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ABSTRACT: Background: Enterovirus (EV) infections encompass a
spectrum of diseases, with severe cases often linked to enterovirus A71
(EV-A71), highlighting its significance in EV screening. Although the
CRISPR/Cas12a diagnostic system shows promise in nucleic acid
detection, enhancing specificity and sensitivity when combined with
reverse transcription-loop-mediated isothermal amplification (RT-LAMP),
its limitation lies in targeting a single sequence, thus preventing the
simultaneous detection of both EVs and EV-A71. Results: This study
presents a novel one-tube strategy by integrating HNB (hydroxynaphthol
blue)-RT-LAMP with CRISPR/Cas12a for the simultaneous detection of
EVs and EV-A71 in a single tube. The assay initially detects EVs using an HNB colorimetric approach under natural light, followed
by the specific detection of EV-A71 through CRISPR/Cas12a under blue light. The limit of detection for EVs was 10 copies/μL, and
for EV-A71, it was 1 copy/μL. Clinical sample assays demonstrated that, compared to qPCR, the accuracy of HNB-LAMP-CRISPR
detection for EVs and EV-A71 was 95.7 and 100%, respectively. Significance: In summary, this strategy offers a reliable and user-
friendly approach for EV screening. Also worth mentioning is that the provided method has beneficial effects on rapid visualized
detection.

1. INTRODUCTION
Enteroviruses (EVs), members of the Enterovirus family of
small RNA viruses,1 have been associated with a range of
human illnesses, including Hand Foot and Mouth Disease
(HFMD),2 acute flaccid paralysis,3 acute hemorrhagic
conjunctivitis,4 aseptic meningitis, and myocarditis.5 These
viruses spread via both respiratory and digestive routes, posing
a potential risk of large-scale epidemics.6 The general
population can be affected by EV infections, while children
have an infection rate that is seven-fold higher, which
consequently makes EVs a leading cause of infection in the
pediatric group.7−9 Furthermore, HFMD caused by EVs is
highly contagious, and in some children with severe
comorbidities, it progresses rapidly and can lead to death. As
a result, there is an imperative to conduct timely and effective
detection of EVs so as to carry out treatments and prevention
at an early stage to control their spread.10,11

The International Committee on Taxonomy of Viruses
categorizes EVs into groups A, B, C, and D based on biological
and genetic characteristics.12 Among these, enterovirus A71
(EV-A71), which once caused large outbreaks of HFMD,13

stands out as a cause of severe cases and fatalities in EV
infections.14 EV-A71, highly neurotropic, can lead a consid-
erable number of infected patients to develop fatal neurological
and cardiopulmonary complications such as meningitis,

cerebellar ataxia, acute flaccid paralysis, encephalitis, and
pulmonary edema.15,16 Moreover, follow-up studies have
shown that patients with severe infections may still suffer
from serious neurological sequelae after recovery.2 In view of
this, the early detection and diagnosis of EV-A71 are essential
for reducing severe cases and mortality, warranting significant
attention and prompt implementation.17,18

Nowadays, while EV-A71 still remains a major cause of fatal
cases of HFMD, its proportion has been declining year by year,
with the implementation of vaccination work.19−21 The
proportion of fatal cases caused by other EVs such as
Coxsackievirus A16 (CV-A16), Echovirus, Enterovirus C95
(EV-C95), and Enterovirus D68 (EV-D68) has shown a
significant upward trend by contrast.22 Moreover, the fact that
the EV-A71 vaccine has not yet achieved cross-protection
against infections caused by other EVs makes the control of
EVs’ prevalence even more difficult.23 Therefore, only by
simultaneously detecting both EVs and EV-A71 can we clarify
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the overall epidemic situation of the viruses, ensure that no
other types of EVs are overlooked, identify children who may
develop severe symptoms, and conduct risk assessments for
potential HFMD outbreaks. Many researchers, such as Zhou et
al.,24 Puenpa et al.,25 have recognized this issue and are
committed to developing detection strategies that can
simultaneously detect EV-A71 and other EVs to reduce
outbreaks of HFMD related to EVs. The ideal diagnostic
testing method should be able to simultaneously detect EV and
differentiate EV-A71,26 which would facilitate the assessment
of the potential severity of the EV outbreak and thus trigger
appropriate public health intervention measures.27

Traditional methods for detecting EVs, such as serological
assays,28 have low sensitivity. Molecular biology detection
techniques, like real-time quantitative polymerase chain
reaction (RT-qPCR),29 require complex thermal cycling
equipment, expensive probes, nucleic acid extraction methods,
and considerable expertise, making them less suitable for rapid
diagnosis.30 Loop-mediated isothermal amplification (LAMP)
has emerged as a promising alternative to RT-qPCR, offering
benefits such as tolerance to inhibitors without the need for
extraction and isothermal amplification without complex
thermal cycling.31 Introducing LAMP colorimetric indicators
like hydroxynaphthol blue (HNB) enables visual evaluation of
results, enhancing its usability.32

Recent advancements in CRISPR/Cas-based diagnostics,
particularly the fusion of CRISPR/Cas12a with LAMP
(LAMP-CRISPR/Cas12a),33 have further improved sensitivity
and specificity, making it suitable for accurate point-of-care
(POC) diagnostics. CRISPR/Cas12a, guided by CRISPR RNA
(crRNA), can recognize LAMP amplification products and
trigger its cleavage of a fluorescent DNA reporter, yielding a
visible fluorescent signal.34 However, one tube can detect only
one target at a time, whether for EVs or EV-A71.35

Furthermore, when performing LAMP-CRISPR detection in
two steps, opening the tube can allow the target virus that
might be present in the air to enter the sample or reaction
system, leading to false positive results. The limitation
underscores the need for advancements in multiplex
capabilities and specificity to enhance diagnostic potential.
To address this, we proposed a strategy coupling HNB-RT-

LAMP with CRISPR/Cas12a (HNB-LAMP-CRISPR) for the
simultaneous detection of EVs and EV-A71, which allowed for
single-tube reactions and visual readout. Clinical validation
using nasopharyngeal (NP) swabs from children suspected of

HFMD further confirmed the performance of HNB-LAMP-
CRISPR for rapid and accurate detection.

2. METHODS
2.1. Materials and Reagents. WarmStart LAMP Kit and

rCutSmart buffer were obtained from New England Biolabs
(NEB). HNB, TAE, and agarose were purchased from Sigma-
Aldrich (Shanghai). AsCas12a was procured from Shanghai
Tolo Biotech Co., Ltd. RNase inhibitor, DEPC water, and
DNA marker were obtained from Nanjing Vazyme Medical
Technology Co., Ltd. All sequences, including RNA templates,
primers, crRNA, and ssDNA reporter, were synthesized by
Beijing Tsingke Biotech Co., Ltd.
2.2. Design of Primers and crRNA. Primers were

designed based on the highly conserved 5′-UTR sequence of
EVs, referencing previous studies.36 Utilizing the VP1 gene of
EV-A71 (GenBank accession No: GQ855293.1), LAMP-
specific primers for EV-A71 were designed using Primer
Explorer V5, and crRNAs were designed near the PAM site of
the LAMP product. The specific sequences of primers,
crRNAs, and other sequences used in this study are given in
Table 1.
2.3. Virus Genomes and RNA Templates. Virus genome

RNA, including Enterovirus A71, Coxsackievirus A16 (CV-
A16), Coxsackievirus A6 (CV-A6), Coxsackievirus A10 (CV-
A10), Coxsackievirus B3 (CV-B3), Coxsackievirus B5 (CV-
B5), and Echovirus 30 (EV-30), were provided by the Qinhuai
District Center for Diseases Control and Prevention (Nanjing,
China). A mixture of EV-A71 and EVs was used for feasibility
testing. Amplification products of the 5′-UTR and VP1 gene
were used for sensitivity testing.
2.4. HNB-RT-LAMP Assay. The 20 μL singleplex HNB-

RT-LAMP system for LAMP primer testing comprises 1×
WarmStart LAMP mixture, 0.2 μM primers F3 and B3, 1.6 μM
primers FIP and BIP, 0.16 μM loop primers LF and LB, 120
μM HNB, and 2 μL of virus genome RNA. For the 20 μL
HNB-RT-LAMP detection system designed for dual-target
detection, its components consisted of 1 × WarmStart LAMP
mixture, 0.1 μM of each primer F3 and B3, 0.8 μM of each
primer FIP and BIP, 0.08 μM of each loop primer LF and LB,
120 μM HNB, and 2 μL of virus genome RNA. The reaction
mixture was incubated at 65 °C for 40 min, followed by
termination at 80 °C for 10 min. Colorimetric analysis was
performed under natural light, where blue indicated a positive

Table 1. Sequences Used in the Study

name sequences (5′-3′) length (bp) category

5′-UTR-F3 ACGGGACGCTAGTTGTGA 18 DNA
5′-UTR-B3 ATTGTCACCATAAGCAGCCA 20 DNA
5′-UTR-FIP ATTAGCCGCATTCAGGGGCC-ACAGGGTGTGAAGAGCCTAT 40 DNA
5′-UTR-BIP TGTCGTAACGCGCAAGTCCG-GAAACACGGACACCCAAAGT 40 DNA
5′-UTR-LF GGATTCTTATGTAGCCTC 18 DNA
5′-UTR-LB TGGCGGAACCGACT 14 DNA
VP1-F3 GCGGAGTTCACTTTTGTTGC 20 DNA
VP1-B3 CGCAGGTGACATGAATGGTA 20 DNA
VP1-FIP GGCTCCAGGTGGCACAAACAT-CACACCCACAGGGGAAGT 39 DNA
VP1-BIP AGCCAGATTCCAGGGAATCCCT-AGGGTCTGACAGCTTGACAA 42 DNA
VP1-LB GTATTGGAGCAATTGTGGGACA 22 DNA
VP1-LF CATGGCAAACCGCCACCAA 19 DNA
VP1-crRNA AAUUUCUACUCUUGUAGAU-TGCCACCTGGAGCCCCTAAGCCA 42 RNA
DNA reporter FAM-TTATT-BHQ1 5 DNA
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result. Gel electrophoresis with 2.5% agarose was used for
validation.
2.5. CRISPR/Cas12a Trans-Cleavage Assay. The 20 μL

CRISPR/Cas12a trans-cleavage system included 10 μL of RT-
LAMP amplification products and a total volume of 10 μL of
the CRISPR/Cas 12a system, which consisted of 1×
rCutSmart buffer, 50 nM AsCas12a, 100 nM crRNA, and
500 nM DNA reporter. Incubation was carried out at 37 °C for
10 min, followed by visual analysis under a blue light
transilluminator (BlueVision200A/BV200, Clinx Science In-
struments Co., Ltd.). Then, the sample with EV-A71 that can
activate the trans-cleavage ability of Cas12a, thus generating
fluorescent signals, was placed in a microplate reader (Infinite
200 PRO, TECAN) to quantitatively detect the fluorescence
intensity. The RT-LAMP amplification products were obtained
separately using EV-A71 and the EV genome.
2.6. HNB-LAMP-CRISPR Assay. The one-tube HNB-

LAMP-CRISPR detection system comprised equal volumes of
the HNB-RT-LAMP system and the CRISPR/Cas12a system,
both of which had a volume of 10 μL. The concentration of the
HNB-RT-LAMP system was as described in Section 2.4, while
the CRISPR/Cas12a system was added at twice the initial
concentration on the tube lid, compensating for the dilution
that occurred after mixing with the HNB-RT-LAMP system, to
ensure that the concentration in the reaction remained
constant. After adding 2 μL of plasmid or sample, incubation
was first carried out at 65 °C for 40 min, followed by
observation of the colorimetric result under natural light.

Sensitivity testing of HNB-LAMP-CRISPR was conducted
using serially diluted 5′-UTR and VP1 gene sequences. For the
5′-UTR, colorimetric analysis was performed under natural
light after the HNB-RT-LAMP reaction. For the VP1 gene,
subsequent to the CRISPR/Cas12a trans-cleavage process, a
visual analysis was carried out under a blue light trans-
illuminator. After that, the absorbance spectra were examined
and analyzed by the utilization of a microplate reader at an
excitation wavelength of 490 nm.
2.7. Clinical Sample Testing. 94 NP swab samples from

suspected HFMD patients under 12 years of age were provided
by the Qinhuai District Center for Disease Control and
Prevention. These samples were lysed for RNA prior to testing,
according to the instructions provided with the nucleic acid
lysis solution kit (Suzhou Jiennuo Biomedical Technology Co.,
Ltd.). HNB-LAMP-CRISPR was then used to detect EVs and
EV-A71. Standard RT-qPCR testing was conducted using the
Enterovirus (EV) RT-PCR Kit and Enterovirus type 71
(EV71) RT-PCR Kit (Shanghai Bolsen Biotechnology Co.,
Ltd.) with a real-time fluorescence quantitative PCR system
(QuantStudio 5, Thermo Fisher).

3. RESULTS AND DISCUSSION
3.1. Overview of the HNB-LAMP-CRISPR System. In

the HNB-LAMP-CRISPR system, we placed the HNB-RT-
LAMP reagents for EV detection at the bottom of the tube and
the CRISPR/Cas12a reagents for EV-A71-specific detection at
the top. Initially, samples were directly added to the HNB-RT-

Figure 1. HNB-LAMP-CRISPR principle.
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LAMP reagents, and LAMP reactions were conducted at 65 °C
for 40 min. The LAMP reagents contained specific primer sets
for EVs and EV-A71, which facilitated the amplification of the
EVs 5′-UTR and EV-A71 VP1 gene. In the case of positive
amplification (indicating the presence of EVs), a blue color
would be presented through the HNB colorimetric detection,
whereas negative amplification would appear violet under
natural light. Subsequently, the CRISPR reaction tube was
inverted to thoroughly mix the LAMP reaction products with
the CRISPR system and then placed in a constant temperature
incubation device for incubation at 37 °C for 10 min. If
CRISPR/Cas12a can specifically recognize the amplification
product of the EV-A71 VP1 gene, it will trigger the trans-
cleavage activity and cleave surrounding fluorescent reporter
molecules. Through this method, EV-A71 can be detected
under blue light, differentiating other EVs (Figure 1).
At the bottom of the tube is the HNB-RT-LAMP reagent,

with the CRISPR/Cas12a reagent added to the top. The
sample is added to the HNB-RT-LAMP reagent for RT-LAMP

to detect EVs. Samples without EVs do not show RT-LAMP
amplification, so there is no change in the HNB, appearing
violet under natural light. Samples with EV-A71 undergo
amplification of the VP1 gene and 5′-UTR gene, causing the
precipitation of free Mg2+ in HNB and appearing blue under
natural light. For samples with other EVs, only the
amplification of the 5′-UTR gene occurs, appearing blue
under natural light. After the detection of EVs, the tube
containing the EV-positive sample is inverted to mix the two
reagents for CRISPR/Cas12a detection. Samples with the VP1
gene activate the trans-cleavage activity of Cas12a, generating
fluorescent signals and appearing green under blue light. While
Samples without the VP1 gene cannot activate the trans-
cleavage process, no fluorescent signals are generated,
appearing red under blue light.
3.2. Testing of Primers and crRNA. RT-LAMP

introduces a set of primers targeting EVs and a specific set
of primers designed for EV-A71. The 5′-UTR region is
conserved among EVs.37 We referred to previous studies and

Figure 2. Feasibility Testing. (A) Design of the LAMP primer set and crRNA using the VP1 gene sequence of the EV-A71. (B) Specific sequences
of the primers and crRNA are shown, with arrows indicating the 5′ to 3′ direction. The crRNA is designed downstream of the PAM site (5′-TTTG-
3′). (C) HNB-RT-LAMP colorimetric and gel electrophoresis analyses were conducted using the standalone EV-A71 primers set. (D) Multiplex
HNB-RT-LAMP colorimetric and gel electrophoresis analyses were conducted using the mixed primer set for EV-A71 and universal EVs. (E)
CRISPR/Cas12a detection was performed on the amplification products of the multiplex RT-LAMP using the mixed primer set for EV-A71 and
EVs. Observation was made under a blue light transilluminator, and fluorescence intensity was analyzed using a microplate reader. The difference in
fluorescence intensity between the EV-A71 group and the NTC group was statistically significant (P < 0.001, ****), whereas other EVs showed no
significant difference from the NTC (P > 0.05, ns). The experiment was carried out three times.
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used the 5′-UTR as a target for universal EV LAMP
detection.36 The specific set of primers designed for EV-A71
was used to amplify DNA for CRISPR/Cas12a detection
(Figure 2A). Moreover, based on the principles of multiplex
primer design,38 we equally distributed the concentration of
these two sets of LAMP primers. Six primers of LAMP and
crRNA were designed targeting sequences in the VP1 gene of
EV-A7139 (Figure 2B).
To test the feasibility of the LAMP primers, we used the EV-

A71 primers set alone in HNB-RT-LAMP reactions. The
amplification product containing the VP1 gene sequence of
EV-A71 exhibited blue under natural light, thus distinguishing
it from other EVs and negative controls (NTC). Agarose gel
electrophoresis confirmed the amplification bands of EV-A71
LAMP (Figure 2C), indicating successful amplification of the
VP1 gene. We performed multiplex HNB-RT-LAMP reactions

by mixing the EV-A71 primer set with the EV primer, which
resulted in positive signals for both EV-A71 and other EVs
(Figure 2D). Therefore, these mixed primer sets will be used in
the subsequent HNB-LAMP-CRISPR system.
Next, we tested the feasibility of crRNA for EV-A71

detection using CRISPR/Cas12a. Based on the success of
the RT-LAMP multiplex primers, the genomic sequences of
EV-A71 and other EVs were first subjected to RT-LAMP
amplification, followed by the addition of CRISPR/Cas12a
reagents for trans-cleavage detection. Finally, visual analysis
was conducted under a blue light transilluminator. The results
indicated that the detection of RT-LAMP products by the
CRISPR/Cas12a system was rapid, with fluorescence signals of
the EV-A71 groups being observed within 10 min, clearly
distinguishing them from other EVs (Figure 2E). These results
confirmed the feasibility of both primer sets and the crRNA.

Figure 3. One-tube strategy for screening EVs and genotyping EV-A71. (A) Protocol of “One-Tube” strategy. At the bottom of the tube is the
HNB-RT-LAMP reagent, with the CRISPR/Cas12a reagent added on top. The sample is added to the HNB-RT-LAMP reagent for RT-LAMP,
enabling the screening of EVs. By mixing HNB-RT-LAMP and CRISPR/Cas12a reagents, the CRISPR/Cas12a assay is carried out to screen for
EV-A71 positive samples. The entire procedure is performed in a single tube. (B) Principle of visual colorimetric detection. For EV samples, after
RT-LAMP amplification, the precipitation of Mg2P2O7 results in a blue color change under natural light, while samples without EVs appear violet as
the RT-LAMP amplification does not occur in them. The EV-A71 positive samples emit green fluorescence under blue light, resulting from the
trans-cleavage activity of CRISPR/Cas12a, which generates fluorescent signals. Samples with other EVs appear red due to the fluorescence
characteristics of HNB under blue light. (C) Colorimetric results of EV-A71, other EVs, and NTC samples after the HNB-RT-LAMP reaction
under natural light and blue light excitation. (D) Colorimetric results of EV-A71 and other EV samples under natural light and blue light excitation
after mixing both systems and before the CRISPR/Cas12a reaction. (E) Colorimetric results of EV-A71 and other EV samples under natural light
and blue light excitation after the CRISPR/Cas12a reaction. The experiment was carried out three times.
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3.3. Feasibility Testing of HNB-LAMP-CRISPR. We
developed a “One-tube” strategy to simultaneously detect EVs
and EV-A71, which could effectively avoid aerosol contami-
nation caused by opening the tube (Figure 3A). In principle,
after LAMP amplification, the precipitation of magnesium
pyrophosphate (Mg2P2O7) occurs with the reduction of free
Mg2+,40 subsequently leading to an observable color alteration
of HNB. Colorimetric detection under natural light allows the
distinction of EV samples from NTC. Following the mixing of
the HNB-RT-LAMP system and the CRISPR/Cas12a system,
the VP1 gene amplification products can be detected by
CRISPR/Cas12a, and fluorescence signals were generated
through the trans-cleavage process, which could be sub-
sequently observed under blue light excitation. This result
indicated the presence of EV-A71 (Figure 3B).

We tested the feasibility of HNB-LAMP-CRISPR with EV-
A71 and other EVs. After RT-LAMP amplification, EV-A71
and other EVs exhibited a blue color, distinguishable from the
violet color of the NTC. Simultaneously, under blue light
excitation, we observed that HNB could be excited to red
fluorescence, but the fluorescence of positive amplification was
weaker than that of the NTC (Figure 3C). The fluorescence
characteristics of HNB have been reported in previous
studies.41 Mixing the two reagents in the tube supplemented
the CRISPR buffer with Mg2+, which replenished the Mg2+
consumed during amplification. Therefore, both EV-A71 and
other EVs appeared violet under natural light and red under
blue light excitation before the CRISPR/Cas12a trans-cleavage
reaction (Figure 3D). After 10 min of CRISPR/Cas12a
detection, EV-A71 was excited to green fluorescence under

Figure 4. Sensitivity testing. (A) Sensitivity testing of consecutive dilutions of the EV 5′-UTR region using HNB-RT-LAMP. (B) Sensitivity testing
of consecutive dilutions of the EV-A71 VP1 gene using HNB-LAMP-CRISPR. (C) Emission spectrum of consecutive dilutions of the EV-A71 VP1
gene using HNB-LAMP-CRISPR under 590 nm excitation. (D) Sensitivity testing of the EV-A71 VP1 gene using conventional RT-LAMP-
CRISPR. The experiment was carried out three times.

Figure 5. Clinical sample testing of HNB-LAMP-CRISPR. (A) HNB-LAMP-CRISPR results of NP swab samples from 94 suspected HFMD
patients under 12 years old. (B) Positivity rates of EVs and EV-A71 Based on HNB-LAMP-CRISPR. (C) Sensitivity and specificity of HNB-LAMP-
CRISPR in detecting EVs are compared to RT-qPCR. (D) Sensitivity and specificity of HNB-LAMP-CRISPR in detecting EV-A71 compared to
RT-qPCR.
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blue light, while other EVs remained red, enabling the
discrimination of EV-A71 (Figure 3E). This indicated the
feasibility of HNB-LAMP-CRISPR for one-tube detection of
EVs and EV-A71.
3.4. Sensitivity Testing. We conducted sensitivity testing

of the HNB-LAMP-CRISPR system. For EV detection, the 5′-
UTR gene sequence of EVs was serially diluted, and the HNB-
RT-LAMP assay was performed. The limit of detection (LoD)
under natural light was determined to be 101 copies/μL
(Figure 4A), consistent with the sensitivity of conventional
LAMP assays.42 For EV-A71 detection, the VP1 gene of
serially diluted EV-A71 was subjected to the HNB-LAMP-
CRISPR assay. As the RNA concentration decreased, the
reaction product transitioned from green to yellow under blue
light, with an LoD of 100 copy/μL (Figure 4B). Under 490 nm
blue light excitation, the HNB-LAMP-CRISPR positive
reaction reached the highest absorption peak at 520 nm,
while the negative sample showed a relatively high absorption
peak at 610 nm (Figure 4C). We also compared the results
with and without the addition of HNB in the LAMP-CRISPR/
Cas12a assays (Figure 4D). It was observed that, for untrained
testers, without the addition of HNB, it would be difficult to
differentiate between low-copy and negative samples due to
background signals when testing unknown samples. In
contrast, in HNB-LAMP-CRISPR, since the negative reaction
appeared red, it was easier to observe the difference between
the red color of the negative samples and the yellow color of
the low-copy samples, making HNB-LAMP-CRISPR more
user-friendly.
3.5. Clinical Performance Evaluation. A total of 94

clinical samples were utilized to assess the performance of
HNB-LAMP-CRISPR. These samples consisted of NP swabs
from children under 12 years old suspected of HFMD. Overall,
79 samples were positive for EVs, and three samples were
positive for EV-A71 (Figure 5A). HNB-LAMP-CRISPR
determined an EV positivity rate of 84.0% and an EV-A71
positivity rate of 3.8% among suspected HFMD patients
(Figure 5B). RT-qPCR detected four additional EV-positive
cases (Figure 5C), with HNB-LAMP-CRISPR exhibiting
complete consistency in EV-A71 detection compared to RT-
qPCR (Figure 5D). In conclusion, the results demonstrate that
the false positive rate and false negative rate of HNB-LAMP-
CRISPR in detecting EVs are 0% and 4.8%, respectively, while
those in the detection of EV-A71 are both 0%, demonstrating
the commendable detection performance of HNB-LAMP-
CRISPR.

4. CONCLUSIONS
We developed HNB-LAMP-CRISPR for the simultaneous
detection of EVs and EV-A71. This streamlined process,
conducted in a single tube, eliminates the risk of aerosol
contamination. The sensitivity of HNB-LAMP-CRISPR for
detecting EVs and EV-A71 is impressive, reaching 101 and 100
copies/μL, and the results are more interpretable. The
detection results of clinical samples demonstrated the high
sensitivity and specificity of HNB-LAMP-CRISPR. However, it
should be noted that more comprehensive and extensive
studies are needed to further evaluate its performance and
reliability. At present, it may serve as a supplementary tool
rather than a fully reliable substitute for RT-qPCR in clinical
settings. It is hoped that this research can contribute to the
exploration of new diagnostic methods and provide new ideas
for improving diagnostics in the future.
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