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Aim: SARS-CoV-2 caused more than 3.8 million deaths according to the WHO. In this urgent circumstance,
we aimed at screening out potential inhibitors targeting the main protease of SARS-CoV-2. Materials &
methods: An in-house carboline and quinoline database including carboline, quinoline and their deriva-
tives was established. A virtual screening in carboline and quinoline database, 50 ns molecular dynamics
simulations and molecular mechanics Poisson−Boltzmann surface area calculations were carried out. Re-
sults: The top 12 molecules were screened out preliminarily. The molecular mechanics Poisson−Boltzmann
surface area ranking showed that p59 7m, p12 7e, p59 7k stood out with the lowest binding energies of
-24.20, -17.98, -17.67 kcal/mol, respectively. Conclusion: The study provides powerful in silico results that
indicate the selected molecules are valuable for further evaluation as SARS-CoV-2 main protease inhibitors.
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SARS-CoV-2 has spread all over the world, led to SARS and caused more than 179 million infections and
3.8 million deaths according to the WHO [1]. SARS-CoV-2 manifests higher transmissibility and lower mortality
compared with SARS-CoV. SARS-CoV-2 shows efficient intrafamilial spread [2]. Although, several vaccines have
been approved by the WHO such as BBIBP-CorV and CoronaVac [3], the pain and fever occur after treatment
of some vaccines. The protective efficacy of the vaccines still need to be improved. Vaccines can help to prevent
infection and severe symptoms caused by SARS-CoV-2. However, for patients who have been infected with the
virus, drugs are still in need. Remdesivir is the first drug approved by the US FDA for the treatment of SARS-
CoV-2 [4]. Remdesivir targets RNA polymerase to inhibit viral replication. However, main protease (Mpro) is
also one of the most important enzymes in the life cycle of virus. Mpro of SARS-CoV-2 is a crucial enzyme of
coronaviruses and has a pivotal role in mediating the viral maturation [5]. Besides, Mpro is most abundant in the
viral surface and is believed to be the crucial organizer in the coronavirus assembly [6], making it an arresting
drug target for SARS-CoV-2. The protein crystal (Protein Data Bank [PDB] code: 6LU7) contains ligand N3
which help us to define the active site pocket of Mpro of SARS-CoV-2 [7]. Docking is useful in virtual screening
of small molecule databases and predicting the structures and functions of biomolecular complexes. Molecular
dynamics (MD) simulations can give a dynamic image that obtained from the molecular docking [8]. Moreover, the
molecular mechanics Poisson−Boltzmann surface area (MM-PBSA) method provides a more accurate calculation
of the binding energy. In previous studies, molecules in public databases, repurposed approved drugs or molecules
in natural products were obtained for in silico screening targeting Mpro [9–14]. We established an in-house database,
carboline and quinoline database (CQDB) that included both carboline and quinoline molecules in this study.
Since isoquinoline, quinoline, β-carboline and their derivatives show the powerful antiviral bioactivity [15,16]. Based
on the small molecule database, we attend to use computational approaches mentioned above to find potential
molecules for the treatment of SARS-CoV-2 (Figure 1).
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Figure 1. Workflow for the discovery of potential inhibitor against
main protease in silico.
CQDB: Carboline and quinoline database; MD: Molecular dynamics;
MM-PBSA: Molecular mechanics Poisson−Boltzmann surface area.

Materials & methods
Dataset
For this study, we established a small molecule database named "CQDB". CQDB includes 2598 carboline and
quinoline derivatives without duplicated molecules. 1117 molecules were synthesized and patented in our previous
work. Another 1481 molecules were obtained from the publications of other pharmaceutical researches. 2D
structures of these molecules were sketched in ChemBioDraw and converted to 3D structures with Open Babel
v3.1.0 as ligands [17]. Afterward, optimizations were done in 250 steps of a steepest-descent geometry optimization
with the MMFF94 forcefield in Open Babel.

Protein & ligand setup
The crystal structure of SARS-CoV-2 Mpro (PDB code: 6LU7) was obtained from the PDB with a resolution of
2.16 angstrom. The protease consisted of one chain with 306 amino acids. 6LU7 was prepared at a pH level of 7.4
for protonation using the ‘prepare protein’ protocol in BIOVIA Discovery Studio 2016 (Dassault Systèmes, Vélizy-
Villacoublay, France). The protonation state of crucial residuals such as HIS 41, HIS 164 and GLU 166 in
binding-site was checked carefully again. The solvent was stripped off. Ligands were obtained from the CQDB
database.

Docking-based virtual screening
Docking-based virtual screening, which is one of the most promising methods in silico for the drug-like molecule
discovery, is useful to predict the best interaction state between a ligand and a protein. AutoDock Vina (Scripps
Research, CA, USA) was chosen to perform the virtual screening. Since AutoDock Vina provides the maximum
accuracy and the minimum computer time, which refers to the empirical and knowledge-based scoring functions [18].
Ligands were assigned with the gasteiger charges. The grid box size in three dimensions was 40 × 40 × 40 Å with
a center coordinate of -7.857, 11.856 and 67.687, which was the center of the ligand N3 in the crystal structure.
The exhaustiveness of the global search was increased to 12. Based on the binding affinity ranking, the top 12
molecules that satisfied a threshold (�G ≤−9.8 kcal/mol) were screened out for more detailed analysis.

Strategy of docking & selection of promising configuration
In the docking analysis, a theoretical method to identify the appropriate configuration of ligand in enzyme active-
site is very important [19,20]. To evaluate the docking and selection strategy, N3 was fetched out from the crystal
structure and redocked into Mpro as a reference. Covalent docking was performed using AutoDock 4.2.6 [21]. The
grid box dimensions were 40 × 40 × 40 Å. The grid spacing was set as 0.375 Å. Lamarkian genetic algorithm was
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utilized to find the appropriate configurations of ligands. The global optimization was performed with parameters
of 300 randomly positioned individuals. The maximum number of energy evaluations was enhanced to 2.5 × 107,
and the maximum number of generations in lamarkian genetic algorithm was enhanced to 2.7 × 105. The Solis
and Wets local search was executed with a maximum number of 3000. During docking experiments 200 runs
were carried out. The resulted 200 conformations of each were ranked by the lowest binding energy and clustered
with an all-atom root mean square deviation tolerance of 2.0 Å. The lowest binding energy, the population of the
configuration in the cluster analysis and the proper binding mode were considered comprehensively for selecting the
promising configuration of N3. Subsequently, the top 12 molecules were redocked toward the Mpro in AutoDock
4.2.6 to select the promising configurations using the same selection strategy. The selected promising configurations
of the 12 molecules were submitted as the start configurations for the MD simulations.

MD simulation analysis
MD simulation is a decision-making procedure for the evaluation of complex stability [22]. It is useful in the
investigation of the dynamic behavior at an atomic level of biological systems, which is hard to process in the
laboratory [23]. In the present study, the most promising configurations of the 12 Mpro–ligand complexes were
chosen as the starting point for MD simulations. MD simulations for 12 Mpro–ligand complexes and an apo
form of the Mpro were performed on a 50 ns time scale. The CHARMM General Force Field web-based tool
(https://cgenff .umaryland.edu/) was used to generate ligand parameter files. Charge of ligands was assigned by the
extended bond–charge increment scheme [24]. Gromacs 2020.1 was utilized to perform the simulation with the
CHARMM36 all-atom force field [25,26]. All of the 13 systems were solvated with an extended simple point charge
model (SPC/E) and neutralized via adding Na+ ions [27]. In the following process, the energy of the system was
minimized by the steepest descent algorithm at a threshold of 1000 kJ·mol-1·nm-1. Then two-part equilibration,
conserved moles, volume and temperature (NVT) and conserved moles, pressure and temperature (NPT) ensembles
were done for 0.5 ns. Long-range electrostatics was calculated by the particle Mesh Ewald method [28]. About 50 ns
MD simulations were performed at a time step of 2 fs. Then root mean square deviation (RMSD), root mean
square fluctuation (RMSF), radius of gyration (Rg) and the number of hydrogen bonds were calculated to analyze
the MD trajectories in GROMACS utilities.

MM-PBSA combined with MD
MM-PBSA is used in study of biomolecular interactions and the computational drug design. MM-PBSA binding
energy of chosen molecules was calculated via g mmpbsa [29]. This tool calculates the enthalpic components of the
MM-PBSA interaction using GROMACS and the APBS packages. The total binding free energy is calculated as
follows: �Gbinding = Gcomplex − (Gprotein + Gligand)

Dihedral angle principal component analysis
The principal component analysis (PCA) method was used to calculate eigenvectors and eigenvalues and their
projection along with the first two principal components during MD simulation. The dihedral angle principal
component analysis (dPCA), which is based on the Gromacs protocol, uses backbone dihedral angles to analyze
while PCA uses Cartesian coordinates [25]. dPCA can readily be characterized by the corresponding conformational
changes of peptides in a protein [30]. dPCA was calculated from the MD backbone trajectories. Via diagonalizing
the matrix, a bunch of eigenvectors and eigenvalues were generated and plotted in the 2D projection to evaluate
the motion of trajectory.

Results
Virtual screening
To evaluate the potential of molecules in our database to become inhibitors of Mpro, AutoDock Vina was used to
screen in the database and rank molecules according to their binding affinities. The name, structure and molecular
weight of the top 12 molecules are listed in Table 1.

Selection of proper configurations of referenced inhibitor
The proper docked configuration of N3 was selected and shown in Figure 2. The selected configuration of N3 is
well overlapped with N3 in the crystal structure. The binding free energy of the selected configuration of N3 to
the Mpro is -15.40 kcal/mol in AutoDock 4.2.6. Compared with the crystal N3, the selected configuration of N3
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Table 1. The name, structure, molecular weight and binding free energies of the top 12 molecules virtually screened
from in-house carboline and quinoline database.
Rank Name Structure Molecular weight � G from AutoDock

(kcal/mol)
� G from MM-PBSA
(kcal/mol)

1 p59 7m 789.84 -8.39 -24.20

2 p63 9h 462.48 -8.60 -17.98

3 p12 7e 544.39 -9.10 -17.67

4 p59 7k 794.26 −8.70 −17.51

5 22 7b 881.95 -5.55 -16.44

Binding free energies calculated with both AutoDock and MM-PBSA. The top 12 molecules ranked by MM-PBSA binding energy.
MM-PBSA: Molecular mechanics Poisson−Boltzmann surface area.
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Table 1. The name, structure, molecular weight and binding free energies of the top 12 molecules virtually screened
from in-house carboline and quinoline database. (cont.).
Rank Name Structure Molecular weight � G from AutoDock

(kcal/mol)
� G from MM-PBSA
(kcal/mol)

6 p63 9l 490.52 -8.22 -16.07

7 p63 9m 448.46 -8.28 -14.55

8 506 4Rd 525.61 -7.10 -13.48

9 p63 9i 458.52 -8.92 -12.94

10 p63 9j 445.48 -8.00 -12.24

11 310 5g 559.62 -7.82 -11.30

12 p80 7r 518.96 -9.34 -7.90

Binding free energies calculated with both AutoDock and MM-PBSA. The top 12 molecules ranked by MM-PBSA binding energy.
MM-PBSA: Molecular mechanics Poisson−Boltzmann surface area.
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Figure 2. Molecular interactions between main protease (orange ribbon) and docked main protease inhibitor N3
from crystal structure 6LU7 (deep teal stick). Crystal structure of Mpro inhibitor N3 shown as yellow transparent stick
model.

Table 2. Contributions in molecular mechanics Poisson−Boltzmann surface area binding energies of the top four
molecules.
Name � Eele � Evdw � Gnp � Gp � Gbind

p59 7m -13.29 -51.16 -5.83 46.07 -24.20

p63 9h -4.21 -34.70 -3.69 24.62 -17.98

p12 7e -7.36 -45.31 -4.68 39.68 -17.67

p59 7k -14.93 -51.48 -6.05 54.96 -17.51

The unit of all parameters is kcal/mol.
� Eele: Electrostatic energy; � Evdw: Van der Waal energy; � Gnp:None polar solvation energy (solvent-accessible surface area energy); � Gp: Polar solvation energy; � Gbind: Binding energy.

forms similar molecular interactions with the Mpro, including conventional hydrogen bonds with GLY 143, HIS
164, GLN 189 and GLN 192, hydrophobic interactions such as Pi-Sulfur, Pi-Alkyl with MET 49 and HIS 41 and
ARG 188. The result suggests that the selection strategy of proper configuration of the ligand is appropriate.

Using the same docking and selection strategy, the top 12 molecules were redocked with AutoDock 4.2.6. The
most promising configurations of the 12 molecules are selected and the lowest binding energies calculated by
AutoDock 4.2.6 are listed in Table 1.

Reranking with MM-PBSA binding energy
The top 12 molecules were reranked according to the MM-PBSA binding energies shown in Table 1. The top
four molecules are p59 7m, p63 9h, p12 7e and p59 7k. Figures 3A–D shows the fluctuation of MM-PBSA
binding energies of the top four molecules during 50 ns MD simulations. The MM-PBSA binding energy of the
top four molecules fluctuated stably during 50 ns. Table 2 shows contributions in MM-PBSA binding energy of
the top four molecules.

Binding stability evaluations during MD simulation
To evaluate the binding stability of the top 12 molecules at the binding site of Mpro, the protein backbone RMSD,
RMSF, the Rg and the number of hydrogen bonds, the protein dihedral principal component (dPCA) and the
ligand binding mode during 50 ns MD simulations were carefully inspected. It was found that p63 9h exhibited
unstable binding mode at the active site of the Mpro. Thus, p59 7m, p12 7e and p59 7k were suggested as the
top three molecules with the potential of inhibiting Mpro. The average protein backbone RMSD of apo form is
0.26 nm while holo forms with p59 7m, p12 7e, p59 7k are 0.18, 0.20, 0.19 nm, respectively (Figure 4A). This
result suggests the reduction of overall protein flexibility upon binding of the three selected molecules. The protein
backbone RMSF shown in Figure 4B represents lower fluctuations of protein residues during MD simulation upon
binding p59 7m and p59 7k than binding p12 7e. The Rg shown in Figure 4C exhibits more compact protein–
ligand complex during MD simulation upon binding p59 7m and p12 7e than binding p59 7k. The number of
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Figure 3. The molecular mechanics Poisson−Boltzmann surface area binding energies over 50 ns simulations of the
top four ranked molecules.
Mpro: Main protease.

hydrogen bonds reflects one of the crucial interactions between the protein and the corresponding ligand. As seen
in Figure 4D, average number of hydrogen bonds upon binding of p59 7m, p12 7e, p59 7k are 2.0, 1.2 and 1.8,
respectively. This suggests p59 7m forms stronger hydrogen bond interactions than p59 7k and p12 7e.

Dihedral principal component analysis
The dihedral principal component analysis (dPCA) method was employed to reveal the dynamical behavior in the
space of SARS-CoV-2 Mpro when combined with the top three molecules. The first two principal components were
selected to analyze the projection of apo form phase space and holo form phase spaces with top three molecules
during the 50 ns MD simulations. Figure 5 clearly shows that apo protein and the Mpro-p59 7k complex covered
a larger region of phase space while the Mpro-p59 7m complex and Mpro-p12 7e complex covered smaller ones.
The result suggests that binding of p59 7m and p12 7e in the active site limits large dynamic behaviors of SARS
CoV-2 Mpro, which is in accordance with the Rg results.
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Protein–ligand interaction analysis
The 3D interactions of the top three molecules with Mpro in the last snapshot from MD simulation are shown in
Figures 6A–C. Figure 6A reveals p59 7m forms four conventional hydrogen bonds with THR 26, HIS 41, CYS
145, ARG 188 in range: 3.17–3.49 Å. While p12 7e (Figure 6B) and p59 7k (Figure 6C) forms three and two
conventional hydrogen bonds with Mpro, respectively. Besides, p59 7m forms hydrophobic interactions with MET
49 and ASN 142.
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Discussion
SARS-CoV-2 invades human respiratory system, spreads rapidly and causes a severe health crisis all over the world.
Vaccines can help to prevent infection and severe symptoms caused by SARS-CoV-2. However, drugs treating
SARS-CoV-2 infection are still in urgent need. The RNA polymerase inhibitor, remdesivir, is the only drug
approved by FDA up to now. Nowadays, The Mpro of SARS-CoV-2 has become one of the most promising targets
for new drugs. The Mpro inhibitor PF-07321332 from Pfizer has entered a Phase I clinical study [31]. Carboline
and quinoline molecules were reported to possess powerful antiviral bioactivities. An in-house database CQDB
containing 2598 carboline and quinoline molecules was established for the discovery of Mpro inhibitors. Docking-
based virtual screening and following MD simulations revealed three potential Mpro inhibitors p59 7m, p12 7e and
p59 7k. Among the three molecules, p59 7m exhibits the lowest binding free energy of -24.20 kcal/mol. p59 7m
forms the most extensive and stable hydrogen bond and hydrophobic interactions with Mpro active site residues
THR 26, HIS 41, MET 49, ASN 142, CYS 145 and ARG 188, which are shown to interact with peptidomimetic
inhibitors in the crystal structures [7,32]. Different from the peptidomimetic inhibitors in the crystal structures
which spans S1′ to S4 pocket, p59 7m binds at S2′ to S2 pocket. The carboline derivative p59 7m is worthy of
further investigation.

SARS-CoV-2 may predispose to both venous and arterial thromboembolic disease due to excessive inflammation,
hypoxia, immobilization and diffuse intravascular coagulation [33]. Previous works indicate carboline and quinoline
molecules decrease both arterial and venous thrombus in vivo [34,35]. Also, carboline and quinoline molecules may
have anti-inflammatory activity [34,36]. Therefore, the selected carboline derivatives may also have the potential of
reducing thrombus and inflammatory syndromes of SARS-CoV-2 in the future perspective.

Conclusion
Among 2598 molecules in the database we established, the top 12 molecules were selected through the docking-based
virtual screening using AutoDock Vina. Then MD simulations were performed on the apo form and the 12 docked
complexes of SARS-CoV2 Mpro and molecules to confirm their system stabilities. Based on the MD simulations,
binding affinities of the 12 molecules with SARS-CoV-2 Mpro were calculated using MM-PBSA method. The top
three molecules p59 7m, p12 7e and p59 7k bind SARS-CoV-2 Mpro with the lowest MM-PBSA binding free
energies of -24.20, -17.98, -17.67 kcal/mol, respectively. They form extensive hydrogen bonds with the active site
residues and obviously decreased the flexibility of SARS-CoV-2 Mpro. The selected three molecules are worthy of
further bioactivity studies against SARS-CoV-2 Mpro. This result also encourages further exploration of bioactive
carboline and quinoline derivatives against SARS-CoV-2.

Future perspective
Previous works indicate carboline and quinoline molecules decrease both arterial and venous thrombus in vivo. Also,
carboline and quinoline molecules have the anti-inflammatory activity in vivo from the previous research. Carboline,
quinoline and their derivatives have the potential to be explored as antiviral molecules with anti-thrombosis and
anti-inflammatory activities in the future.

Summary points

• SARS-CoV-2 causes more than 3.8 million deaths according to the WHO.
• Drugs treating SARS-CoV-2 infection are in urgent need.
• The main protease (Mpro) of SARS-CoV-2 has become one of the most promising targets for new drugs.
• Carboline and quinoline molecules possess powerful antiviral bioactivities.
• An in-house database carboline and quinoline database containing 2598 carboline and quinoline molecules was

established for the discovery of Mpro inhibitors.
• Docking-based virtual screening and following molecular dynamics simulations revealed three potential Mpro

inhibitors p59 7m, p12 7e and p59 7k.
• Among the three molecules, p59 7m exhibits the lowest binding free energy of -24.20 kcal/mol.
• Similar to the peptidomimetic inhibitors in the crystal structures, p59 7m forms extensive and stable hydrogen

bonds and hydrophobic interactions with Mpro active site residues THR 26, HIS 41, MET 49, ASN 142, CYS 145 and
ARG 188.

• The carboline derivative p59 7m is worthy of further investigation of anti-SARS-CoV-2 activity.
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