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Small airway dysfunction and poor asthma 
control: a dangerous liaison
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Abstract 

Asthma is a common chronic condition, affecting approximately 339 million people worldwide. The main goal of the 
current asthma treatment guidelines is to achieve clinical control, encompassing both the patient symptoms and 
limitations and the future risk of adverse asthma outcomes. Despite randomized controlled trials showing that asthma 
control is an achievable target, a substantial proportion of asthmatics remain poorly controlled in real life. The involve-
ment of peripheral small airways has recently gained greater recognition in asthma, and many studies suggest that 
the persistent inflammation at these sites leads to small airway dysfunction (SAD), strongly contributing to a worse 
asthma control. Overall, the impulse oscillometry (IOS), introduced in the recent years, seems to be able to sensitively 
assess small airways, while conventional spirometry does not. Therefore, IOS may be of great help in characterizing 
SAD and guiding therapy choice. The aim of this article is to review the literature on SAD and its influence on asthma 
control, emphasizing the most recent evidence.
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Background
Asthma is a common chronic condition in the world and 
the most common non-communicable disease among 
children, affecting approximately 339 million people of all 
ages, races and geographic origins [1, 2]. It is estimated 
that over 100 million more people will be affected by 
2025 [1, 2]. In Europe, asthma affects 30 million people 
and is associated with a significant socioeconomic bur-
den [3], representing the 14th most important disorder 
in terms of global years lived with disability, according to 
the Global Burden of Disease Study data [2].

One of the main long-term goals of asthma manage-
ment is to achieve a good disease control, by repeatedly 
reviewing patient’s symptoms (daytime symptoms, noc-
turnal symptoms, activity limitations and use of rescue 
medications) and future risk of exacerbation, adverse 
effect of therapy and lung function decline, and by 

adjusting the treatment accordingly [4]. Current recom-
mendations are therefore based on the level of asthma 
control rather than disease severity [4]. Despite rand-
omized controlled trials showed that asthma control is an 
achievable target [5, 6] real-life studies in the last 20 years 
have shown that a substantial proportion of asthmatics 
remain under-controlled [7–17], even in those patients 
receiving treatment from an asthma specialist [18, 19] 
and in those with mild asthma regularly treated with 
inhaled corticosteroids (ICS) [20] Ultimately, asthma 
control has been shown to be sub-optimal across all 
GINA steps [21].

Poor asthma control is associated with increased 
risk of exacerbations, impaired quality of life, increased 
health-care utilization and reduced productivity [22, 23]. 
History of asthma exacerbations, poor treatment adher-
ence, failure to use inhalers correctly, heterogeneity of 
asthma phenotypes and associated comorbidities have 
been shown to be the main contributors to poor disease 
control [24–32]. More recently, the persistence of uncon-
trolled inflammation in the peripheral small airways 
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emerged as a strong contributors of asthma control 
[33–36].

Herein we reviewed the evidence supporting the influ-
ence of small airway dysfunction (SAD) on asthma con-
trol, emphasizing the most recent one, and highlighting 
how the identification of SAD by techniques different 
than conventional spirometry may be useful to assess 
SAD, potentially guiding asthma treatment.

Small airways dysfunction (SAD)
Even if asthma affects the entire bronchial tree [37], small 
airways has been recognized as the major site of airflow 
limitation in both asthma and chronic obstructive pul-
monary disease [38, 39].

The small airways are defined as airways with an inter-
nal diameter ≤ 2 mm that do not contain cartilage in their 
walls and extend from the 8th generation airways to the 
periphery of the lung [40]. Under normal circumstances, 
small airways contribute only minimally to airway resist-
ance, and for this reason they are known as the lung’s 
“quiet zone” [41]. In contrast, in COPD and asthma, small 
airways are likely the key area that determines the transi-
tion from physiologic to pathophysiologic behavior of the 
bronchial tree [38]. Many studies and systematic reviews 
suggested that SAD is associated with more severe bron-
chial hyper-responsiveness, worse asthma control and a 
higher number of exacerbations [33–36, 42].

Overall, the prevalence of SAD in patients with asthma 
is around 50–60% [43], but it seems to vary with the 
physiological measure used to assess it [33]. The In the 
multinational study ATLANTIS [33], the largest study 
to date dealing with the contribution of SAD to asthma 
severity, SAD was strongly present across all GINA 
severity stages. Even if the prevalence changes is consid-
erably depending on the physiological variable used to 
assess SAD, it remains consistently higher in more severe 

asthma (GINA step 5) [33]. We contributed by showing 
that the true prevalence of SAD measured by impulse 
oscillometry (IOS) in a cohort of 400 community-man-
aged patients with physician-diagnosed asthma was 
61.5%, and SAD was present in the majority of subjects 
across all the classes (step 2 58.3%; step 3 60.9%; step 4 
63.3%; step 5 78.6%; p > 0.05) (Cottini M et  al., Respira-
tory Medicine, submitted).

Small airways assessment
According to the current Global Initiative for Asthma 
(GINA) guidelines, spirometry remains the method of 
choice in evaluating the respiratory function [25]. How-
ever, conventional spirometry reflects mostly the vari-
ability and/or the reversibility of airway obstruction and 
is unable to sensitively evaluate small airways, becoming 
abnormal on spirometry only when approximately 75% 
of small airways are obstructed [44–46]. Therefore, small 
airways are difficult to access, and the lack of standard-
ized and unanimously accepted methods of measure-
ment has often left the assessment of the small airways to 
the experimental and investigational level. In the recent 
years more specialized tests have been developed, mov-
ing from clinical research laboratories into routine clini-
cal practice [47, 48]. Table 1 summarizes the techniques 
available for the assessment of small airways disease. No 
assessment method is universally and directly represent-
ative of peripheral airway function [42, 47, 48].

Conventional spirometry
The correlation between conventional lung function 
measurement (FEV1, PEF) and asthma symptoms is 
weak [4, 49, 50]. This may be due to an airflow dysfunc-
tion in the small airways that is not reflected in the FEV1 
responses [51]. The mean forced expiratory flow (FEF) 
between 25 and 75% of FVC (FEF25–75) is the traditional 

Table 1 Available techniques for the assessment of bronchial airways by size (small versus large airways)

Method Small airway function Large airway function

Spirometry FEF25–75%, FVC, FVC/SVC FEV1, FEV1/FVC

Impulse oscillometry (IOS) R5–R20, X5, AX, Fres R20

Single breath nitrogen washout (SBNW) or Multiple breath nitro-
gen washout (MBNW) test

Slope phase III, CV, CC, Sacin, Scond

Body plethysmography RV, RV/TLC

High resolution computerized tomography (HRCT) Air trapping, airway wall thickness Airway wall thickness

Nuclear medicine (Scintigrapy, SPECT, PET) Regional ventilation defects

3He-MRI Non-ventilated lung volume

Bronchoscopy Transbronchial biopsy, BAL Endobronchial biopsy

Sputum induction Late phase sputum Early phase sputum

Exhaled nitric oxide (eNO) Alveolar eNO Bronchial eNO

CT and computational fluid dynamics Changes in airway volume and resistance
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index of spirometry to assess peripheral airways obstruc-
tion in routine clinical practice [48, 52].

Some studies suggest that FEF25–75 associates with 
worse asthma control and poor asthma outcomes. Siroux 
et  al. showed that small-airway obstruction, as assessed 
based on FEF25–75, might contribute to the long-term 
persistence of asthma and the subsequent risk for poor 
asthma outcomes independently from effects of the large 
airways [53]. Riley et  al. [54] showed that FEV1, FEV1/
FVC, and a reduced FEF25–75% was independently asso-
ciated features of more severe asthma, in patients with 
severe disease.

Despite this, the value of FEF25–75% as a predictor of 
peripheral obstruction has also been questioned by sev-
eral studies [55, 56], therefore limiting its reliability for 
SAD.

Impulse oscillometry
The forced oscillation technique (FOT) was first 
described by DuBois in 1957 as a method to characterize 
respiratory impedance [57]. The device generates sinusoi-
dal sound waves that are transmitted into the respiratory 
system during quiet breathing. The modified method, 
impulse oscillometry (IOS), was developed by Michael-
son in 1976 [58] and commercialized by Jaeger in the 90s. 
IOS operates by delivering a continuous spectrum of fre-
quencies [59–62]. Similar to FOT, the IOS technique uses 
pressure pulses delivered into the respiratory system, 
causing a flow reaction, but pressure oscillations in IOS 
in contrast to FOT are delivered to the respiratory sys-
tem at a constant frequency (square waves) of 5 Hz, from 
which all other frequencies of interest are mathematically 
extracted [59, 63].

IOS is a simple and noninvasive method, requiring 
minimal patient cooperation, without the need for a 
shutter, body plethysmography cabin, or measurement 
gases. Patients can comply better with tidal breath-
ing, compared to maximal inspiratory and expiratory 
maneuvers, allowing measurements in patients groups 
who would struggle using conventional methods, requir-
ing forced expiratory manoeuvres that can be difficult or 
sometimes even impossible to perform. These include 
children under the age of 5, obese, geriatric patients, 
patients with limitations of their respiratory drive, severe 
diseased and patients with neuromuscular abnormali-
ties. For instance, in a study comparing oscillometry and 
spirometry in patients 65 and older, all were capable of 
producing a valid oscillometry test whereas valid spirom-
etry was completed in only 33.4% of the participants [64].

The European Respiratory Society (ERS) recently pub-
lished technical standards for oscillometry measurement 
in the European Respiratory Journal [65, 66].

In our Allergy and Pneumology Outpatient Clinic, IOS 
(Masterscreen IOS/Sentry Suite, VyAire Medical) is per-
formed in triplicate in accordance with manufacturer’s 
and European Respiratory Society guidelines [65, 67]. 
The IOS system is routinely calibrated, as suggested by 
the manufacturer [67]. Patients were asked to wear a nose 
clip and were seated during tidal breathing with their 
neck slightly extended and their lips sealed tightly around 
the mouthpiece, while firmly supporting their cheeks 
with their hands (Fig. 1).

Assuming the coherence, which is a measure of testing 
reliability, is acceptable (> 0.80 at 10  Hz) and if no evi-
dence of coughing, swallowing, vocalization, or breath 
holding, the trial is saved. At least three trials are per-
formed, each lasting 30  s, and mean values are chosen 
(Fig. 2).

The clinical interpretation of the measurements is 
usually based on the two components of respiratory 
impedance Zrs, respiratory resistance Rrs and lung 
reactance Xrs. Both Rrs and Xrs, which reflect total pul-
monary impedance, are measured by the investigator 
in real time as a function of flow volume and pressure. 
Respiratory resistances at 5 and 20 Hz (R5 and R20, in 
kPa × s ×  L−1) are used as indices of total and proximal 
airway resistance, respectively. Thus, the contribution 
of the distal airways are determined by the fall in resist-
ance from 5 to 20 Hz (R5–R20, in kPa × s ×  L−1), that is 
considered to be an index for the resistance of periph-
eral airways, as already performed in asthmatic patients 
in clinical trials and hospital cohorts, and an R5–R20 
cutoff of > 0.07  kPa × s ×  L−1 (a conservative upper 
limit of normal for R5–R20 as previously reported) is 

Fig. 1 Explanatory figure of a patient tested by impulse oscillometry
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conventionally chosen to define the presence of SAD 
[34, 61, 62, 68, 69]. Moreover, reactance at 5 Hz (X5, in 
kPa × s ×  L−1), reflecting elastic recoil of the peripheral 
airways, resonant frequency (Fres, in Hz), defined as 
the frequency at which the inertial properties of airway 
and the capacitance of lung periphery are equal, and 
reactance area (AX, the area under the reactance curve, 
in kPa/L), reflecting the elastic properties of the lung 
periphery and shown to be correlated with resistance at 
lower frequencies, are also collected [50, 51, 55].

The respiratory resistance Rrs measured by oscil-
lometry differs slightly from the airways resistance 
measured using body plethysmography (Raw) and the 
resistance acquired by interrupter technique (Rint, 
Rocc), which is due to differences in the measurement 
principles [63].

Thanks to its ability to differentiate between central 
and peripheral abnormalities, IOS supports individual-
ized patient management, independent of other func-
tional examinations or as part of additional diagnostic 
measurements [51, 52, 55]. Several studies showed 
the usefulness of IOS to detect SAD: the ATALAN-
TIS study stratify SAD into two clinically meaningful 
groups by use of IOS and spirometry [33]. Interestingly, 
this study identified R5–R20 as the IOS-measured 
marker that, among several small-airway physiological 
markers, most strongly correlated with SAD [33]. Other 
studies showed that R5–R20 reflects small airway nar-
rowing [70, 71]. Another group showed that small-air-
way ventilation heterogeneity captured by IOS-derived 

R5–R20 values is associated with CT density gradient 
reversal at the lung base, likely a direct consequence of 
SAD [72].

Finally, we recently showed that R5–R20 closely corre-
lates with that of X5, AX and Fres, representative markers 
of peripheral airway abnormalities, supporting R5–R20 
as a surrogate of peripheral airway mechanics [34].

IOS has been shown to detect expiratory flow limita-
tion (EFL), a phenomenon which occurs when increased 
expiratory effort and driving pressure do not result in 
increased corresponding flow, due to regional “choke 
points” from airway closure or narrowing in the distal 
airways. EFL can occur in asthma and is a pathological 
hallmark in COPD, often manifesting as dynamic hyper-
inflation and increased exertional dyspnoea resulting in 
exercise limitation [47].

For all these reasons, measuring IOS in a real-life set-
ting should complement spirometry as part of the routine 
work-up of asthma patients. However, the method does 
have some limitations: first, there are no uniform stand-
ards to facilitate a set of unified results and the develop-
ment of a standardized method for calculating values 
based on the measured parameters [55], but there is now 
clear guidance about the approach to calibrating oscil-
lometric systems and the way in which testing should be 
conducted [66]. Our lab uses the manufacturer recom-
mends equations published by Vogel and Smidt in 1994. 
For adults, they recommend that R ≥ 150% (all frequen-
cies) and R5–20 ≥ 20% be considered abnormal [67]. 
The rationale and pros and cons for using these values 
are outlined in a review chapter by Smith and colleagues 
[50]. Second, IOS/FOT present difficulties when com-
paring measurements taken by different devices. With 
several commercially available devices measuring respir-
atory impedance by oscillometry, the agreement between 
values obtained on different instruments or frequencies 
remains unclear. Future studies may have additional value 
by obtaining normal reference values of IOS measure-
ments and to establish comparability between different 
instruments.

Multiple‑breath washout techniques
Many studies assessed ventilation heterogeneity: increas-
ing unevenness of ventilation between different lung 
regions is a sensitive marker of abnormal small airway 
function and can be measured noninvasively by using 
the single-breath washout (SBNT, increase in the phase 
III slope, dN2) or multiple-breath washout techniques 
(MBNW) [73, 74]. MBNW is able to distinguish between 
ventilation heterogeneity generated in the conductive 
lung zone (Scond) and ventilation heterogeneity gener-
ated in the acinar lung zone (Sacin) [45].

Fig. 2 Relationship between R5–R20 measurements and GINA 
control categories (from [34])
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Different studies from independent groups showed that 
ventilation distribution was abnormal in a remarkable 
proportion of asthmatic patients, of whom only a fraction 
had an abnormal FEV1 [75], and ventilation alterations 
were associated with worse asthma control, exacerba-
tions, higher ICS dose [76–82].

Imaging: inhaled gas magnetic resonance and computed 
tomography
Ventilation heterogeneity may be regionally identified 
using pulmonary imaging methods including inhaled gas 
magnetic resonance imaging (MRI). In asthma patients, 
MRI has revealed persistent ventilation heterogeneity, 
although its relationship to asthma control is not well 
understood. In patients with poorly controlled, severe 
asthma MRI ventilation, but not lung clearance index 
(LCI) was significantly worse in those with worse ACQ 
and AQLQ [83].

Computed tomography (CT) has emerged as a useful 
tool to assess peripheral airways disease noninvasively in 
patients with asthma. The cardinal CT sign of peripheral 
airways disease in asthma is the presence of pulmonary 
decreased attenuation areas, which are more consistent 
on expiratory CT scans diseases [47]. High-resolution 
CT allows direct assessment of large and medium air-
ways (diameter > 2–2.5  mm), and indirect assessment 
of small airways. Areas of mosaic lung attenuation on 
inspiration during CT and air trapping on expiratory CT 
have been evaluated as markers of small airways disease 
in both asthma and COPD [47]. Asthmatic patients with 
air trapping were significantly more likely to have a his-
tory of asthma-related hospitalizations, ICU visits, and/
or mechanical ventilation [84]. CT does have some limi-
tations, including a lack of standardization of technical 
parameters for the CT scanner, a lack of consensus on 
the best index for small airways disease assessment, and 
exposure of subjects to ionizing radiation.

Exhaled NO
Studies in adults and children showed that patients with 
increased alveolar NO levels more frequently had visits 
to the emergency department, severe attacks, and hospi-
talizations [85, 86]. In addition, the alveolar component 
of exhaled NO is associated with the lack of asthma con-
trol in patients with mild, untreated asthma [87], sup-
porting the hypothesis abnormalities of the peripheral 
airways are involved even in the mildest forms of asthma.

SAD and asthma control
A growing body of literature correlates IOS with asthma 
features, and overall, it emerges that asthma control 
appears to be linked with SAD.

In a study in 65 well-characterized patients, IOS-
defined SAD correlated better with clinical symptoms 
and asthma control than spirometry-defined SAD; fur-
thermore, greater small-airways reactance was associ-
ated with loss of asthma control [88]. Pisi et  al. showed 
that IOS-defined SAD was associated with poor disease 
control, assessed by the Asthma Control Test in 33 adult 
asthmatic patients with normal FEV1 [89]. Manoharan 
et  al. evaluated adult asthmatics with a preserved FEV1 
(> 80% predicted), and showed that SAD assessed by 
 FEF25–75%, and R5–R20 was associated with a significantly 
increased likelihood of having worse long-term asthma 
control [90]. These results were confirmed by other stud-
ies with a similar design [91–93].

Notably, the risk of having poorer asthma control was 
greater when measurements of  FEF25–75%, and R5–R20 
were combined [90]. R5–R20 and AX were closely related 
to asthma control assessed by asthma control question-
naire (ACQ), while spirometry did not [90]. In ATLAN-
TIS study [33], a SAD score has been calculated by use 
of impulse oscillometry and spirometry and associated 
significantly with asthma control, history of exacerbation 
and disease severity. The highest correlations were seen 
for airway resistance and reactance (R5, R5–20, reactance 
at 5 Hz, and reactance area), peripheral conducting air-
way heterogeneity (Scond), and hyperinflation (residual 
volume/total lung capacity) [33].

Quality of life
Asthma control and SAD are lumped together. Kuo et al. 
showed that peripheral lung resistance and reactance 
measured by Airwave Oscillometry System-AOS (Tre-
moFlo C-100 Thorasys, Montreal) are related to patient 
reported outcomes of asthma control and quality of life 
[94].

Foy et  al. demonstrated that IOS-defined SAD has a 
marked impact on both asthma control and quality of 
life and may be modified by biologics [95]. Kuo et al. ret-
rospectively demonstrated that IOS-defined SAD was 
associated with worse asthma control and type 2 inflam-
mation [96].

Other studies showed that  FEF25–75% was not as good 
as IOS to identify SAD [34, 93]. In a cohort of stable 
asthmatic patients, lower baseline ACT scores correlate 
with measure of increased baseline peripheral airway 
dysfunction using IOS, but not with spirometry, support-
ing the use of objective non-invasive techniques to detect 
increased airway resistance in a population of stable asth-
matic individuals [97].

Interestingly, IOS values are significantly different 
between uncontrolled, partially controlled, and con-
trolled GINA definition in asthmatic subjects [98]. In our 
cohort of 400 patients with physician-diagnosed asthma 
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[34], IOS-defined SAD was present in virtually all the 
patients with uncontrolled asthma, in two third of those 
with partially controlled asthma, and in one third of those 
with well-controlled asthma. In parallel, R5–R20 pro-
gressively increase from well controlled to uncontrolled 
asthma, reflecting a more severe SAD with the worsen-
ing of control. In general, all IOS measurements, i.e., R5, 
X5, R5–R20, Ax, Fres, progressively worsened with the 
aggravation of asthma control categories (p < 0.0001 for 
all combinations) [34].

Interestingly, in elderly asthmatic patients of our 
cohort, a true prevalence of SAD of 84.1% compared to 
57.3% (p < 0.01) in nonelderly [99]. In elderly patients, 
SAD is more often associated with central airway disease. 
Age significantly correlates only with R5–R50, X5, Ax, 
but not with Type 2 biomarkers and standard spirometry 
measurements. Older age was strongly associated with 
worst asthma control [99].

Taken altogether, asthma control therefore is more inti-
mately related to the IOS-defined SAD phenotype than 
to FEV1 per se and this strongly support the importance 
of using IOS.

Predictors of SAD
SAD was previously linked to some clinical phenotypes 
of patients i.e., active smokers, elderly patients with long 
duration of asthma, presence of fixed airflow obstruc-
tion and severe symptoms [35, 42]. The limit of most of 
the studies is that they analyze the association of a sin-
gle features with SAD, instead of doing a comprehensive 
evaluation of the features associated with SAD. There-
fore, we have undertaken a study to identify the predic-
tors of SAD, and were able to show the association with 
SAD for increased fractional exhaled nitric oxide (odds 
ratio [OR] 2.05; 95% CI 1.14–3.70), female sex (OR 2.27; 
95% CI 1.29–4.06), smoking (OR 3.06; 95% CI 1.60–6.05), 
age > 50  years (OR 3.08; 95% CI 1.77–5.49), asthma-
related night awakenings (OR 3.34; 95% CI 1.85–6.17), 
overweight with body mass index > 25  kg/m2 (OR 3.64; 
95% CI 1.99–6.85), and exercise-induced asthma symp-
toms (EIA, OR 6.39; 95% CI 3.65–11.45) were inde-
pendent predictors of SAD. Of note, we performed a 
classification tree analysis which may further help in 
distinguishing patients with SAD. Both the analyses con-
cluded that EIA was the most important factor associ-
ated with the presence of SAD, followed by overweight 
and night awakenings due to asthma. Interestingly, the 
decision tree analysis showed that overweight asthmatic 
patients with EIA would have a 94% prevalence of SAD, 
and in those without EIA but with night awakenings 
due to asthma the prevalence of SAD would be 66% of 
patients [34]. We concluded that these associations may 
be of help in distinguishing subjects with SAD among 

patients with asthma, especially when IOS cannot be 
performed.

IOS‑defined SAD as a “treatable trait”?
Dissect the “umbrella” of airway diseases into compo-
nents before planning treatment, with a focus on traits 
that are identifiable and treatable (i.e., treatable traits), is 
essential for deploy airway precision medicine in clinical 
practice [100, 101]. Most inhaled therapies do not suffi-
ciently reach the small airways, and this inability to reach 
and treat the peripheral airways may strongly contribute 
to the lack of efficacy of inhaled treatments [102, 103]. 
Therefore, involvement of distal airways in asthma and 
COPD have justified research efforts to create pharma-
cologic treatments and technologies that can reach and 
target the peripheral airways, i.e., extra-fine inhaled for-
mulations. Extra-fine formulations, with a mass median 
aerodynamic diameter (MMAD) of approximately 
1–1.5 μm, have a higher lung deposition (50–60%) than 
coarse particle ICSs with an MMAD of 3–4 μm (10–20%) 
and then penetrate more deeply into the peripheral air-
ways than drugs delivered via traditional inhalers [104–
106]. Importantly, small-particle aerosols are not exhaled 
to any significantly greater level compared to large-par-
ticle aerosols, when assessed using in  vivo lung deposi-
tion studies [107]. Recently, the HFA-propelled extra-fine 
fixed combination formulation of beclomethasone dipro-
pionate/formoterol (BDP/F) 100/6 μg has been developed 
[108, 109] and represents the only extra-fine combina-
tion in both the pMDI and DPI formulations developed 
thus far [109]. Many real-life studies showing that the 
use of extrafine-particle ICS or ICS/LABA therapy is 
associated with a higher percentage of patients with well 
controlled asthma based on their Asthma Control Test 
and ACQ scores, compared to the use of large-particle 
combination treatment [110–115]. In our real life study 
[34], only 16.3% of patients with SAD were treated with 
inhaled extra-fine therapy compared to 60.4% of patients 
without SAD. Similarly, patients at BTS step two treated 
with inhaled extra-fine ICS demonstrated significantly 
reduced airway resistance compared to patients receiving 
standard particle size ICS at this step [116]. In a Mexican 
study, an extra-fine combination of ICS/LABA improved 
the level of asthma control in patients after 1  month of 
treatment, a result which is sustained after 3  months. 
Likewise, this improvement showed a tendency to corre-
late with the improvement in lung function measured by 
IOS [117].

On the other hand, step-up to high-dose combina-
tion treatment in uncontrolled asthma is associated 
with improved peripheral airway function as measured 
by Xrs5Hz and MBNW [63]. Effects of small-particle 
long-acting β-agonists on the small airways have been 
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poorly documented. Manoharan et al. showed significant 
improvements in IOS but not spirometry after chronic 
dosing with formoterol (small-particle) compared with 
salmeterol (large-particle), both in association with ICS 
for 1–2  weeks with a 1- to 2-week washout period in 
between [118].

Taken altogether, extra-fine ICS particles (ICS and ICS/
LABA) seem to better penetrate in distal airways, with 
additional clinical benefits in the treatment of asthma 
compared with coarse-particle treatment, contributing 
toward the observed better asthma control in real-life 
studies. These results, however, needs to be confirmed 
on larger and better designed studied in order to clearly 
demonstrate the potential of extrafine therapy on asthma 
control.

IOS-defined SAD may be modified by biologics, and 
particularly antiIL-5 monoclonal antibody mepolizumab 
was able to improve lung ventilation heterogeneity 
indexes in subjects with severe asthma after treatment 
[119, 120]. Antonicelli and colleagues evaluated the role 
of FOT in monitoring the effects of mepolizumab treat-
ment in severe eosinophilic asthma, which correlated 
with both eosinophil counts and asthma control scores 
[121]. Controlling eosinophilic bronchitis with anti-T2 
therapies improves ventilation defects, measured by 
inhaled gas MRI, in adults with prednisone-dependent 
asthma [122]. The effects of treatment with biologics on 
plethysmographic and IOS parameters and on ventilation 
heterogeneity assessed with the multiple-breath nitrogen 
washout and inhaled hyperpolarized 129Xe MRI will be 
investigated in ongoing trials [48].

Conclusion
Despite the availability of effective therapies, a substan-
tial proportion of asthmatics remain poorly controlled in 
real life. Given the clinical impact of SAD on asthma con-
trol, SAD should be actively searched as part of the daily 
management of patients with asthma.

Objective markers sensitive to both large and small air-
way mechanics are needed to complement the currently 
broadly accessible conventional spirometry. Among oth-
ers, IOS is a noninvasive and effort-independent method 
for the detection of SAD in asthma.

Since asthma control has been extensively proved to be 
linked with SAD, and specifically more intimately with 
the IOS-defined SAD phenotype than to FEV1 per se, 
IOS should complement spirometry as part of the routine 
work up of asthma patients in a real-life clinic setting.

In clinical routine practice IOS is only rarely used, and 
when IOS cannot be performed, risk factors for SAD 
(uncontrolled asthma, exercise-induced symptoms, 
overweight, nocturnal symptoms due to asthma, active 
smoking, older age, fixed airflow obstruction and allergic 

asthma) should be investigated during clinical history 
collection. Finally, the identification of SAD during 
the diagnostic work up influence the treatment choice. 
Therefore, IOS may be of great help to better character-
ize SAD as “treatable trait”, leading to a more targeted 
asthma management and individualized patient care.
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