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Abstract

Motivation: RNA-seq experiments are usually carried out in three or fewer replicates. In order to

work well with so few samples, differential gene expression (DGE) tools typically assume the form

of the underlying gene expression distribution. In this paper, the statistical properties of gene ex-

pression from RNA-seq are investigated in the complex eukaryote, Arabidopsis thaliana, extending

and generalizing the results of previous work in the simple eukaryote Saccharomyces cerevisiae.

Results: We show that, consistent with the results in S.cerevisiae, more gene expression measure-

ments in A.thaliana are consistent with being drawn from an underlying negative binomial distribu-

tion than either a log-normal distribution or a normal distribution, and that the size and complexity

of the A.thaliana transcriptome does not influence the false positive rate performance of nine wide-

ly used DGE tools tested here. We therefore recommend the use of DGE tools that are based on the

negative binomial distribution.

Availability and implementation: The raw data for the 17 WT Arabidopsis thaliana datasets is avail-

able from the European Nucleotide Archive (E-MTAB-5446). The processed and aligned data can be

visualized in context using IGB (Freese et al., 2016), or downloaded directly, using our publicly

available IGB quickload server at https://compbio.lifesci.dundee.ac.uk/arabidopsisQuickload/pub

lic_quickload/ under ‘RNAseq>Froussios2019’. All scripts and commands are available from github

at https://github.com/bartongroup/KF_arabidopsis-GRNA.

Contact: g.g.simpson@dundee.ac.uk or g.j.barton@dundee.ac.uk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Short read RNA sequencing (RNA-seq) has become the method of

choice for transcriptome-wide quantification of gene expression and

the analysis of differential gene expression (DGE) between experi-

mental conditions (Mortazavi et al., 2008; Nagalakshmi et al., 2010).

RNA-seq data analysis typically involves aligning short sequence frag-

ments (reads) to a reference genome or transcriptome or assembling

them de novo, counting the resulting alignments that fall within an

annotated feature region or a contig, then identifying any significant

differences between two or more conditions. More than a dozen
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computational tools have been developed to identify Differential

Expression (DE) from RNA-seq data and each makes assumptions

about the nature and behavior of the expression data (Anders and

Huber, 2010; Frazee et al., 2014; Hardcastle and Kelly, 2010; Law

et al., 2014; Leng et al., 2013; Li and Tibshirani, 2013; Li et al., 2012;

Love et al., 2014; Lund et al., 2012; Moulos and Hatzis, 2015; Ritchie

et al., 2015; Robinson et al., 2010; Tarazona et al., 2011; Trapnell

et al., 2012; Wang et al., 2010). Based on these assumptions, the tools

calculate the probability that two sets of measurements come from the

same statistical distribution, thus determining whether a genuine shift

in expression is a more likely explanation for the observed values than

random chance. Incorrect assumptions can lead to poor false discovery

rate (FDR) control and inaccurate true positive identification in the

DE calls. Such errors will propagate downstream into the biological in-

terpretation of the DE results. Although DGE methods are increasingly

being used to identify DE of other genomic regions (i.e. exons, spliced

transcripts, etc.) (Frazee et al., 2014; Gaidatzis et al., 2015; Wood

et al., 2013) the tools are most commonly used to identify DE for

genes (DGE) which is the focus of this paper.

Several studies have assessed the performance of DGE tools

(Bullard et al., 2010; Busby et al., 2013; Frazee et al., 2014; Law et al.,

2014; Leng et al., 2013; Li and Tibshirani, 2013; Li et al., 2012; Love

et al., 2014; Lund et al., 2012; Moulos and Hatzis, 2015; Rapaport

et al., 2013; Ritchie et al., 2015; Seyednasrollah et al., 2015; Soneson,

2014; Trapnell et al., 2012). However, these studies were carried out

using either simulated data or biological data that was originally

designed for a different purpose. Although a few of these studies have

explored high biological replication by leveraging publicly available

datasets on individuals within a species (Bottomly et al., 2011; Burden

et al., 2014; Guo et al., 2013; Seyednasrollah et al., 2015; Soneson and

Delorenzi, 2013), most have a limited level of replication. Recently, a

study was performed in yeast (Saccharomyces cerevisiae) specifically

designed to test both the underlying statistical properties of RNA-seq

data across biological and technical replicates and the influence of rep-

lication on DGE results (Gierlinski et al., 2015; Schurch et al., 2016).

With 48 biological replicates per condition, it investigated the distribu-

tion of read counts per gene across biological replicates and the rela-

tionship between the replication level, the FDR and the discoverable

effect size for 11 different DGE tools. However, most S.cerevisiae genes

do not contain introns so it is unclear whether the conclusions of

Schurch et al. (2016) hold true for complex transcriptomes where splic-

ing is widespread and leads to alternative isoforms from the same gene

locus.

In this paper, RNA-seq data from 17 wild-type (WT) biological

replicates of Arabidopsis thaliana were used to explore read count

measurements across replicates and the FDR of DGE tools.

Although A.thaliana has a relatively small genome, its transcriptome

is similar in scale and complexity to that of human and model mam-

mal species (Arabidopsis Genome Initiative, 2000; Carvalho et al.,

2013; Krishnakumar et al., 2015) and its genome is extensively

annotated. Accordingly, conclusions from the high-replicate RNA-

seq study presented here should provide useful guidance for work in

other complex eukaryotes as well.

2 Materials and methods

2.1 Sample preparation and sequencing
The RNA-seq data for this study are WT A.thaliana Colombia-0

(Col-0) biological replicates from three separate experiments (here-

after ExpA, ExpB and ExpC). Briefly, for all three experiments WT

A.thaliana Col-0 seeds were sown aseptically on MS10 plates. The

seeds were stratified for 2 days at 4�C and then grown at a constant

21�C under a 16-h light/8-h dark cycle for a further 14 days, at the

end of which the seedlings were harvested. Total RNA was isolated

from the seedlings with the RNeasy Plant Mini Kit (Qiagen) and

treated with TURBOTM DNase (Ambion). An aliquot of 4 ll of

ERCC spike-ins (External RNA Controls Consortium, 2005) at a

1:100 dilution were added to 1 lg/6 ll of total RNA. Libraries were

prepared using the Illumina TruSeq Stranded Total RNA with Ribo-

Zero Plant kit. The libraries were sequenced on a HiSeq2000 at the

Genomic Sequencing Unit of the University of Dundee. Two of the

experiments, ExpA and ExpB, have seven biological WT replicates

(replicates 1–7 and 8–14, respectively) while ExpC has 3 (replicates

15–17), for a total of 17 biological WT replicates and �1:7� 109

100-bp paired-end reads across the three experiments. The plants

were sown, grown, harvested and the libraries were prepared by the

same lab, and the sequencing was performed on the same machine

by the same people at the same sequencing facility and all the sam-

ples included the ERCC spike-ins which can verify that the WT sam-

ples are consistent and comparable across experiments.

2.2 Quality control, alignment and quantification
The quality of the data was quantified using FastQC (Anders, 2010,

available at http://www.bioinformatics.babraham.ac.uk/projects/)

v0.11.2 with all the replicates performing as expected for high quality

RNA-seq data with excellent median per-base quality (�38) across

>90% of the read length. The read data for each sample were aligned

to the TAIR10 A.thaliana genome assembly using the splice-aware

aligner STAR v2.5.0a (Dobin et al., 2013). The index was built with

parameter ‘–sjdbOverhang 99’ and the alignment was run with param-

eters: ‘–outSAMstrandField intronMotif –outSJfilterIntronMaxVs

ReadN 5000 10000 15000 20000 –outFilterType BySJout –outFilter

MultimapNmax 2 –outFilterMismatchNmax 5’.

Read counts per gene were then quantified from these alignments

with featureCounts [v1.4.6-p4 (Liao et al., 2014)], excluding reads with

ambiguous assignments, multi-mapping reads and multi-overlapping

reads, using the publicly available Araport11 annotation (pre-release

December 3, 2015, comprising 33, 851 genes) (Krishnakumar et al.,

2015) with the parameters: ‘-t exon -g gene_id -s 2 -p –P’.

These read counts were used without further processing to exam-

ine the false positive (FP) performance of nine DGE tools, allowing

each tool to carry out its default normalization. The tools were used

in the R v3.2.2 environment (R Development Core Team, 2011) and

installed through Bioconductor v3.2.

For the purposes of comparing the expression distribution mod-

els, consistently normalized data was required. As some of the distri-

butions in question are discrete, normalized integer read counts

were used for this purpose, which were calculated by randomly

down-sampling read-pairs from each replicate to the level of the rep-

licate with the lowest read depth. In this study, the focus is on the

collective behavior of gene expression, rather than the biological in-

terpretation of the expression of any specific gene, so this type of

normalization is appropriate here. However, it is not recommended

for typical gene expression analysis studies, as some low-expression

signals can randomly be lost during resampling.

After the normalization, each replicate consisted of �77� 106

read-pairs, which were then aligned to the genome and quantified

using the same steps described above.

2.3 Performing the tests
The read counts of each gene were tested against four theoretical

distributions across replicates: normal, log-normal, Poisson and

negative binomial. For the normal and log-normal distributions the
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goodness-of-fit was determined using the test for normality from

D’Agostino et al. (1990). This approach to testing the log-normal

distribution cannot be applied to data containing zeroes, ruling out

this test for �23% of genes. The expression data for all genes,

including those with zeroes, was tested for consistency with a

Poisson distribution using a v2 test (Fisher, 1950) and for the nega-

tive binomial distribution, the method described by Meintanis

(2005) was employed. Briefly, the method described by Meintanis

(2005) is based on the probability generating function and because

the distribution of the test statistic is not known in closed form it

requires a bootstrap to calculate P-values. This makes it computa-

tionally expensive and limits its sensitivity. In this case we perform

107 bootstraps resulting in P-values that are limited to be �10�7. In

each case, rejection of the null hypothesis was based on a

Benjamini–Hochberg corrected critical P-value of 0.05 (Benjamini

and Hochberg, 1995).

In order to test the FPs control of the DGE tools, two sets of nr

replicates were randomly selected without replacement from the

pool of 16 ‘clean’ WT replicates (see Section 3.1). By using two sets

of real biological replicates from the same condition, we are measur-

ing the performance of the tools when the null hypothesis is explicit-

ly true, free of the confounding complications that would occur

from using simulated data or two biological conditions for which

the ground truth cannot be known with certainty. DGE was then

called on each of the set pairs with each of nine DGE tools

(Table 1). Since the choice of normalization does not affect the out-

come dramatically (Dillies et al., 2013; Trapnell et al., 2012) and

forcing a uniform method across all tools is not supported by all tools

and may lead to inappropriate processing of the data, each tool was

allowed to apply its default normalization. Since all sets are drawn

from the same WT pool, every gene identified as significantly differen-

tially expressed is, by definition, a FP. This process was repeated 100

times for each sample size in the range 3 � nr � 7 for each tool.

3 Results

3.1 Consistency among replicates
Our dataset consisted of 100-base reads from 17 WT A.thaliana sam-

ples with sequencing throughput of at least 77� 106 read-pairs per

sample. The samples were collated from three separate experiments,

but otherwise had been processed in identical ways in terms of per-

sonnel and equipment to minimize confounding factors. The global

gene expression measurements from 16 of the 17 WT biological repli-

cates are well correlated, irrespective of the different experiments

(R > 0.99, Fig. 1). Replicate 11 correlates less well with all the other

replicates (0:83 � R � 0:87, Fig. 1A) and so was excluded from

subsequent analysis. Removal of ribosomal RNA was incomplete in

some samples, evidenced by high read counts for ribosomal genes

(Supplementary Fig. S1 and Table S2) and a high level of multi-

mapping reads (Supplementary Table S2). However, excluding reads

mapping to ribosomal RNA genes in the remaining replicates

does not strengthen the inter-replicate correlations (Supplementary

Fig. S3). A low level of uniform read coverage across the genome was

observed in replicates 8–14, all belonging to the same experiment,

explaining the marginally lower correlation between the replicates of

this experiment and the other replicates (Fig. 1B).

3.2 Distribution of gene read counts across replicates
Figure 2 shows the results of the goodness-of-fit test against three

model distributions, performed for each gene, across all replicates.

Table 1. RNA-seq DGE tools used in this study

Name Assumed distribution Normalization Description Version Citationsa

baySeq (Hardcastle and Kelly, 2010) Negative binomial Internal Empirical Bayesian estimate of posterior

likelihood

2.4 259

DEGseq (Wang et al., 2010) Binomial None Random sampling model using Fisher’s

exact test and the likelihood ratio test

1.24.0 748

DESeq (Anders and Huber, 2010) Negative binomial DEseq Shrinkage variance 1.22.0 4308

DESeq2 (Love et al., 2014) Negative binomial DEseq Shrinkage variance 1.10.0 4277

EBSeq (Leng et al., 2013) Negative binomial DEseq (median) Empirical Bayesian estimate of posterior

likelihood

1.10.0 301

edgeR (Robinson et al., 2010) Negative binomial TMM Empirical Bayes estimation and either an

exact test analogous to Fisher’s exact

test but adapted to over-dispersed

data or a generalized linear model

3.12 5339

Limma (Ritchie et al., 2015) Log-normal TMM Generalized linear model 3.26.2 2197

Poisson-Seq (Li et al., 2012) Poisson log-linear model Internal Score statistic 1.1.2 80

SAM-Seq (Li and Tibshirani, 2013) None Internal Mann–Whitney test with Poisson

resampling

2.0 136

Note: A list of the DGE tools and their respective versions used in this study, together with their core methodology. The number of citations is shown as proxy

for each tool’s popularity.
aCitations as reported by PubMed Central: number of articles that reference the listed source on January 28, 2019.

Fig. 1. Pairwise inter-replicate Pearson’s correlation of gene expression. The

black grid lines indicate the grouping of the replicates with regards to the

three experiments. (A) Correlation matrix of gene expression for all 17 repli-

cates. Apart from replicate 11, all replicates correlate very well. (B) Same as

left, but with replicate 11 filtered out, allowing the patterns of correlation

among the remaining 16 replicates to be better seen
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The negative binomial null hypothesis is rejected at the pP ¼ 0:05

level by only one gene, while the log-normal null hypothesis is

rejected for 2% of genes. In contrast, the normal and Poisson null

hypotheses are rejected for 23 and 70% of genes, respectively.

As mentioned above, replicates 8–14 presented a low level of

uniform read coverage along the genome. We believe this to be

noise consistent with a small amount of genomic DNA contamin-

ation in the affected samples. Such reads have the potential to

interfere with the fitting of statistical distributions to the data, as

they can make silent genes artificially appear as expressed. Indeed,

Figure 3 shows that �6000 of the genes annotated in Araport11

appear to be lowly expressed in the affected replicates, but are not

detected in the ten replicates from the other two experiments (repli-

cates 1–7 and 15–17). The potential for this noise to impact on the

distribution measurements was assessed by comparing the fraction

of genes that reject the null hypothesis for each of the distributions

using (i) the filtered dataset (replicates 1–10 and 12–17), (ii) repli-

cates 1–7 and 15–17 only and, as a control and (iii) replicates 8–10

and 12–17. The rejection rates for each of the null hypotheses are

summarized in Table 2. For tests against the negative binomial or

log-normal distributions, the fraction of genes that rejects the null

hypothesis in each set is similar irrespective of the replicate selec-

tion. For tests against the normal distribution, reducing the number

of replicates used (cases ii and iii) reduces the fraction of the genes

that reject the null hypothesis from 23 to �10% irrespective of

whether the excluded replicates were the noisy set or the control.

The lack of difference between excluding the noisy or control repli-

cates demonstrates that the apparent improvement of model fit is

due to the reduced statistical power of the tests because of the

smaller number of replicates rather than to an improvement in sig-

nal to noise ratio from excluding the noisy replicates. We conclude

that the apparent low-expression noise in replicates 8–14 is not un-

duly influencing our conclusion with regards to the goodness-of-fit

distribution tests. Similarly, excluding reads that map to rRNA

genes in the replicates does not affect the results of the goodness-

of-fit distribution tests.

3.3 FP behavior of DGE tools
In this section we test the FP performance of DGE tools by perform-

ing DGE tests with samples drawn from the same biological condi-

tion. Since, in this case, the null hypothesis is explicitly true, this test

should return no differentially expressed genes and, thus, every gene

flagged as differentially expressed is a FP. We note that this is inten-

tionally not a test of equivalence and is not intended to test whether

the two sets of samples are the same. Instead, it mirrors a real-world

scenario in which a researcher is testing for DGE between two bio-

logically meaningful conditions where, unknown to the researcher,

there is no true difference in gene expression. One such example

would be a comparison between treated samples and control sam-

ples in an experiment where the treatment was not effective.

The distribution of the FP fraction as a function of the number

of replicates, bootstrapped 100 times for each DE tool (SGE genes

identified with FDR < 0.05, no minimum fold-change threshold), is

shown in Figure 4. Most tools consistently control their FP fraction

well at all numbers of replicates despite the presence of a small num-

ber of outlier results. DEGseq fails to control its FP fraction ad-

equately, likely due to over-estimation of the number of significantly

differentially expressed genes. Finally, although the median FP frac-

tion for SAM-seq is <5%, its performance is worse than the other

tools at all the tested numbers of replicates, suggesting that it is a

poorer choice for calling DGE.

4 Discussion

In this study, the statistical assumptions made by tools that identify

DGE from RNA-seq read count data were validated in a high-

replicate experiment, in the context of A.thaliana, a higher eukary-

ote with a complex transcriptome. This work extends our previous

observations about the properties of RNA-Seq data in 48 replicates

from WT and mutant (Dsnf2) S.cerevisiae (Gierlinski et al., 2015;

Fig. 2. Inter-replicate variation goodness-of-fit. Histograms of the probability

that the genes’ fragment counts across replicates are compatible with each of

the four specified distributions. The fraction of genes rejecting the distribu-

tion model is given above each plot. The Benjamini–Hochberg adjusted critic-

al P-value is shown in red

Fig. 3. Distribution histogram of gene expression. Each gene is represented

by the mean of its read count estimates across replicates. The various levels

of non-zero expression are shown in blue. The x-axis here is logarithmic, so

genes with zero expression were added manually at an arbitrary but distinct

location on the axis (red bar). The y-axis is square-root scaled

Table 2. Fraction of genes whose cross-replicate expression distribu-

tion rejects the null hypothesis for each of four distribution models

Replicates Poisson (%) Normal (%) Log-

normal (%)

Neg.

Binomial (%)

(i) 70 23 2 0

(ii) 65 10 0 0

(iii) 59 9 0 0

Note: Cases: (i) all replicates 1–17, excluding the contaminated replicate

11 (see also Fig. 2), (ii) only the non-noisy replicates 1–7 and 15–17 and (iii)

replicates 8–10 and 12–17 as control for statistical power.
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Schurch et al., 2016) and provides evidence that the same properties

are present in A.thaliana and so are likely to be generally valid for

RNA-seq in eukaryotes. The 17 true biological replicates studied

here are consistent with the recommendations of our previous

48 replicate study which suggested that 6–12 replicates should be

sufficient for most RNA-seq studies (Schurch et al., 2016). With 17

replicates, this study is currently the most highly replicated

high-coverage full-transcriptome RNA-Seq dataset for a higher

eukaryote. The clear difference in the results of the goodness-of-fit-

tests between the normal and Poisson distributions and the negative

binomial and log-normal distributions demonstrates that this data-

set has sufficient power to distinguish between these different distri-

butional models. The dataset should prove a useful resource for

A.thaliana biology as well as a benchmarking dataset for tool

developers.

In this study we focused on a single strain of A.thaliana. Our

findings show that the negative binomial and log-normal distribu-

tion are both good choices as models for the cross-replicate variabil-

ity of RNA-seq read counts. We also studied the FP performance of

DGE tools using two sets of replicates drawn from the same condi-

tion. An alternative approach would be to use artificial datasets

(simulations), but such datasets can confound the analysis by intro-

ducing the assumptions and biases built into the simulation. The

study demonstrates that six out of the nine DGE tools examined

here control their identification of FPs well even with only three rep-

licates. These tools (baySeq, DEseq, DEseq2, EBseq, edgeR, limma)

are based on the negative binomial or log-normal distributions and

employ a variety of normalization strategies. In contrast, the non-

parametric SAM-seq, the Poisson-based Poisson-seq and, in particu-

lar, the binomial-based DEGseq do not control FPs well.

Our results reinforce the conclusions previously reached by our

study of the yeast transcriptome. The transcriptome of A.thaliana is

considerably more complex than S.cerevisiae, with almost four times

the number of protein-coding genes (27 667 in A.thaliana, 7126 in

S.cerevisiae) and widespread alternative splicing and alternative pol-

yadenylation. The similarity of the results from these two very di-

verse organisms lends themselves to the hypothesis that the

conclusions of both studies regarding the expression distributions

and the tool performance are extendable to a wide range of

eukaryotes.

The concept of gene expression in complex transcriptomes is

confounded by the presence of alternative transcript isoforms, which

give the organism additional means to regulate a gene’s expression.

This type of regulation is not necessarily reflected in changes to the

total transcriptional output of a gene. Ideally, expression studies

should aim to quantify the abundance of alternative isoforms indi-

vidually and independently. Interestingly, the sum of independent

random variables with a negative binomial distribution itself has a

negative binomial distribution. Thus, our finding that a negative bi-

nomial is a suitable model for gene expression variability across rep-

licates is consistent with the hypothesis that the underlying

variability of expression of the individual isoforms also follows the

negative binomial distribution. If this is true, tools originally

intended for the study of DGE may also be appropriate for studying

differential transcript expression.

In summary, our analyses show that the statistical properties of

gene expression are similar between a simple and a complex model

eukaryotic organism, and validate the model assumptions of the

best-performing DGE tools.
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