worst-case scenarios in their decision problem by using the
distorted prior to determine the optimal quarantine response
when confronting aversion to uncertainty about the possible
realization of worst-case outcomes.

The numerical results highlight how the planner trades off
uncertainty concerns from epidemic and economic channels.
Concerns about higher infection rates, higher fatality rates,
and decreased effectiveness of quarantine measures increase the
planner’s motivation to implement quarantine measures, whereas
uncertainty about the economic costs of quarantine pushes
the planner to reduce quarantine measures. Taken together,
the uncertainty-averse planner pushes for quarantine measures
that are higher initially, peak higher, and persist longer than
the planner who is uncertainty neutral. These effects are fairly
substantial, even for levels of uncertainty aversion that are
statistically reasonable based on detection error probabilities as
a model selection criterion. The key to these results is that the
planner emphasizes the permanent negative costs of the pandemic
that are manifested as increased deaths over the more transitory
economic costs of increased quarantine measures.

Our analysis provides a framework under which uncer-
tainty and model misspecification can be incorporated into

macroeconomic models of epidemics. Our work emphasizes that
uncertainty can play a large role in determining the optimal
policy response to a new disease. Economists and epidemiologists,
rather than using a range of parameters, can use our framework to
explicitly model uncertainty. Future work can focus on making
these models more tractable for policymakers, who often have to
make decisions in real time, and further examine how economic
agents modify their own behavior in response to uncertainty-
averse policymakers.

Data, Materials, and Software Availability. All study data are included
in the article, SI Appendix, and/or the accompanying online repository at
https://github.com/mbarnet0/Covid.
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