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Immunoglobulin A (IgA) is the most abundant antibody class present at mucosal

surfaces. The production of IgA exceeds the production of all other antibodies combined,

supporting its prominent role in host-pathogen defense. IgA closely interacts with the

intestinal microbiota to enhance its diversity, and IgA has a passive protective role via

immune exclusion. Additionally, inhibitory ITAMi signaling via the IgA Fc receptor (FcαRI;

CD89) by monomeric IgA may play a role in maintaining homeostatic conditions. By

contrast, IgA immune complexes (e.g., opsonized pathogens) potently activate immune

cells via cross-linking FcαRI, thereby inducing pro-inflammatory responses resulting in

elimination of pathogens. The importance of IgA in removal of pathogens is emphasized

by the fact that several pathogens developed mechanisms to break down IgA or evade

FcαRI-mediated activation of immune cells. Augmented or aberrant presence of IgA

immune complexes can result in excessive neutrophil activation, potentially leading to

severe tissue damage in multiple inflammatory, or autoimmune diseases. Influencing

IgA or FcαRI-mediated functions therefore provides several therapeutic possibilities.

On the one hand (passive) IgA vaccination strategies can be developed for protection

against infections. Furthermore, IgA monoclonal antibodies that are directed against

tumor antigens may be effective as cancer treatment. On the other hand, induction of

ITAMi signaling via FcαRI may reduce allergy or inflammation, whereas blocking FcαRI

with monoclonal antibodies, or peptides may resolve IgA-induced tissue damage. In this

review both (patho)physiological roles as well as therapeutic possibilities of the IgA-FcαRI

axis are addressed.

Keywords: IgA, CD89, mucosa, autoimmunity, IgA deficiency, microbiome, vaccination, therapy

INTRODUCTION

Immunoglobulins have important functions in immunity (1, 2). In mucosal areas like the
gastrointestinal, genitourinary, and respiratory tracts, IgA is the predominant antibody present
(3). It plays a key role at these surfaces, which are continuously exposed to antigens, food, and
(commensal) microorganisms. Keeping a tight balance by tolerating commensals and harmless
(food) antigens on the one hand and providing protection against harmful pathogens on the other
hand is a challenging role of mucosal immunity. Mucosal IgA protects the host by diversifying the
microbiota, neutralizing toxins and viruses, blocking colonization and penetration of pathogenic
bacteria, clearing unwanted particles, and promoting sampling of antigens (4). Mucosal IgA is
generally considered as a neutralizing, non-activating antibody. In serum, IgA is the second most
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abundant antibody after IgG. In contrast to mucosal IgA, the
roles of serum IgA are relatively unexplored (5).

IgA deficiency is a relatively common disease with limited
effects on human health (6), which supported the notion of IgA
as a non-inflammatory antibody. By contrast, increased serum
IgA levels or IgA autoantibodies have been reported in multiple
(inflammatory) diseases including IgA nephropathy (IgAN), IgA
vasculitis, dermatitis herpetiformis, celiac disease, inflammatory
bowel disease (IBD), Sjögren’s syndrome, ankylosing spondylitis,
alcoholic liver cirrhosis, and Acquired immunodeficiency
syndrome (7–9), although the role of IgA in pathology is
still ill-understood.

IgA can interact with several receptors that are present on
a variety of (immune) cells. The polymeric immunoglobulin
receptor (pIgR) is present on the basolateral side of epithelial
cells and mediates transport of dimeric IgA (dIgA) to the
mucosal lumen, where it is released as secretory IgA (SIgA)
(10). Retrograde transport of SIgA immune complexes back
into the lamina propria can occur via the transferrin receptor
(Tfr or CD71) on epithelial cells or through microfold cells (M
cells), possible via interaction with Dectin-1 (11, 12). It has been
reported that SIgA immune complexes in the lamina propria
can be taken up by sub-epithelial dendritic cells (DCs) through
interaction with Dendritic Cell-Specific Intercellular adhesion
molecule-3-Grabbing Non-integrin (DC-SIGN) (13). B cells were
shown to express the inhibitory IgA receptor Fc receptor-like
4 (FcRL4), which was suggested to contribute to the regulation
of mucosal IgA responses (14). In the liver, hepatocytes express
the asialoglycoprotein receptor (ASGPR) that is involved in
clearance of IgA from the circulation (15). Mesangial cells in the
glomeruli of the kidneys express CD71 and the recently identified
β-1,4-galactosyltransferase as potential receptors to clear IgA
(16). Furthermore, an Fc alpha/mu receptor is expressed in
gut, spleen and lymph nodes, although its functions remain
to be elucidated (17). Finally, the IgA Fc receptor FcαRI
(CD89) is expressed by myeloid cells (18). It was demonstrated
that interaction of monomeric serum IgA with FcαRI induces
inhibitory signals (19, 20). As such, it is thought that IgA has
an anti-inflammatory role during homeostatic conditions. By
contrast, IgA immune complexes bind avidly to FcαRI, resulting
in cross-linking and induction of pro-inflammatory responses,
which may play an important role in resolving (mucosal)
infections. Additionally, it was suggested that the presence of
excessive IgA immune complexes can lead to uncontrolled and

Abbreviations: ASGPR, Asialoglycoprotein receptor; BsAb, Bispecific antibodies;

DC-SIGN, Dendritic Cell-Specific Intercellular adhesion molecule-3-Grabbing

Non-integrin; DCs, Dendritic cells; dIgA, Dimeric IgA; FcαRI, Fc alpha receptor;

FcRL4, Fc receptor-like 4; fMLP, N-formylmethionyl-leucyl-phenylalanine; GF,

Germ free; GM-CSF, Granulocyte-macrophage colony–stimulating factor, ; IBD,

Inflammatory bowel disease; IFN-γ, Interferon-gamma; IgA, Immunoglobulin

A; IgAN, IgA nephropathy; IL, Interleukin; ITAM, Immunoreceptor tyrosine-

based activation motif; ITAMi, Inhibitory immunoreceptor tyrosine-based

activation motif; kDa, Kilodalton; LABD, Linear IgA Bullous disease; LPS,

Lipopolysaccharide; LTB4, Leukotriene B4; M cells, Microfold cells; pIgR,

Polymeric immunoglobulin receptor; RF, Rheumatoid factor; SC, Secretory

component; SIgA, Secretory IgA; SIgM, Secretory IgM; Tfr, Transferrin receptor;

TGF-β, Transforming growth factor-beta; TLR, Toll like receptor; TNF-α, Tumor

necrosis factor-alpha.

disproportionate immune cell activation, which leads to severe
tissue damage in autoimmune diseases, such as IgA blistering
diseases and rheumatoid arthritis (RA) (18). The number of
diverse IgA receptors, their differential expression on cells and
the distinct IgA-induced effector functions support the complex
roles of this antibody in maintaining homeostatic conditions,
which go beyond the dogma of IgA as a non-inflammatory
regulator of mucosal immunity. This is further supported by the
fact that several bacteria have evolved to escape IgA-mediated
functions by for instance producing IgA1 proteases or expressing
molecules that hamper interaction with IgA receptors (21–23).

This review addresses the different functions of IgA, its
interaction with FcαRI,—as the best characterized IgA receptor -,
in health and disease and the possibilities to target either
molecule for therapeutic strategies.

STRUCTURE OF IgA

IgA is the most predominant antibody produced by humans with
a synthesis rate of 66 mg/kg each day. IgA can be subdivided
into IgA1 and IgA2 (Figure 1A). The IgA1 hinge region contains
multiple O-linked glycans and two N-linked glycosylation sites
per heavy chain. The truncated hinge of IgA2 lacks O-glycans and
each heavy chain contains two additional N-glycans (25).

IgA1 comprises 80–85% of total human serum IgA (1–3
mg/ml) and is prevalent on many mucosal surfaces including
the nasal, bronchial, gastric, and small intestinal mucosa. IgA2
is predominantly present in the colon (26). This division of IgA1
and IgA2 between the small and large intestine may reflect the
luminal distribution of food proteins and gram-negative bacteria,
which is supported by findings that bacterial overgrowth in the
small intestine shifts production toward IgA2 (27). Whereas,
IgA1 is susceptible to proteolytic cleavage due to a longer hinge
region, IgA2 is resistant to bacterial proteases that are present in
the lumen of mucosal areas (6, 21).

Serum IgA is predominantly monomeric in humans and
primates (while dimeric in other animals) and is produced
by local plasma cells in the bone marrow, spleen, and lymph
nodes. IgA at mucosal surfaces is produced by local plasma cells
as dimeric molecules, although small amounts of monomers,
trimers and tetramers or polymers can also be present (1,
3). Dimeric IgA is composed of two monomers, which are
linked with a J-chain (Figure 1B). It associates with the pIgR
present at the basolateral side of epithelial cells in mucosal
surfaces, after which dIgA is transported across the epithelium
and released into the lumen. For every molecule of dIgA
that is transported across the epithelium, one pIgR is needed
(10, 28, 29). At the luminal side, pIgR is cleaved and a part,
referred to as secretory component (SC), remains attached
thereby forming SIgA (Figure 1B). Secretory component is a
hydrophilic and highly (N- and O-linked) glycosylated negatively
charged molecule, which protects SIgA from degradation when
present in luminal secretions (30). Glycan removal led to reduced
binding capacity of SIgA to gram-positive bacteria, indicating the
essential role of carbohydrate structures in efficient IgA coating of
(mainly commensal) bacteria (31).
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FIGURE 1 | Structure of IgA isotypes and the IgA Fc receptor (FcαRI). (A) IgA1 vs. IgA2. IgA consists of two heavy chains (blue), each composed of three constant

regions and one variable region, and two light chains (brown) that consist of one constant and one variable region. IgA1 contains a hinge region with O-linked

glycosylation. (B) Monomeric, dimeric IgA, and secretory IgA. Dimeric IgA consist of two IgA molecules that are linked with a J-chain (green). Secretory IgA contains

an additional molecule, the secretory component (SC; red). (C) Structure of FcαRI. FcαRI consist of a transmembrane domain, a short cytoplasmic tail and two

(Continued)
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FIGURE 1 | extracellular domains (EC1 & EC2). It is associated with the signaling FcR γ chain via an electrostatic interaction. The IgA heavy chain junction of Cα2 and

Cα3 binds to the EC1 domain of FcαRI in a 2:1 stoichiometry. (D) A model of dIgA1 bound to four FcαRI molecules. The FcαRI:IgA1-Fc complex (PDB 1OW0) was

superimposed onto the solution structure of dIgA1 published by Bonner et al. (24) (PDB 2QTJ). FcαRI molecules bound to the top or bottom IgA1 antibodies are

colored green or yellow, respectively. The C-terminal residue of each receptor is shown in orange or red to illustrate the membrane-proximal region. Kindly provided by

Andrew B. Herr, PhD (Cincinnati Children’s Hospital).

STRUCTURE AND EXPRESSION OF FCαRI

FcαRI is a member of the Fc receptor immunoglobulin
superfamily (32). It is expressed on cells of the myeloid lineage,
including neutrophils, eosinophils, monocytes, macrophages,
Kupffer cells, and certain DC subsets (18, 33, 34). Additionally,
FcαRI expression on human platelets was described (35). Unlike
for other Fc receptors, the FcαRI gene is located on chromosome
19 (19q13.4) within the leukocyte receptor cluster (LRC). This
region also encodes natural killer cell inhibitory/activatory
receptors and leukocyte Ig-like receptors. The FcαRI amino
acid sequence has therefore more similarity with these receptors
than with other Fc receptors (19, 36). The EC1 and EC2 exons
each encode an extracellular Ig-like domain. These domains
are folded in an angle of ∼90◦. The TM/C exon encodes
both the transmembrane domain and a short cytoplasmic
tail (Figure 1C) (36).

Surface expression of two isoforms of FcαRI has been
described on human phagocytes. The a.1 isoform is a 32 kDa
single pass transmembrane receptor, which can be extensively
glycosylated (six N-linked sites and seven O-linked sites)
(37). The molecular weight of the a.1 isoform varies between
55 and 75 kDa on neutrophils and monocytes, while the
molecule is heavier (70–100 kDa) on eosinophils due to more
extensive glycosylation (21, 37). The a.2 isoform misses 66
nucleotides in the EC2 exon resulting in loss of one O-
linked glycosylation site and has a weight of 28 kDa (without
glycosylation) (38). The a.2 isoform is solely expressed on
alveolar macrophages (38).

The expression of FcαRI was estimated to represent
66,000 and 57,000 molecules on neutrophils and monocytes,
respectively (33). Expression level can be modulated by
several mediators. On neutrophils, N-formylmethionyl-leucyl-
phenylalanine (fMLP), interleukin (IL)-8, tumor necrosis factor-
alpha (TNF-α), lipopolysaccharide (LPS), and granulocyte-
macrophage colony–stimulating factor (GM-CSF) enhanced the
expression of FcαRI (39–41). GM-CSF has also an important
role in mobilizing neutrophils from the bone marrow (42)
and was shown to induce high affinity binding of IgA
by human neutrophils (43). Neutrophil FcαRI upregulation
was rapid and either induced by de novo synthesis or
via transport from an intracellular pool to the cell surface
(44). On monocytes and monocyte-like cell lines FcαRI
expression was enhanced by calcitriol, LPS, TNF-α, GM-
CSF, and IL-1β, while downregulation was observed in
response to transforming growth factor-beta (TGF-β) or
interferon-gamma (IFN-γ) (45, 46). Both monomeric and, to
a greater extent, polymeric IgA were able to downregulate
FcαRI, possibly due to receptor aggregation, resulting in
internalization (47–49).

IgA AND FCαRI

Binding of IgA to FcαRI
FcαRI is a low affinity Fc receptor for monomeric IgA and dIgA
(Ka = 106 M−1), while IgA immune complexes bind with high
avidity and cross-link FcαRI (50). Monomeric IgA binds to the
EC1 domain of FcαRI via its Cα2 and Cα3 domains in a 2:1
stoichiometry (i.e., one IgAmolecule binds two FcαRImolecules)
(Figure 1C) (51, 52). Presence of residues Pro440-Phe443 and
Leu257-Leu258 in these domains is essential for IgA binding to
FcαRI (53).

Dimeric IgA contains four FcαRI binding sites and can
therefore theoretically bind four FcαRI, although this is
presumably not possible due to steric hindrance (Figure 1D)
(24). It remains to be elucidated how dIgA exactly interacts with
the FcαRI. Binding of SIgA to FcαRI is hampered because of
steric hindrance by SC. In order for SIgA to activate cells, co-
stimulation of FcαRI, and the lectin Mac-1 (CD11b/CD18) was
necessary (54).

Little is known about the difference between IgA1 and IgA2

binding to FcαRI (if any) or the influence of glycosylation

on binding capacity. It was however shown that a specific
mutation (Asn58 to Glu58) resulted in an altered glycosylation

pattern of FcαRI, which increased the binding capacity of IgA
nearly 2-fold (55). Removal of sialic acids led to a nearly 4-

fold increase of IgA binding. This demonstrates the importance
of glycosylation at position 58 of FcαRI in binding affinity for
IgA (55). N-glycans located at the external surface of the IgA
heavy chain were important for interaction with FcαRI as well
(56). Furthermore, it was demonstrated that alterations in IgA1
glycosylation and impaired sialylation of FcαRI were linked to
increased binding of IgA1 to FcαRI on neutrophils of patients
with IgA nephropathy, which may influence pro-inflammatory
functions (47). In transfectants, eosinophils, and monocytes
FcαRI binding capacity for IgA immune complexes was enhanced
by incubation with several cytokines like GM-CSF, IL-4, and IL-
5, without affecting the expression level of the FcαRI on the cell
surface (43, 57).

Competitive binding for FcαRI has been described for
pentraxins, including the acute phase C reactive protein and
serum amyloid P component, resulting in cell activation (58).
These proteins are characterized by a pentameric ring-like
structure containing five subunits, which recognize a similar site
on FcαRI as IgA. However, mutations in FcαRI outside the IgA
binding site did not affect IgA binding, but enhanced pentraxin
binding 2-fold, suggesting that pentraxins bind to a broader
region on FcαRI than IgA (58).

Importantly, Staphylococcus aureus and group A and B
streptococci developed evasion strategies for IgA-mediated
elimination by FcαRI-expressing immune cells by producing
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several decoy proteins that obstruct binding of IgA to FcαRI
(22, 23). Anti-IgA proteins from group B streptococci include
Sir22, Arp4 and an unrelated β protein, whereas Staphylococcus
aureus produces staphylococcal superantigen-like protein seven.
These proteins bind to specific Fc residues (amino acids Pro440-
Phe443; i.e. PLAF) in the Cα2 and Cα3 domains of IgA (22, 23,
59). The fact that pathogens evolved and developed mechanisms
to evade IgA-mediated elimination by FcαRI-expressing immune
cells (60), challenges the dogma of IgA as a non-inflammatory
and possibly redundant antibody.

Cell Activation After FcαRI Cross-Linking
Cross-linking of FcαRI by IgA immune complexes (or IgA-
opsonized pathogens) induces a variety of processes, including
phagocytosis, antibody-dependent cellular cytotoxicity,
superoxide generation, release of inflammatory mediators,
and cytokines as well as antigen presentation (61–65). Due to
hampered binding of SIgA to FcαRI, SIgA does not induce
efficient uptake of pathogens by neutrophils or Kupffer cells.
However, respiratory burst in neutrophils can be triggered
by SIgA, although less efficiently compared to serum IgA
(54). Phagocytosis of IgA-coated bacteria or yeast particles
by neutrophils was enhanced after priming with GM-CSF or
IL-8 (43, 66). Uptake of IgA-coated particles induces increased
reactive oxygen species production, subsequently resulting in
the release of neutrophil extracellular traps (NETs), which are
web-like structures consisting of DNA and proteins (e.g., elastase
and myeloperoxidase) able to catch pathogens (61). FcαRI
cross-linking furthermore induces release of the neutrophil
chemoattractant leukotriene B4 (LTB4) by neutrophils, thereby
generating a positive migration feedback loop (64). LTB4
was also shown to mediate migration of monocyte derived
DCs (67). As such, in case of mucosal infection neutrophils
can function as potent phagocytes, which eliminate invading
IgA-coated pathogens, and attract DCs that present antigens
to T cells. It was recently shown that in vitro generated human
mucosal CD103+ DCs (cultured with retinoic acid) express
FcαRI. After stimulation with IgA-coated Staphylococcus aureus
in the presence of Pam3CSK4 CD103+ DCs produced pro-
inflammatory cytokines including TNF-α, IL-1β, IL-6, and
IL-23, which was dependent on FcαRI (68). Furthermore,
IgA-stimulated CD103+ DCs enhanced IL-17 production by
allogeneic T cells and IL-22 production by intestinal type three
innate lymphoid cells, respectively. This suggests that FcαRI
crosslinking by IgA induces a pro-inflammatory T helper 17
response accompanied with IL-22 induced activation of epithelial
cells, which might contribute to tissue repair (68).

Signaling via FcαRI
In order to initiate optimal effector functions after FcαRI
cross-linking, FcαRI needs association with the FcR γ-chain,
which contains an immunoreceptor tyrosine-based activation
motif (ITAM) in its intracellular domain (69–72). After cross-
linking of FcαRI, the src family kinase Fyn aggregates with
the receptor complex and phosphorylates the tyrosines in the
ITAM in order to act as docking sites for signaling molecules
(69, 73, 74). Recruited Syk associates with the phosphorylated

ITAM and plays an essential role in the signaling cascade. It
directly activates phosphoinositide 3-kinase and phospholipase
Cγ, which are involved in two separate signaling routes. These
pathways are interconnected and can therefore modulate each
other (69, 72, 75). Eventually the signaling pathways will
activate the cell, resulting in pro-inflammatory functions (18,
66). Alternatively, it was demonstrated that inhibitory signals
can also be transduced via the FcαRI-FcR γ-chain complex.
Monomeric targeting of FcαRI (not leading to cross-linking)
results in an inhibitory signal and is dependent on Lyn instead
of Fyn kinase (74). Phosphorylation of Syk, LAT, and ERK is
hampered by “inhibisomes” that contain signaling molecules and
both inhibitory and activating receptors (20, 76). Inhibisomes
impair activating Fc receptor functioning via a process referred to
as inhibitory ITAM (ITAMi) receptor signaling that initiates anti-
inflammatory responses to dampen pro-inflammatory responses
induced by other Fc receptors (77). Thus, Lyn and Fyn are
essential molecules controlling ITAM inhibition and activation,
respectively (74). Signaling via FcαRI was recently described in
more detail in Aleyd et al. (18).

IgA AND FCαRI MEDIATED FUNCTIONS AT
DIFFERENT LOCATIONS

In the Lumen of Mucosal Sites
The functions of SIgA in the intestinal lumen have been well-
characterized (Figure 2A). SIgA and commensal microbes have
important roles inmaintaining balance between tolerance toward
non-harmful commensals and food compounds vs. immunity
against pathogens (78, 79). When SIgA is released from the
epithelial layer into the lumen, it remains attached to the outer
mucus layer (80). This close localization to bacteria enables
SIgA to disturb bacterial motility and to surround pathogens
that have a hydrophilic shell. SIgA coating blocks entrance
of pathogens into the intestinal epithelium (a process called
immune exclusion). This coating leads to agglutination, because
antibody-mediated crosslinking of surface antigens will lead
to formation of bacterial clumps. Peristaltic bowel movements
ensure removal of bacterial aggregates. Bacterial products like
enzymes and toxins can be neutralized by SIgA and adherence
to host cells, including epithelial cells, is prevented (78).
Thus, together with the mucus layer, SIgA forms a barrier
against pathogens, and commensals by preventing colonization
and penetration of the mucosal epithelium, thereby avoiding
infection and antigen leakage into the systemic circulation (81).

Recently the interplay between luminal microbiota and SIgA
was investigated in more detail (4, 82) (Figure 2A). It is still
unclear how SIgA and the microbiota exactly relate to each
other, but it was described that SIgA shapes and diversifies the
gut microflora on the one hand, while the microbiota on the
other hand has an important role in regulating IgA levels (82–
84). During weaning up to 70% of intestinal commensals are
coated with SIgA in mice and the majority of human fecal
bacteria in healthy donors are opsonized with IgA, emphasizing
the importance of this association in maintaining homeostasis
(31, 85). A wide variety of commensals can be opsonized with
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FIGURE 2 | Roles of mucosal IgA in homeostasis. (A) Dimeric IgA (dIgA) is produced by local plasma cells (PC) in the lamina propria. Dimeric IgA is transported to the

intestinal lumen by binding to the polymeric immunoglobulin receptor (pIgR) present on epithelial cells. In the lumen it is released as secretory IgA (SIgA) where it can

coat (commensal) bacteria. (B) On route dIgA can bind, neutralize and eliminate viruses. (C) (1) Infiltrated antigens and pathogens are opsonized by dIgA and

transported back into the lumen. Sub epithelial dendritic cells (DCs) can (2) sample antigens or (3) take up SIgA-coated pathogens that enter via microfold cells (M

cells). Pathogens in the lamina propria are coated with dIgA after which this immune complex is taken up by FcαRI- expressing (4) DCs, and (5) neutrophils. In

response neutrophils secrete leukotriene B4 (LTB4), hereby attracting more neutrophils, which will clear the infection. (D) Serum IgA is (1) capable of inhibiting

(unwanted) pro inflammatory responses in the circulation via ITAMi signaling in monocytes. (2) IgA-opsonized bacteria which have leaked into the circulation are taken

up by FcαRI-expressing Kupffer cells (KC) in the liver.

polyreactive IgA, although it remains unclear how these IgA
antibodies are generated, what the relevant targets are and how
binding affects the fitness and physiology of commensals (86).
In contrast to commensals, pathogens elicit highly specific T-
cell dependent IgA responses (86, 87). Genetic background
was shown to influence the repertoire diversity and abundance

of innate IgA as germ free (GF) naïve BALB/c mice already
had substantial innate IgA levels, independent of microbiota
colonization, while this was not the case for C57BL/6 mice (83).

Furthermore, highly glycosylated IgA was able to bind to
several gram negative bacteria, which modulated their gene
expression, leading to enhanced processing of fibers and
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production of butyrate as well as a diversified microbiota
composition (82). Moreover, it was shown that the disbalanced
microbiota of colitogenic mice became more balanced and
diversified after oral administration of the monoclonal IgA
W27, which is a high-affinity polyreactive antibody (84).
Importantly, mice lacking IgA, J-chain or pIgR were unable
to efficiently protect themselves against mucosal infections.
These mice have an altered gut microbiota as well as increased
mucosal permeability, which renders them more susceptible to
develop colitis (80, 88–94). Of note, lack of J-chain or pIgR
also led to absence of SIgM which may have contributed to
altered microbiota and compromised immunity (88, 91, 94). A
diversified microbiota can regulate the amount of SIgA present
in luminal secretions by enhancing the level of pIgR on epithelial
cells (1, 31, 95), illustrating the complex interrelationship
between IgA (and IgM) and the microbiota in maintaining
homeostatic conditions.

In Epithelial Layers
It was described that SIgA can be translocated back into the
lamina propria (retrograde transport). SIgA and SIgA immune
complexes can be transported across specialized epithelial cells,
referred to as M cells, which are located in the Peyer’s patches
of the intestine. Dectin-1 that is expressed by M cells may
facilitate transepithelial transport (11, 96). Additionally, a role
for TfR1 on epithelial cells in retrotransport of SIgA-coated
gliadin was reported in studies investigating celiac disease (12).
Retrotransported SIgA immune complexes can be taken up by
DCs that are present in the subepithelial dome. In vitro models
support an essential role for DC-SIGN in recognizing SIgA
immune complexes (13). The retrograde transport mechanism
and recognition of SIgA by DCs is thought to be essential in
monitoring the antigenic status of the intestinal lumen.

On route through epithelial cells, dIgA has the ability to
intercept and disarm viruses and redirect them into the lumen,
after which they are removed with the feces (Figure 2B).
Neutralization of several viruses by IgA including sendai,
influenza, rota, measles, and human immunodeficiency virus
(HIV), as well as bacterial LPS was demonstrated in vitro (97–
104). IgA has enhanced neutralizing capacity compared to other
Ig isotypes due to the N-linked glycosylation of position N459D
in the heavy chain Cα3 (105). This effect is independent of the
antigen binding site as glycosylated non-specific IgA neutralized
the virus as well.

IgA deficient mice, J-chain deficient mice (lacking dIgA,
SIgA, and SIgM) and pIgR deficient mice (lacking SIgA and
SIgM) have defects in clearing viruses, are more susceptible
to reinfection and lack protective immunity (106–108), which
emphasizes the important role of IgA in anti-viral immune
responses. By contrast, in a recent study pIgR knock-out mice
showed a reduced acute norovirus infection rate, suggesting that
pIgR and natural polymeric immunoglobulins may promote viral
infections. It was suggested that the less diversified intestinal
microbiota present in pIgR deficient mice was responsible for
reduced infection. pIgR deficient mice had enhanced levels of
the anti-viral cytokine IFN-γ, which might explain the reduced
infection rates (109).

In the Lamina Propria
Food particles and commensal microbiota are abundantly
present in the lumen and can continuously reach the lamina
propria through diffusion (via epithelial tight junctions) or
transcytosis (Figure 2C). These non-harmful components need
to be tolerated and they need to be cleared from the mucosa
to avoid the formation of immune complexes, which may
trigger undesired immune responses. In the lamina propria
dIgA can eliminate both non-harmful and harmful components
from the tissue by transporting immune complexes back
into the lumen through association with the pIgR (97, 101).
Additionally, FcαRI+ residing immune cells may help to clear
IgA-opsonized pathogens. Under homeostatic conditions, only
few FcαRI+ cells are found in mucosal areas (own unpublished
data). However, as dIgA-opsonized complexes have the ability
to cross-link FcαRI, leading to release of LTB4, neutrophils
can be rapidly recruited (64) (Figure 2C). Furthermore, in
vitro generated FcαRI+ CD103+ DCs were shown to produce
pro-inflammatory cytokines after stimulation with IgA-coated
Staphylococcus aureus in the presence of Pam3CSK4, suggesting
that a protective adaptive immune response is initiated during
mucosal infections (68).

Systemic Protection
It was demonstrated that a variety of commensal microbes in the
gut influenced serum IgA levels, which protected mice against
lethal sepsis when the intestinal barrier was damaged (110).
Serum IgA was shown to target the same epitopes and used the
same V-gene segments as plasma cells in the gut (111), suggesting
that systemic and mucosal plasma cells originated from the same
B cell clone. Diminished serum IgA titers were found in GF mice
compared to specific pathogen free mice, supporting the essential
role for microbiota diversity in IgA production (110, 112).
Mice lacking pIgR and SIgA have epithelial barrier disruption,
enhanced numbers of IgA-secreting plasma cells and systemic
immune activation indicated by increased levels of serum IgG
and IgA (113, 114). Higher levels of albumin were found in the
feces, suggesting leakage of serum proteins across the epithelium
(113). At the same time intestinal proteins and microorganisms
can leak into the tissue and enter the bloodstream. After entering
the portal circulation they will encounter Kupffer cells in the liver,
which are specialized FcαRI+ macrophages that can eliminate
IgA-coated bacteria from the bloodstream (Figure 2D) (34).
Kupffer cells, macrophages, and monocytes produced increased
levels of pro-inflammatory cytokines (e.g., TNF-α, IL-1β, and
IL-6) after cross-linking of FcαRI in the presence of pathogen
recognition receptor ligands (such as Pam3CSK4, LPS, flagellin)
(reflecting IgA-opsonized pathogens) (115).

In contrast to the activating properties of complexed serum
IgA, monomeric serum IgA was capable of downregulating
cell responses and promoted powerful anti-inflammatory effects
(Figure 2D). This is referred to as ITAMi signaling (see above)
(19). Monomeric targeting of the FcαRI with serum IgA may
protect against enhanced receptor activation, which is beneficial
in inflammatory diseases characterized by the presence of IgG
immune complexes or enhanced FcεRI signaling.
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IgA-ASSOCIATED DISEASES

In babies circulating IgA levels are physiologically low because
IgA cannot be transported across the placenta. Colostrum and
breast milk are important sources of SIgA antibodies to provide
local protection against infections. As soon as exposure to
microbiota takes place, the SIgA immune system is rapidly
maturing. Nonetheless, adult serum IgA levels are not reached
before puberty as the systemic IgA compartment develops very
slowly. The daily production rate of IgA exceeds that of all other
combined antibody classes (66 mg/kg/day), suggesting that the
role of IgA in immune defense must be considerable for the
body to spend high energy levels (30). Abnormal IgA levels in
serum and external secretions (either higher or lower) have been
described in numerous pathologies. Very low or absent IgA is
referred to as IgA deficiency (116). High levels of (aberrantly
glycosylated) IgA are present in multiple diseases including
IgA nephropathy, dermatitis herpetiformis, IgA vasculitis, and
rheumatoid arthritis.

IgA Deficiency
Selective IgA deficiency is the most common human
immunodeficiency and is characterized by a serum IgA
concentration of <7 mg/dL. Both serum IgA and mucosal IgA
are very low or absent in selective IgA deficient patients (6, 117).
Defects in B cell isotype switching, terminal differentiation of
IgA+ plasma cells into secretory cells or long-term survival
of IgA-secreting plasma cells can result in IgA deficiency
(118, 119). Unbalanced cytokine production (including IL-4,
IL-6, IL-7, IL-10, and IL-21) has been reported with a key role
for TGF-β, as it induces isotype switching and differentiation
of antigen-stimulated B cells into IgA-secreting plasma
cells (120, 121). The initial defect may lie in the stem cell
compartment as IgA deficiency can be transferred by bone
marrow transplantation (122).

A significant heterogeneity exists among IgA deficient
patients. Many patients are asymptomatic and only few show
minor clinical symptoms. This may in part be due to better
hygiene, vaccination, and antibiotic use in modern Western
society. Furthermore, it was shown that increased production
of IgM and/or IgG can partially compensate for the lack of
IgA (Figure 3A) (123, 124). IgA deficient patients can develop
severe pathology when IgG and/or IgM does not compensate
for IgA loss (117, 125). Conflicting reports on the influence
of IgA deficiency on fecal microbiota in patients have been
reported. One study showed a significantly less diverse fecal
microbiota of IgA deficient patients compared to healthy
controls, and specific taxa were lost in IgA deficient patients
(124). Another study reported a mild loss in microbial diversity
in IgA deficient patients (117). SIgM could partially rescue
the microbiota composition in IgA deficient patients (117).
However, SIgM targeted a broader range of microbes and
showed less specificity for microbes compared to SIgA (124).
Patients can have increased C reactive protein levels, which is
indicative for enhanced inflammation, along with an increased
risk of death 10–15 years after initial diagnosis (126, 127).
In a recent study no risk association was found between

IgA deficiency and hospital infections (127). IgA deficiency
was also not more common among hospitalized individuals
compared to healthy blood donors (123). However, patients have
moderate enhanced susceptibility to gastrointestinal, urinary,
and recurrent respiratory infections, allergies, celiac disease,
and autoimmune diseases (6, 128, 129). Forty-five percent
of IgA deficient patients have the 8.1 haplotype (HLA-A1,
B8, DR3, DQ2 haplotype) compared to 16% in the general
population (123, 130). The 8.1 haplotype is also commonly found
in patients with autoimmune diseases (including rheumatoid
arthritis and systemic lupus erythematosus), which are strongly
associated with IgA deficiency (123). These findings suggest
that patients share predisposing genes, which may explain
the increased prevalence of selective IgA deficiency in certain
autoimmune disorders.

Eighty-four percent of IgA deficient patients were positive
for a wide variety of allergens in skin prick tests (131). The
link between IgA deficiency and allergies may be explained by
higher levels of circulating antigens due to increased permeability
at mucosal surfaces. Alternatively FcαRI may not be able to
induce ITAMi signaling in the absence of monomeric serum IgA,
possibly resulting in overactivation of immune cells that can lead
to development of allergies and autoimmune diseases (132).

Anti-IgA antibodies, usually of the IgG subclass, are
commonly found in IgA deficient patients (40%), although their
etiology remains unknown. Transfusing IgA-containing blood
products to treat IgA deficiency is therefore complicated, as
IgA-anti-IgA immune complexes can induce severe reactions,
especially when anti-IgA antibodies of the IgE subclass are
present (133, 134).

Allergic Diseases
Allergic diseases are inflammatory conditions of which the
majority are characterized by high specific IgE levels and
activated mast cells (135). Alterations in microbiota diversity
reduced immunological tolerance, potentially resulting in food
allergies, allergic rhinitis, and asthma (136). It was suggested
that the current hygienic life style in the western world altered
normal microbiota colonization in infants thereby contributing
to the enhanced prevalence of allergies (“hygiene hypothesis”)
(137). A less diverse composition of the microbiota was
associated with lower IgA levels, suggesting that IgA can be
involved in the development of allergic diseases as well. Studies
investigating the link between IgA levels and allergy and asthma
have however been conflicting. In children, serum IgA levels
correlated negatively with asthma severity (138). Moreover,
it was shown that lower levels of intestinal bacteria were
coated with IgA in infants with asthma (139). In adults, both
house dust mite sensitization and airway hyper-responsiveness
correlated negatively with serum IgA (140). Furthermore, asthma
symptoms like shortness of breath and sputum production
inversely correlated with, respectively mucosal SIgA and serum
IgA levels (141). These results suggest a potential link between
low IgA levels and the risk and severity of allergic asthma,
which supports a protective role for IgA in allergy. However,
data has also been reported showing enhanced specific IgA
levels in patients with allergic rhinitis and atopic asthma

Frontiers in Immunology | www.frontiersin.org 8 March 2019 | Volume 10 | Article 553

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Breedveld and van Egmond IgA and FcαRI in (Patho)physiology

FIGURE 3 | Mucosal IgA in pathogenesis. (A) IgA deficiency. In absence of IgA the intestinal microbiota is (1) less diverse and unbalanced. (2) IgM, and (3) IgG can be

transported across the epithelium by associating with the pIgR or the neonatal Fc receptor (FcRn), respectively, to compensate IgA loss. Theoretically, IgM may be

able to (4) neutralize viruses and (5) exclude infiltrated antigens. Sub epithelial DCs are not described to (6) sample IgM coated bacteria. (7)

(Continued)

Frontiers in Immunology | www.frontiersin.org 9 March 2019 | Volume 10 | Article 553

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Breedveld and van Egmond IgA and FcαRI in (Patho)physiology

FIGURE 3 | IgM-coated bacteria are not described to enter M cells. (8) Invaded IgM-coated pathogens are not recognized by FcαRI-expressing immune cells,

resulting in less efficient pathogen elimination. (B) Celiac disease and gluten-associated diseases. (1) IgA-gliadin complexes bind to the transferrin receptor (TfR) and

are retrotransported across the epithelium. (2) In the lamina propria deamidated gliadin is taken up by DCs and after processing (3) presented to T helper (Th) cells. (4)

Th1 cell activation leads to the release of pro-inflammatory mediators (5) causing tissue damage. (6) Activated Th2 cells stimulate autoantibody production directed

against gliadin and tissue transglutaminase by B cells. (7) Plasma cells produce autoantibodies which (8) can be detected in the circulation and form deposits with

soluble FcαRI in the kidney resulting in damage (IgA nephropathy). (9) IgA anti-tissue transglutaminase forms complexes in the dermis, resulting in neutrophil activation

and concomitant tissue damage (dermatitis herpetiformis). (C) IgA-FcαRI induced pathology. IgA immune complexes activate neutrophils by cross-linking FcαRI,

resulting in release of LTB4 and enhanced neutrophil influx, which induces tissue damage as seen in the skin (LABD), vessels (IgA vasculitis), joints (RA), and potentially

in colon (IBD).

(142, 143). Moreover, allergen specific IgA in combination
with eosinophilia were common characteristics of asthma and
allergic rhinitis (142), possibly because IgA can induce eosinophil
survival, thereby contributing to disease severity (144). These
results demonstrate a dual role of IgA in allergies, which is
currently ill-understood.

Rheumatoid Arthritis
Rheumatoid arthritis (RA) is a systemic and chronic autoimmune
disorder characterized by infiltration of inflammatory immune
cells in the joints, resulting in swelling and pain. Presence
of autoantibodies including rheumatoid factor (RF) and anti-
citrullinated protein antibodies are commonly present, which can
be of the IgM, IgG or IgA isotype. High IgA anti-citrullinated
protein antibodies and IgA RF titers correlate with worse disease
prognosis and severity, and have been used as predictive value for
disease progression (145–147). This suggests that IgA contributes
to disease pathology. It was demonstrated that blocking the
interaction between IgA RF and macrophage FcαRI resulted
in reduced levels of TNF-α (148). Additionally, neutrophils
stimulated with plasma of RA patients, containing IgA RF,
induced NET release, which was inhibited by blocking FcαRI
(149). Thus, IgA-immune complexes in patients can induce pro-
inflammatory functions of neutrophils and macrophages, which
are prominently present in inflamed joints (150), and as such
contribute to inflammation in RA.

IgA Nephropathy
IgA nephropathy (IgAN) is the most common form of
glomerulonephritis and progresses to end-stage kidney failure
in 50% of patients. IgA levels are increased in both serum
and urine of IgAN patients. A link with RA was suggested,
as patients can also have enhanced IgA RF in their serum.
This condition is referred to as rheumatoid nephropathy
(151). It was hypothesized that galactose-deficient O-glycans
in IgA1, produced by plasma cells in the gut, can trigger
the production of anti-glycan IgG/IgA antibodies, after which
formed immune complexes deposit in the glomeruli where
renal injury is initiated (152, 153). The enzymes responsible
for production of O-linked glycans are glycosyltransferases,
which expression are amongst others regulated by bacterial
products, suggesting that the microbiome regulates the specific
glycosylation pattern of IgA1 during the initial phase of IgAN
(154, 155). In mice, galactose-deficient IgA1 was not cleared
from the murine circulation and deposited in the kidney (15).
FcαRI+ Kupffer cells were unable to clear circulating IgA of
IgAN patients in vivo (156). In transgenic mice expressing

the human FcαRI on monocytes and macrophages, soluble
FcαRI-IgA complexes that were deposited in the mesangium,
induced glomerular and interstitial macrophage infiltration,
hematuria, mesangial matrix expansion, and mild proteinuria
(157, 158). Moreover, in FcαRI transgenic and human IgA
knock-in mice soluble FcαRI-IgA complexes induced kidney
inflammation by interacting with TfR1 on mesangial cells, which
induced the release of pro-inflammatorymediators. Additionally,
the expression of transglutaminase 2 was induced, which
subsequently enhanced the expression of TfR1, thereby inducing
a pathogenic amplification loop (157). Of note, shedding of
FcαRI frommacrophages of transgenicmicemay have aggravated
disease, which will likely not occur in patients as human
macrophages express lower FcαRI levels. Nonetheless, IgA-
soluble FcαRI complexes have been found in patients with
IgAN, and serum IgA immune complexes bound more avidly
to TfR1 in vitro compared to those from healthy controls (158,
159). It was demonstrated that IgAN and Henoch-Schönlein
purpura nephritis patients had reduced levels of soluble FcαRI
and transglutaminase 2 in their urine (160), which makes it
plausible that soluble FcαRI immune complexes deposit in the
human kidney.

IgA Vasculitis
IgA vasculitis, also known as Henoch-Schönlein purpura, is the
most common form of vasculitis. The condition is characterized
by IgA1 immune deposits and neutrophil infiltrates affecting
the small vessels. As a result, red blood cells can leak into
the skin leading to typical cutaneous hemorrhages, which
leads to diagnosing the disease (161, 162). The pathology of
IgA vasculitis remains unclear. However, it is suggested to
represent a systemic equivalent of IgAN, as IgA vasculitis can be
accompanied with nephropathy, resembling IgAN (163). Unlike
IgAN, which is characterized by deposits of galactose-deficient
IgA1, it is unknown which type of IgA accumulates in IgA
vasculitis (152, 164).

Increased levels of soluble FcαRI-IgA complexes were found
in sera of adult and pediatric vasculitis patients with or without
co-existing nephritis, which was associated with decreased
FcαRI expression on monocytes (165, 166). Furthermore, it was
proposed that IgA1 anti-endothelial cell antibodies might play
a role. Serum IgA from IgA vasculitis patients was shown to
bind in vitro to human but not bovine glomerular endothelial
cells (167). IgA anti-endothelial cell antibodies induced the
production of IL-8 by endothelial cells, thereby contributing
to an inflammatory environment and neutrophil recruitment
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(168, 169). In addition to enhanced levels of serum TNF-
α, which promoted anti-endothelial cell antibody binding to
endothelial cells, IL-8 production increased inflammation in
IgA vasculitis patients (167, 169, 170). It was hypothesized that
neutrophils become activated by IgA-FcαRI mediated cross-
linking, resulting in inflammatory processes like reactive oxygen
species production and NET formation. Moreover, IgA-activated
neutrophils release LTB4, inducing neutrophil migration, thereby
enhancing a positive feedback loop, which may result in
pathogenesis observed in IgA vasculitis (162).

Inflammatory Bowel Disease
Inflammatory bowel disease is characterized by chronic
inflammation in the intestinal tract and is subdivided into
ulcerative colitis and Crohn’s disease (171). The barrier function
in these patients is disrupted allowing bacteria to invade the
subepithelial lamina propria (171). Downregulation of pIgR
on intestinal epithelial cells and a disturbed microbiota were
observed in IBD patients (172). It was proposed that intracellular
signaling pathways and protein trafficking was altered due to
damage caused by the inflammatory environment resulting in
pIgR regulation defects (10). Mice lacking pIgR have enhanced
numbers of IgA-secreting plasma cells, possibly as compensation.
Increased production, combined with diminished transcytosis
of dIgA into the lumen may potentially result in accumulation
of dIgA in the lamina propria. Invading bacteria can become
opsonized with dIgA, potentially resulting in activation of
neutrophils by cross-linking of FcαRI, leading to tissue damage.
Neutrophils that had taken up IgA were observed in the mucosa
of ulcerative colitis patients (64). Cross-talk between Fc receptors
and TLRs was induced by antibody-coated bacteria, resulting
in release of pro-inflammatory mediators (e.g., LTB4) by DCs,
which may also contribute to inflammation in IBD. LTB4
induces recruitment of neutrophils and monocytes. Additionally,
simultaneous triggering of FcαRI and TLR4 on neutrophils
resulted in enhanced release of pro-inflammatory TNF-α (173).
Furthermore, due to diminished SIgA levels in the lumen,
neutralization, and immune exclusion of microbes is decreased,
which may worsen disease in patients (10). Patients have
increased levels of specific IgA against microbiota in their serum
(174). Highly IgA-coated bacteria obtained from IBD patients
induced colitis in GF mice (175). The extent to which IgA
responses against microbiota differ in homeostatic conditions vs.
IBD, remain unclear (86).

Surprisingly, an increased amount of fecal bacteria of IBD
patients was opsonized with IgA compared to those obtained
from healthy control feces (85, 175, 176). It was suggested that
leakage of serum IgA or dIgA due to a disrupted epithelial
layer contributed to enhanced fecal bacteria coating (176, 177).
The exact role of IgA and FcαRI in inflammatory bowel disease
however remains to be elucidated.

Celiac Disease and Dermatitis
Herpetiformis
Celiac disease is a multifactorial autoimmune disease
characterized by a damaged small intestinal mucosa and
nutrient malabsorption following gluten ingestion. Individuals
carrying the DQ2 and DQ8 HLA haplotypes have an increased

risk to develop celiac disease (178). Gliadin, a glycoprotein of
gluten, can complex with specific IgA, after which it can be
retrotransported across the epithelium via the TfR (Figure 3B).
Celiac disease patients have increased expression of TfR on
their epithelial cells, allowing increased retrotransport (12).
Intracellular degradation of these peptides is disturbed in
patients and after entrance in the lamina propria gliadin peptides
are deamidated by tissue transglutaminase after which they
are presented to HLA-DQ2 or HLA-DQ8 expressing CD4+ T
cells. This results in the release of pro-inflammatory mediators,
concomitant tissue damage and production of autoantibodies
(179). IgA anti-tissue transglutaminase antibodies play a key
role in disease pathogenesis (180). Presence of these antibodies
serve to diagnose the disease and are furthermore linked to
other IgA-related diseases like dermatitis herpetiformis and
IgA nephropathy (Figure 3B). In dermatitis herpetiformis
aberrant IgA antibodies are directed against structural proteins
maintaining cell-cell adhesion in the epidermis leading to
skin tissue damage (181). It is hypothesized that celiac disease
patients can develop dermatitis herpetiformis as high avidity IgA
anti-tissue transglutaminase antibodies form immune complexes
and deposit in the dermis of these patients, although it is ill
understood why some patients develop dermatitis herpetiformis,
and others do not. Furthermore, small bowel inflammation
in celiac disease is mostly the result of mononuclear cell
infiltration, whereas neutrophils accumulate in the skin of
dermatitis herpetiformis patients (181). Patient neutrophils
have increased ability to bind IgA without FcαRI expression
alteration, supporting that FcαRI is primed (e.g., by cytokines or
differential glycosylation) (182).

Gluten exposure can also lead to glomerular IgA deposition
and IgAN (183). Transgenic human IgA and FcαRI knock-in
mice developed severe pathology when gluten were present in
their diet, including intestinal injury, increased IgA1–soluble
FcαRI complexes, mesangial IgA1 deposition, and elevated serum
IgA1 anti-gliadin antibodies. IgAN patients also have increased
IgA1 anti-gliadin antibodies in their serum, suggesting that
entrance of gluten can potentially result in loss of oral tolerance
thereby contributing to IgAN (184). Consumption of a gluten-
free diet can resolve manifestations of celiac disease, dermatitis
herpetiformis, and IgAN.

Linear IgA Bullous Disease
Linear IgA Bullous Disease (LABD) patients suffer from extensive
skin damage and blister formation caused by the presence
of IgA autoantibodies against collagen XVII, and concomitant
neutrophil accumulation (Figure 3C). Collagen XVII plays a
critical role in maintaining adhesion between dermis and
epidermis in the skin (185). Neutrophil activation is likely the
direct result of FcαRI triggering by IgA autoantibodies (186).
Tissue damage was induced in the presence of neutrophils and
serum of LABD patients (containing IgA anti-collagen XVII
autoantibodies) in an ex vivo skin model, as presence of activated
neutrophils led to separation of the dermis from the epidermis
(reflecting blister formation) (186). Eosinophil influx has been
observed in the skin of LABD patients as well, suggesting that
these cells might also contribute to disease pathology through
FcαRI mediated respiratory burst activity (185).
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IGA AND FCαRI AS THERAPY

IgA plays an important role in dampening mucosal infections,
but can also have detrimental effects in inflammatory or
autoimmune diseases. Lack of IgA may increase susceptibility
to infection, whereas overabundant IgA complexes or
autoantibodies can be harmful as enhanced activation of
the FcαRI may lead to various pathologies. Several therapeutic
strategies have been proposed that influence the IgA-FcαRI axis
(Figure 4). For instance, in order to benefit from increased IgA
levels during infections it was proposed to increase pathogen-
specific IgA levels through passive or active vaccination thereby
resulting in efficient clearance of pathogens. Furthermore, IgA
might be used as a therapeutic antibody to mediate efficient
tumor cell killing. Additionally, two different strategies of
targeting FcαRI have been proposed. First, the induction of
ITAMi signaling via FcαRI may dampen inflammation that
is caused by other pro-inflammatory receptors (e.g., FcεRI).
Second, blocking FcαRI may reduce activation of immune cells
in IgA-mediated inflammation.

IgA in Vaccination Strategies
Administration of specific IgA (passive immunization) or
enhancing IgA production through active immunization
might be effective strategies to combat viral and bacterial
infections (104). Intranasal passive administration of either
specific monomeric or polymeric IgA against a mycobacterium
tuberculosis antigen led to short, but effective protection against
infection in mice (187). The short protection duration was
probably due to degradation of IgA by bacterial proteases present
in the respiratory tract fluid. Furthermore, mice expressing
human FcαRI on blood neutrophils and monocytes had a
lower mycobacterium tuberculosis infection rate compared to
control mice after inoculation of human IgA mAb, supporting
an additive beneficial role for FcαRI in clearing the infection
(188). Wild type (WT) mice which orally received Salmonella
typhimurium that had been complexed with human plasma-
derived IgA and IgM had reduced intestinal infection rates
compared to mice exposed to Salmonella typhimurium only.
Enhanced bacterial clearance was observed when SC was coupled
to plasma-derived IgA and IgM (189). Polymeric IgA against
influenza virus reached the nasal mucosa after intravenous
administration and protected WT mice against infection,
and was 10 times more effective than IgG in reducing viral
shedding (190, 191). Passive immunization with recombinant
dIgA showed better prevention against intra-rectal simian HIV
transmission in rhesus macaques. Dimeric IgA could either
directly neutralize simian HIV or the virus was trapped by large
immune complexes preventing entrance in the epithelial barrier
(103). It was demonstrated that IgA isolated from serum of
HIV survivors and vaccinated HIV patients neutralized HIV
through occupying the CD4 binding site of the virus (192, 193).
By contrast, in another study, HIV specific IgA levels in plasma
interfered with IgG effector functions in vitro, thereby increasing
HIV infection risk (194). Recently, it was reported that oral
and nasal administrated HIV antigens bound to SIgA were
retro transported through M cells and reached sub-epithelial

DCs, thereby inducing both mucosal and systemic humoral
and cellular immune responses in CX3CR1/GFP transgenic
mice (195). Vaccination with SIgA-HIV antigen protected these
mice from infection after challenge with a recombinant vaccinia
virus expressing the HIV antigen (195, 196). This demonstrates
the potential of SIgA to serve as a vaccine carrier for HIV via
mucosal administration.

Vaccination with live attenuated polio induced intestinal IgA
production and induced long-lived memory immune responses
in elderly who still had detectable serum and salivary IgA levels
(197–199), which suggested that priming with live virus is needed
to obtain IgA responses after booster vaccination with inactivated
polio virus. Furthermore, WT mice that were immunized and
re-challenged with reovirus had enhanced serum and intestinal
IgA levels and were protected from infection (108, 200).
IgA−/− mice were unable to clear reovirus infection (108). Mice
immunized with hemagglutinin (surface protein on influenza
virus) produced anti-influenza specific SIgA, which protected
mice from infection after intranasal administration (201). Mice
deficient of IgA, J-chain or pIgR showed compromised immune
protection (106–108), supporting that IgA enhances protective
immunity against viral and bacterial infections.

FcαRI as Therapeutic Target in Cancer
Antibody Therapy
Antibodies targeting specific tumor-associated antigens like
epidermal growth factor receptor (EGFR) and human epidermal
growth factor two (HER2) are increasingly used to treat solid
tumors (respectively colorectal cancer and breast cancer) (202).
These therapeutic antibodies are often of the IgG isotype and
have long half-life, can activate complement, and recruit natural
killer cells as well as macrophages as cytotoxic effector cells
(202, 203). Alternatively, IgA or FcαRI bispecific antibodies
(BsAb) may represent promising novel drugs to treat cancer
by enhancing activation of FcαRI-expressing immune cells
(204). For instance, BsAb targeting both tumor antigens and
FcαRI efficiently recruited neutrophils in vitro, which was not
observed after targeting Fcγ receptors (205–207). Moreover,
(immature) neutrophils were able to kill tumor cells more
efficiently due to FcαRI-induced antibody dependent cellular
cytotoxicity (62, 203, 208). Similarly, IgA anti-tumor mAbs
mediated tumor killing more efficient compared to IgG mAbs.
In vitro studies demonstrated the superior ability of FcαRI
to induce neutrophil-mediated tumor cell killing for multiple
tumor antigens, including EGFR, HER2, EpCAM,HLA-II, CD20,
CD30, and carcinoembryonic antigen (203, 205, 209).

Unfortunately, in vivo tumor targeting using IgA anti-tumor
mAbs has been difficult as mice do not express a homolog
of the human FcαRI, and human IgA has a short half-
life in mice (158). The generation and utilization of FcαRI
transgenic mice (71, 158) can contribute to study IgA as
therapeutic antibody in vivo. Treatment with IgA anti-HER2
or IgA anti-EGFR anti-tumor mAbs resulted in significantly
enhanced anti-tumor cytotoxicity in FcαRI transgenic mice
compared to WT littermates, which was mediated by FcαRI-
expressing macrophages (210, 211). Furthermore, IgA anti-CD20
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FIGURE 4 | IgA and FcαRI as therapeutic targets. (1) Enhanced IgA-FcαRI activation in IgA-associated autoimmune diseases is unwanted. Blocking IgA-FcαRI

interactions by monoclonal antibodies or peptides may reduce tissue damage in these diseases. (2) Treatment with monomeric IgA or anti-FcαRI Fabs may induce

ITAMi signaling thereby inhibiting IgG-induced phagocytosis and IgE-mediated allergic diseases. (3) To combat infections, administration of IgA (passive vaccination) or

induction of IgA levels via active vaccination may result in enhanced protective immunity. (4) IgA monoclonal antibody therapy may result in efficient killing of tumor

cells by activating FcαRI-expressing immune cells.

mAbs inhibited B cell lymphoma cell proliferation in vitro
and recruited FcαRI-expressing immune cells in vivo in FcαRI
transgenic mice (212, 213).

Thus, IgA antibodies have been shown to recruit neutrophils
and macrophages as effector cells, but the short half-life of IgA
in serum is a major drawback for use of IgA as therapeutic
antibody. Compared to IgG, the glycosylation sites of therapeutic
IgA mAbs that are produced in non-human systems (like rodent
cells) have higher immunogenic potential (high glycosylation)
and therapeutic IgA will be likely cleared efficiently from the
human (or murine) circulation. Increasing the sialylation of
glycans on IgA mAbs enhanced their serum half-life due to
decreased clearance by the ASGPR in the liver (210). Inducing
sialylation of IgA mAbs was done by using fully human systems
thereby augmenting their in vivo therapeutic potential (211, 214–
216). Increased sialylation of the N-glycans in IgA anti-HER2

mAbs resulted in significantly reduced tumor growth in FcαRI-
transgenic SCID mice bearing BT-474 tumors (214). Addition of
an albumin-binding domain to IgA1 (IgA1-albumin) enhanced
interaction of the antibody with the FcRn, which extended
the half-life of IgA1 in vivo. Although ex vivo studies showed
that IgA1-albumin induced lower maximal tumor cell lysis,
enhanced tumor cell killing was observed in vivo (211). Another
modified IgA molecule against EGFR lacking glycosylation and
free cysteine’s, and with a stabilized heavy and light chain linkage,
showed increased efficacy by interacting with FcαRI-expressing
myeloid cells in vivo. Some therapeutic activity was observed
in non-FcαRI transgenic mice demonstrating contribution of
Fab-mediated effector functions as well (216). Although IgA
antibodies are not used in clinical studies yet, engineering
IgA with increased half-life represents a promising strategy for
targeting tumors in patients.
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Induction of ITAMi Signaling
Enhancing ITAMi signaling bymonomeric targeting of the FcαRI
may be a promising strategy to inhibit IgG-induced phagocytosis
and IgE-mediated allergic diseases (20). Monovalent targeting
of FcαRI with the anti-FcαRI mAb A77 inhibited degranulation
of RBL-2H3 transfected cells and reduced airway inflammation
in FcαRI transgenic mice after crosslinking FcεRI with IgE
immune complexes in an allergic asthma model (20, 217).
Furthermore, naturally occurring serum IgA dampened immune
responses by inducing ITAMi signaling via FcαRI (19). FcαRI
transgenic mice (expression on monocytes/macrophages), which
developed RA after injection with IgG anti-collagen had
reduced manifestations or even complete resolution of arthritis
after treatment with monomeric IgA. IgG-induced ITAM
signaling was blocked efficiently, implicating a potential role
of monomeric IgA in treatment of autoimmune diseases with
IgG autoantibodies (218). Moreover, prior targeting of FcαRI
by Fab A77 suppressed inflammation in transgenic mice with
FcαRI-expressing monocytes and macrophages that suffered
from IgG immune complex glomerulonephritis and obstructive
nephropathy (219). Renal inflammation induced by pristane was
characterized by enhanced serum IgG levels, pro-inflammatory
cytokines and immune infiltration in FcαRI transgenic mice
with receptor expression on monocytes and macrophages.
Blocking FcαRI with Fab MIP8a inhibited cytokine production,
leukocyte recruitment and inflammation (77). Furthermore,
renal inflammation induced by CpG (TLR9 agonist) in these
FcαRI transgenic mice was downregulated by monomeric
occupancy of FcαRI (220). Thus, monomeric targeting of FcαRI
is suggested to induce anti-inflammatory properties, which could
be useful in treatment of inflammatory diseases with involvement
of myeloid cells.

FcαRI Blocking
Blocking FcαRI might be effective in IgA-mediated
inflammation. In vitro it was shown that neutrophils stimulated
with IgA immune complexes obtained from RA patients released
neutrophil extracellular traps. FcαRI blocking on neutrophils
with the anti-FcαRI mAb MIP8a reduced NET formation and
might alleviate neutrophil induced tissue damage in RA patients
(149). IgA autoantibodies in serum of LABD patients induced
neutrophil-mediated tissue damage in an ex vivo human skin
model. FcαRI blocking with MIP8a prevented IgA induced tissue
damage (186). Similarly, peptides targeting the interaction sites
of IgA and FcαRI showed effective blocking of IgA binding
to FcαRI, and reduced IgA-induced neutrophil migration in
vitro. These peptides were able to penetrate into human skin,
supporting that they might function as novel therapy in skin
autoimmune diseases (221). As such, blocking FcαRI might serve
as therapeutic strategy for IgA-associated inflammatory diseases.

CONCLUSION

IgA is important in maintaining balance of mucosal immunity.
SIgA regulates immune exclusion by neutralizing pathogens

and more recently the role of SIgA in diversifying the
intestinal microbiota has become clear. The mechanisms
involved in IgA-mediated regulation of microbiota diversity and
reciprocal regulation of IgA levels by microbes are incompletely
understood. Moreover, it remains unclear why certain SIgA
coated antigens associate with the epithelial layer while others are
eliminated via immune exclusion. In addition to the traditional
role of IgA as non-inflammatory regulator of homeostasis, several
pro-inflammatory functions have been described, which need to
be clarified in more detail.

After binding to FcαRI, IgA plays important roles in
pathogen elimination. It can also have detrimental effects on
human health when aberrant IgA is present. Perpetual IgA-
FcαRI interaction results in enhanced activation of immune
cells with concomitant tissue damage as seen in autoimmune
diseases like LABD (64). It is yet undefined why neutrophil
influx is observed in some IgA-FcαRI mediated diseases,
including LABD and dermatitis herpetiformis, but not others.
For instance, Crohn’s disease is generally less characterized
by neutrophil influx in the intestinal mucosa, while in
patients with ulcerative colitis massive neutrophil infiltration
is present (171). Similarly, and maybe even more confusing,
is the fact that celiac disease patients develop IgA anti-tissue
transglutaminase antibodies resulting in infiltration of mainly
mononuclear cells in the intestinal tract, while in dermatitis
herpetiformis (skin manifestation of celiac disease) binding of
IgA autoantibodies to epidermal transglutaminase results in
neutrophil recruitment (181).

Targeting the IgA-FcαRI axis with blocking monoclonal
antibodies or peptides may alleviate inflammation and
concomitant tissue damage. Moreover, inhibitory ITAMi
signaling induced by monomeric targeting of FcαRI
has been suggested to represent a promising strategy in
allergies or IgG immune complex-mediated diseases. By
contrast, in infectious diseases and cancer enhancing pro-
inflammatory effects of IgA-FcαRI interaction might be
very beneficial.

Lack of an FcαRI equivalent in mice has hampered our
understanding of the functions and therapeutic applications of
IgA and FcαRI. Future research will be facilitated by the use
of several human FcαRI transgenic and human IgA knock-in
models (71, 158, 222). This will help to increase our knowledge
on the complex roles of IgA and FcαRI in (patho)physiology
as well as the therapeutic possibilities for targeting these
multifaceted molecules.
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