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Abstract

Common goals in the development of human-machine interface (HMI) technology are to reduce cognitive workload and
increase function. However, objective and quantitative outcome measures assessing cognitive workload have not been
standardized for HMI research. The present study examines the efficacy of a simple event-related potential (ERP) measure of
cortical effort during myoelectric control of a virtual limb for use as an outcome tool. Participants trained and tested on two
methods of control, direct control (DC) and pattern recognition control (PRC), while electroencephalographic (EEG) activity
was recorded. Eighteen healthy participants with intact limbs were tested using DC and PRC under three conditions: passive
viewing, easy, and hard. Novel auditory probes were presented at random intervals during testing, and significant task-
difficulty effects were observed in the P200, P300, and a late positive potential (LPP), supporting the efficacy of ERPs as a
cognitive workload measure in HMI tasks. LPP amplitude distinguished DC from PRC in the hard condition with higher
amplitude in PRC, consistent with lower cognitive workload in PRC relative to DC for complex movements. Participants
completed trials faster in the easy condition using DC relative to PRC, but completed trials more slowly using DC relative to
PRC in the hard condition. The results provide promising support for ERPs as an outcome measure for cognitive workload in
HMI research such as prosthetics, exoskeletons, and other assistive devices, and can be used to evaluate and guide new
technologies for more intuitive HMI control.
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Introduction

The fields of rehabilitation and medical technology have seen

significant recent advances that incorporate human-machine

interaction (HMI), including the use of exoskeletons designed to

enable ambulation in patients with spinal cord injury (SCI) and

stroke [1,2], robotic aids for surgery [3], and myoelectric control of

prostheses using electromyographic (EMG) signals from residual

muscles [4]. As the field of HMI in rehabilitation and medicine

rapidly evolves, so do attempts to increase the ease of use and

decrease the cognitive demand on the user. A recent example

includes incorporating haptic feedback in robotic surgery designed

to reduce cognitive overload [5].

In the field of prosthetics, the past decade has seen advances in

human interaction for controlling prosthetic limbs with improved

myoelectric control strategies [6], improved prosthesis design [7],

and implantable electrodes for high-performance neural control of

robotic limbs [8,9]. Surgical techniques such as targeted muscle

reinnervation (TMR), which allows transfer of residual limb nerves

to alternative muscle sites for facilitation of EMG signals have

been pioneered to enhance prosthesis control [10]. TMR has even

been shown to enable the potential for somatosensory feedback in

amputee patients [11,12,13], which may significantly reduce the

attentional demands of using a prosthesis since users currently rely

on visual feedback for tasks such as grasping [14]. All of these

advances are intended to make prosthesis control as intuitive and

functional as possible since basic activities of daily living, such as

dressing, toileting, and ambulation can be very challenging for

individuals with amputations. As such, calls for future research

have included studies on cognitive workload in conjunction with

development of new technologies to improve performance [15].

Researchers and clinicians in prosthetics have made recent

efforts to review, improve, and validate outcome measures for

prosthetic limb users [16,17], however, most assessments currently

used are qualitative, relying on subjective observations from

clinicians or self-reports from subjects [18]. More broadly, in the

field of HMI, some studies have employed self-report scales such as

the NASA Task Load Index (NASA-TLX), however, such scales

are also subjective [19]. Despite efforts to improve prosthetics and

HMI by reducing the attentional burden, standardized methods

for objectively quantifying cognitive workload in the field of HMI,
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rehabilitation, and prosthetics have not been established. More

objective approaches to understanding cognitive strategies and

workload in prosthetics and rehabilitation have included efforts to

measure eye gaze [20,21]. Although gaze behavior, blinking rate,

and pupil dilation can reflect cognitive workload, they can also

reflect other environmental and task factors such as ambient light

[21,22]. Such applications of eye tracking behavior remain

promising, especially when used in conjunction with measures of

cortical dynamics [23].

The electroencephalogram (EEG) offers the potential to

examine cognitive effort with precise temporal resolution and

freedom of movement during data collection, facilitating adapt-

ability to clinical, operational, or real-world settings [24,25,26,27].

Remarkably, although efforts to use measures of cortical dynamics

such as EEG are increasingly abundant in the literature for control

of assistive devices [28,29,30,31,32,33,34], EEG measures of

cognitive workload for evaluation of new HMI technologies have

not been adapted and applied to this field.

One EEG approach is based on the allocation of neural

resources to a primary task, and the subsequent ‘‘attentional

reserve’’ available for the processing of any additional demands

[35]. Event-related potentials (ERPs) are EEG peaks averaged in

the time domain and time-locked to discrete stimuli. ERPs have

been used to examine cognitive workload during task performance

based on the inverse relationship between cognitive workload of

the primary task, and the amplitude of ERPs elicited by the

secondary task or probe. When cognitive demand on the primary

task is high, ERP amplitudes to a secondary stimulus are low,

reflecting the reduced available neural resources allocated to

process the distractor under high cognitive workload [30].

Early ERP studies employed dual-task paradigms, whereby the

participants were engaged in a primary cognitive task while

simultaneously attending to a secondary auditory or visual target-

detection task [35,36,37,38]. However, secondary discrimination

tasks can alter the nature of the primary task [39], leading some

researchers to adopt a strategy of using an irrelevant probe to elicit

ERPs during primary task performance [40,41,42]. The irrelevant

probe method is more conducive to preserving the ecological

validity of the primary task, and more generalizable to naturalistic

situations [43]. To maximize the saliency of the probe stimuli and

optimize the attentional response, recent studies have used of rare

novel sounds in place of common tones [42,44]. Miller and

colleagues [42] combined this approach with graded manipulation

of task difficulty to examine cognitive workload while participants

played the video game Tetris. The graded difficulty included three

conditions: passively watching (view), playing at level 1 (easy), and

playing at level 8 (hard). The authors found that four ERP

components, including the N100, P200, P300, and late positive

potential (LPP), significantly distinguished cognitive workload in

the three conditions, all exhibiting an inverse relationship between

amplitude and level of difficulty. The early ERP components are

thought to reflect obligatory perceptual processing of the auditory

stimulus (N100, P200), and later ERP components are thought to

reflect cognitive evaluation of the stimulus [45,46]. However, the

early components have also been shown to be sensitive to attention

and cognitive workload [41,42,44].

Myoelectric Limb Control: Direct Control (DC) and
Pattern Recognition Control (PRC)

Several advanced prosthetic limbs have recently reached the

market [47] and several more are in development. The most

promising approach to controlling such advanced devices is

myoelectric control, or use of EMG signals from residual muscles.

The conventional method of myoelectric control, called direct

control (DC), uses the amplitude of the EMG signal from a single

muscle to control a single movement. As such, DC requires a pair

of agonist/antagonist muscles (e.g. biceps/triceps) to control a

single degree of freedom (DOF), such as hand open/close. Control

of two DOFs would require either four separate muscle sites for

control (two sets of agonist/antagonist muscles), or a mechanism

for switching between DOFs while using the same two muscles. A

newer method of myoelectric control, called pattern recognition

control (PRC) extracts features from the EMG signal associated

with the intended movement of the patient, and passes them to a

classifier, which outputs them as a movement class label (e.g. hand

close). The algorithms can be trained for multiple DOFs (e.g. hand

open/close, wrist extension/flexion, and wrist pronation/supina-

tion) enabling the patient to make movements in all three DOFs

just by thinking about making the natural movement in the

phantom limb. As such, researchers have speculated that PRC is

more intuitive and lower in cognitive burden than DC. However,

this has not been empirically tested using an objective measure of

cognitive workload.

Statement of Purpose
The purpose of this study was to establish the efficacy and

potential of a new outcome measure for cognitive workload in

prosthetics research, and to compare the relative cognitive

workload of two different prosthetic control approaches using

the new measure. EEG/ERPs have been shown to reflect

cognitive workload in previous studies, while allowing the

participant to execute ecologically valid tasks such as baggage

screening [23] or video gaming [48], and were explored here for

application to clinical studies examining prosthetic limb use.

Healthy control participants engaged in a myoelectrically

controlled virtual arm task under three conditions: simply

watching the arm move (view), moving the hand in 1 DOF (easy),

and moving the hand in 3 DOF (hard). Participants were trained

and tested using DC, the most successful clinically available

method, and a state-of-the-art PRC approach. ERPs were

examined for differences in amplitude between the three levels

of difficulty, and compared between DC and PRC conditions.

Based on previous reports, we expected the amplitude of the ERPs

to exhibit an inverse relationship to the level of difficulty of the

virtual arm task, which would confirm the potential for this as a

measure of cognitive workload in future prosthetic and rehabil-

itation technology research.

Materials and Methods

Participants
Twenty intact-limb individuals were recruited to participate in

the study. All participants were inexperienced in using myoelectric

control strategies. The sample size was determined based on a

power analysis from previously published data [42]. Two

participants were excluded from analysis following data collection

due to excessive noise in the EEG signal, therefore, 18 participants

(7M/11F) ranging in age from 21–38 years (mean = 26.6) were

included in the analysis.

Ethics Statement
Written, informed consent was provided by all participants to

participate in the study. The study was specifically approved by the

Northwestern University institutional review board (IRB) (Ref no.:

STU00062490).

Cognitive Workload
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Procedures
Participants were trained and tested using both DC and PRC,

with the order counter balanced. Participants made four visits to

the Rehabilitation Institute of Chicago (RIC) over two weeks. The

first visit was to train on one of the two myoelectric control

strategies (DC or PRC), and the second visit during the same week

was for testing during collection of EEG. The same procedure was

followed the next week on the other myoelectric control strategy.

Myoelectric Control of the Virtual Arm
Myoelectric control of the virtual arm was accomplished using a

software suite developed at the RIC called Control Algorithms for

Prosthetic Systems (CAPS). CAPS was designed for clinical testing

and training of patients using myoelectric inputs to control real-

time avatar motion with both DC and PRC algorithms, and

supports communication with external programs. The use of

CAPS for target acquisition testing in 3 DOF has been previously

reported in patients with transradial amputation [49], and was

used in the current paper. EMG inputs for virtual arm control

were acquired using six bipolar EMG electrodes placed in

predetermined positions on the forearm (Figure 1a). Only

Channels 1 and 2 were used to control the virtual arm in the

DC condition, and all six channels were used in the PRC

condition. Electrodes 1 and 2 were placed to optimize amplitude

acquired during wrist flexion and extension, respectively. Chan-

nels 3 and 4 were placed equidistant to channels 1 and 2 on the

medial and lateral sides of the forearm. Channels 5 and 6 were

placed distally on the dorsal and ventral aspects of the wrist.

Signals were amplified and high-pass filtered at 20 Hz, and data

were sampled at 1 kHz by an analog-to digital converter (USB-

1616FS; Measurement Computing Corp, Norton, Massachusetts).

For the DC condition, gains were set to optimize control of the

hand, and to optimize switching between DOFs. Switching was

accomplished in DC using a co-contraction of the flexor and

extensor muscles by making a fist and relaxing in quick succession.

In the PRC condition, participants performed movements to train

the algorithms for the appropriate DOFs.

Training. All six electrodes were applied to the non-

dominant arm during training in both conditions for consistency.

After the electrodes were applied, the signals were viewed and

checked for quality using a signal viewing tool within CAPS.

Participants then performed 20 trials in each single DOF (wrist

extension/flexion, wrist pronation, supination, hand open/close)

for a total of 60 trials to practice for the easy condition.

Participants then completed a total of 40 trials in the hard

condition, which required moving the virtual arm in all 3 DOFs to

complete the trial (Figure 1).

Testing. The virtual limb was presented on a 170 monitor

connected to a computer that ran the CAPS software integrated

with Matlab for presentation of sounds and associated EEG

triggers. Testing consisted of three conditions: 1) passively viewing

the virtual hand execute the 3DOF condition; 2) performing the

1DOF task for 24 trials in each of the three degrees of freedom

(easy); 3) performing 32 trials of the the 3DOF task (hard).

Participants received the view condition first 50% of the time

(view, easy, hard), and last 50% of the time to counterbalance the

novelty of the sounds across conditions (easy, hard, view);

participants always completed the easy task prior to the hard

task. Trials consisted of a ‘‘+’’ in the center of the screen as a visual

prompt prior to start of the trial, followed by presentation of the

task cue, consisting of the current position of the hand in gray,

superimposed over the flesh colored target position of the hand.

Participants had four seconds to plan the movement prior to

receiving a ‘‘Go’’ stimulus to start moving. Moving prior to the

‘‘Go’’ stimulus would result in no movement of the virtual hand.

Successfully moving the virtual hand over the target position

resulted in the hand turning green and completion of the trial. If

they did not successfully reach the target position within 24

seconds, the trial ended and the hand turned yellow before

beginning the next trial. Participants received auditory probes at

random intervals during the trials (0–3 probes per trial) (Figure 1).

The novel distractor sounds were the same as those used in Miller

et al., (2011), which were selected from Fabiani et al., (1996) [50].

EEG. Continuous EEG was recorded during testing using a

lycra cap, (Electro-Cap International Inc.). Data were acquired

from 16 sites adapted from the 10–20 system [51] and referenced

to the left earlobe (A1). Eye channels were place above and below

the left eye, and on the outer canthi of both eyes to record

eyeblinks. Impedences were kept below 10 KV, and channels were

amplified 1000 times using Neuroscan Synamps2 with a sampling

rate of 1000 Hz. Online bandpass filters were set from .01–

100 Hz. ERPs were obtained by extracting epochs from 100 ms

pre-stimulus onset to 10 00 ms post-stimulus onset, baseline

correcting on the pre-stimulus interval, and bandpass filtering

from 1–15 Hz. Each epoch was visually inspected for artifact, and

trials with excessive movement or blinks were deleted (‘‘trials’’ in

the ERP analysis refers to the number of auditory probes, and

subsequent single-trial ERPs, not the number of task trials). At

least 30 trials in each condition were used for averaging; in the

event that 30 clean trials were not available for each condition, the

participant was excluded from analysis. The mean amplitude for

each ERP component at sites Fz, Cz, and Pz (frontal, central, and

parietal midline sites, respectively) was calculated using the

method reported by Handy [52], and used in Miller et al., [42].

Narrow time windows for each peak were centered around the

grand average peak, and average amplitude was calculated in the

following time windows: N100 = 105–120 ms; P200 = 190–

205 ms; P300 = 295–330 ms; LPP = 570–590 ms.

Performance. The target acquisition testing in CAPS gen-

erates log files during testing for performance analysis. The

percentage of trials successfully completed in each condition, and

time to complete successful trials (seconds) was examined.

Self-report. Immediately after completion of testing in the

DC condition and the PRC condition participants filled out a self-

report questionnaire indicating the perceived difficulty of control-

ling the arm. The questions were taken from questionnaires

commonly administered by clinicians at the RIC (Appendix

Survey S1). It consisted of 7 questions on a five-point Likert scale,

with questions 1, 3, and 7 reverse scored such that a high score

reflected a high level of perceived difficulty.

Statistical Design. Our primary hypothesis was that the

ERPs would reveal differences in cognitive workload between the

view, easy, and hard conditions, and that those ERPs that reflected

cognitive workload as a main effect would also distinguish PRC

and DC during the hard condition. To assess the efficacy of the

ERPs for delineating cognitive workload, main effects on the

cognitive workload factor were analyzed using 3 (view, easy, hard)

62 (DC, PRC) repeated measures ANOVAs. Separate ANOVAs

were conducted on average amplitude for each peak reported to

reflect cognitive workload previously using this paradigm [Miller

et al., [42]]: N1 (Cz), P2 (Fz, Cz, Pz), P3 (Pz), and LPP (Pz). To

compare differences between myoelectric control conditions, two-

tailed paired-samples t-tests were conducted in the easy and hard

conditions on peaks that exhibited main effects for cognitive

workload in both the current analysis, and in Miller et al.

Performance results (% correct, time to complete trials) were

compared between DC and PRC in each condition (easy, hard)

using two-tailed paired-samples t-tests. Self-report was compared

Cognitive Workload
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between DC and PRC using a two-tailed paired samples t-test.

Simple correlations were also examined between ERPs exhibiting

cognitive workload effects and performance, ERPs and self-report,

and self-report and performance.

Results

EEG analysis
Figure 2 illustrates the strong general inverse relationship

between ERP amplitudes and cognitive workload for P200,

P300, and LPP. Main effects and ERPs are pictured for electrodes

Cz and Pz, where most of the effects occurred. No significant main

effects or interactions emerged for cognitive workload on the N1

component. Consistent with Miller et al. (2011) [42], the main

effects for cognitive workload were significant at all three electrode

sites (Fz, Cz, Pz) for P200: Fz (F2,34 = 5.15; p = 0.011), Cz

(F2,34 = 12.90; p,0.001), and Pz (F2,34 = 5.03; p = 0.012). P200

effects at Cz and Pz are pictured in Figure 2 (a–d). Post-hoc tests

revealed that for P200 at Cz, the view condition differed from both

the easy and hard conditions. For P200 at Fz and Pz, the hard

conditions differed from the view conditions. Significant main

effects emerged on P300 at Pz (F2,34 = 7.67; p = 0.002) and LPP at

Pz (F2,34 = 5.61; p = 0.008), and are pictured in Figure 2 (b, e, f).

For both P300 and LPP, pots-hoc testing revealed that the hard

conditions were significantly different from the view conditions.

To compare DC and PRC, two-tailed paired samples t-tests

were run on hard conditions for P200 (Fz, Cz, Pz), P300 (Pz), and

LPP (Pz), which all showed main effects for cognitive workload.

Because t-tests do not control for multiple comparisons like Tukey

HSD, the number of analyses was limited to only the peaks that

exhibited significant main effects in the current study, and were

also reported to be significant in Miller et al. [42]. A significant

difference in average amplitude in the hard condition emerged for

LPP (t17 = 22.35, p = 0.031), with PRC exhibiting a higher LPP

amplitude relative to DC. Figure 3 illustrates the ERPs at Pz for

DC and PRC in the hard condition.

Performance
Figure 4 illustrates the results for trials completed (4a), and time

to complete trials (4b). No significant performance differences for

percent correct emerged between DC and PRC in either the easy

or hard conditions. Mean completion time was significantly lower

for DC (2.4 sec, SD = 0.81) relative to PRC (2.8 sec, SD = 0.81) in

the easy condition (t17 = 22.34, p = 0.031), however, it was

significantly higher for DC (15.1 sec, SD = 2.18) relative to PRC

(12.5 sec, SD = 2.19) in the hard condition (t17 = 3.66, p = 0.002).

The results indicate that DC may be more effective relative to

PRC for simple (1 DOF) tasks, but more challenging for complex

(3 DOF) tasks.

Self-report
Self-report was not obtained from one participant, so the

analyses reflect scores from 17 participants. There were no

differences between DC (mean = 15.1, SD = 3.8) and PRC (mean

= 16.3, SD = 4.4) on the self-report questions examining difficulty.

Correlations
ERPs exhibiting a cognitive workload effect (P200, P300, LPP)

did not correlate significantly with performance in either the DC

condition or the PRC condition. This suggests that cortical effort

during the tasks was independent of performance. Self-report did

correlate significantly with mean completion time in the hard

condition for both the DC (r = 0.70, p = 0.002) and PRC (r = 0.64,

p = 0.006), however, it did not correlate with ERPs in either the

DC or PRC conditions. This result suggests that participants self-

rated the difficulty consistent with their performance, and not

consistent with the cortical effort required for task completion.

Figure 1. Electrode setup and virtual arm task in CAPS. a) Participant controlling the virtual arm using six bipolar electrodes (three visible in
image) affixed to the non-dominant forearm. The small ‘‘go’’ text box above the virtual hand signals when the trial begins. b) The flesh-colored hand
indicates the current hand position, and the gray hand indicates the target position. c) In the DC condition, a red hand flash indicates successful
switching of the DOF through co-contraction of electrodes 1 and 2. d) Successfully acquiring the hand position results in the hand turning green and
the end of the trial. e) If the target position is not successfully acquired within 24 sec, the hand turns yellow and a new trial begins.
doi:10.1371/journal.pone.0112091.g001
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Discussion

EEG/ERPs have been explored as measures of cognitive

workload during performance of real-world, ecologically valid

tasks ranging from flight simulation [37], to video games [42,48],

to baggage screening [23], and even soldiers in operational settings

[25]. The current study adapted one such approach to examine

the use of ERPs as a cognitive workload outcome measure for

HMI, specifically, during myoelectric prosthetic limb control.

Consistent with previous research, the results indicated an inverse

relationship between ERP amplitude and task difficulty, support-

ing the efficacy of this measure.

ERPs and Cognitive Workload
Significant main effects of cognitive workload were demonstrat-

ed in the omnibus tests for P200, P300, and for LPP. The results

are remarkably consistent with the results of Miller et al., [42],

who employed the same paradigm to examine cognitive workload

during play of the video game Tetris. Consistent with the previous

report, P200 exhibited cognitive workload effects across all three

sites (Fz, Cz, Pz), with the strongest effect over the vertex (Cz).

Figure 2. Virtual arm task performance. a) Percentage of trials completed within 24 seconds. b) Average time to complete successful trials;
participants performed significantly faster in the easy condition using DC, and significantly faster in the hard condition using PRC (*p,0.05; **p,
0.01.).
doi:10.1371/journal.pone.0112091.g002

Figure 3. ERPs and main effects for the cognitive workload measure on the view, easy, and hard conditions for DC and PRC
combined. Note that positive and negative on the y-axis are traditionally reversed for ERP graphs; as such positive is graphed down. a) Electrode Cz,
where the P200 effect was most prominent. b) Electrode Pz, where the P200, P300, and LPP all exhibited cognitive workload effects. c–f) Average
amplitude graphs for P200 at Cz and Pz, P300, and LPP (*p,0.05, **p,0.01.).
doi:10.1371/journal.pone.0112091.g003

Cognitive Workload
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Main effects were also found for P300 and LPP at electrode Pz. No

significant cognitive workload effects were found in the current

study for N100. Although the N100 component is believed to

reflect early sensory auditory processing, it has been shown to be

sensitive to attention in previous studies [41,42,44].

The P300 is one of the most commonly studied cognitive ERP

components over the last several decades [for a review, see [53]].

In the current study the P300 exhibited a strong cognitive

workload effect, however, in the hard condition for both DC and

PRC, the P300 was virtually absent in the grand average across all

subjects. The P200 and LPP components have received less

examination in cognitive neuroscience in general, and in the

cognitive workload literature relative to P300, yet both P200 and

LPP exhibited strong effects in the current paper, and a previous

paper using a very similar paradigm [42], and identical novel

auditory tones [50]. Although the P200 was considered by some

researchers in early studies to be the tail end of the N100-P200

complex, more recent studies have demonstrated that the P200 is

an independent component that can be elicited through visual,

somatosensory, and auditory modalities, and is maximal over the

vertex [for a review see [54]]. It has been suggested to represent

early processing of emotionally or motivationally relevant stimuli

[55]. The LPP, often referred to as the late positive component or

complex (LPC), has been proposed to reflect continued or

enhanced elaborate processing of emotional or arousing stimuli

[55,56], and has been suggested to exhibit positivity with latencies

ranging from 300 milliseconds to several seconds [57]. In the

current study, the grand average across all subjects was used to

identify the LLP peak in a relatively narrow time window for

analysis [52], from 570–590 milliseconds, which is temporally

consistent with the LLP reported in Miller et al., [42].

Direct Control vs Pattern Recognition
The second goal of the present study was to compare DC and

PRC using the ERP measures. Because the PRC method allows

the user to make natural movements (in the case of non-amputee

controls) or imagine natural movements (in amputee patients) to

accomplish the tasks, PRC has been speculated to be more

intuitive and lower in cognitive demand than DC, although this

notion had not previously been examined empirically.

Having exhibited significant cognitive workload effects across

both DC and PRC conditions, P200, P300, and LPP were

compared between DC and PRC conditions in the hard and easy

tasks. Only LPP exhibited a significant difference between DC and

PRC, and only in the hard condition. Amplitude was higher in the

PRC condition than the DC condition, consistent with lower

cognitive workload for a complex task using PRC relative to DC.

Figure 4. DC and PRC ERPs and amplitudes for electrode Pz in the hard condition. a) Visual inspection of the ERP shows that in the hard
condition the P300 was not visually prominent, and close to zero. b) Although LPP was not visually prominent, the difference was significant between
DC and PRC, with higher amplitude for PRC (*p,0.05.).
doi:10.1371/journal.pone.0112091.g004

Cognitive Workload
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This is interpreted cautiously however, since the P200 and P300

components were not different between DC and PRC.

Although PRC has been speculated to be lower in cognitive

workload relative to DC in the absence of previous empirical

evidence, many aspects of the cognitive workload required to

complete the tasks are inherent to both DC and PRC, and were

held constant in this study. One of the more challenging aspects of

the task was the mental visual rotation necessary to see the current

hand position, and decipher the hand movements in 3 DOFs

required to achieve the target position. This aspect of the cognitive

burden was consistent between DC and PRC, and was very

challenging for the participants. Beyond deciphering how the

virtual hand needed to move, the participants then had to

complete the appropriate sequence of contractions to accomplish

the proper movement. In DC, this required frequent switching

between DOFs, and the mental conversion of remembering how

to use movements in 1 DOF (wrist extension/flexion) to control 3

DOFs (e.g. extending the wrist to supinate the wrist and open the

hand, and flexing the wrist pronate and close the hand). Although

the pattern of contractions for DC may be less intuitive, the

participants learned fairly quickly. Yet, despite subtle differences in

the cognitive burden between DC and PRC on the hard task in

this study, the significant difference in LPP amplitude indicates the

sensitivity of ERP studies for detecting subtle differences in

cognitive workload.

Self-report
One of the most important features of EEG as an outcome

measure is objectivity. Researchers in the prosthetics field

currently rely on observation by trained clinicians, and self-report

from patients or family members to evaluate the mental workload

of using a prosthesis, both of which are subjective and prone to

bias. The self-report questions administered here correlated with

task performance in the hard condition for DC and PRC, but did

not correlate with the ERP measures of cognitive effort. This

suggests that the participants’ perceived effort reflected knowledge

of their own performance rather than the actual cortical resources

required for the task. In retrospect, this was likely influenced by the

sequence of the procedures and the immediate feedback they

received. The questionnaire was administered immediately after

seeing the performance results for the hard task at the end of

testing. As such, knowledge of their performance was fresh in their

mind as the participants completed the questionnaire. Although

future studies can be designed to administer brief self-reports more

frequently, or prior to such salient feedback on the task, the

correlation of the self-report with performance rather than cortical

activation during task execution in this study illustrates the

subjectivity of self-report, and the need for an objective outcome

measure of cognitive workload to supplement self-reports in the

rehabilitation and prosthetics field. Such a measure will be

informative for evaluating current technology, and guiding efforts

for new technology.

Advantages of EEG/ERPs
This study represents the first attempt to quantify cognitive

workload in myoelectric limb control, and the results are

promising. Three separate ERP components exhibited significant

cognitive workload effects illustrating the inverse relationship

between ERP amplitude to the novel sounds and task difficulty.

The paradigm is easily adaptable to research on a variety of HMI

tasks where cognitive workload is relevant, including control of

exoskeletons or surgical robots. Wireless EEG caps can enable

real-time and offline EEG analysis for ecologically valid move-

ments and ambulatory tasks. By examining the cortical resources

available during task engagement for processing of additional

stimuli, the paradigm is agnostic to strategy, and allows objective

examination of cognitive workload when strategy and cortical

activation patterns for two tasks may be different, as in the two

myoelectric prosthesis control strategies examined here. Other

approaches to measuring cognitive workload with EEG, such as

pattern recognition and neural networks [26,58,59,60], are

optimal for monitoring workload for a specific task in an

individual, but may introduce bias when comparing cognitive

workload between two similar, but different tasks. However, more

sophisticated signal processing approaches may increase the

sensitivity of the ERP approach used in this study.

An additional advantage of the approach presented here is the

sensitivity of the information acquired through a small number of

electrodes. Although 16 channels of EEG data were obtained in

this study, the results could have been obtained using only three or

fewer midline electrodes (Fz, Cz, Pz), a few eye channels, a

ground, and a reference. Newer EEG caps are being designed to

be donned and doffed with ease, and without gel. Furthermore,

other EEG measures where additional electrodes are employed

can simultaneously address task difficulty, regional activation, and

functional communication between different cortical regions to

examine sensory, motor, and cognitive demands of a task such as

prosthesis use [61,62].

Limitations and Future Studies
The current study was limited to healthy participants with in-

tact limbs, and conducted using a virtual environment. As such,

future efforts will extend to upper and lower limb amputee

patients, and should be adapted to activity of daily living tasks such

as object manipulation and stair climbing. The advantage of the

attentional reserve paradigm of assessing cognitive workload is the

broad adaptability of the approach for comparison of different

tasks and strategies in a range of HMI environments.

Although the results in this study pertain only to healthy control

participants, and the specific virtual task in this study, the ERP

approach as an outcome measure is a promising technique to

evaluate new emerging prosthetic technologies and clinical

approaches. For instance, the PRC method tested here required

making one DOF movement at a time. In other words, the hand

could not be supinated and closed simultaneously. However,

studies are underway to adapt PRC measures for multiple

simultaneous movements [63], which may continue to improve

efficiency and decrease cognitive demand. Other ongoing research

efforts address the lack of sensory feedback from a prosthesis,

requiring a prosthesis user to rely solely on visual information to

control tasks such as grasping. Studies exploring tactile and other

forms of feedback seek to enhance performance while reducing the

attentional demands [11,12,13,14]. Even surgical techniques such

as targeted muscle reinnervation [TMR; [10]], designed to

optimize the EMG signal in the residual muscle, have been

developed with the goal of making prosthetic limb control more

natural and intuitive. The ERP method described here can be

adapted to evaluate cognitive workload with these or other

emerging rehabilitation technologies.

Conclusions

The goal of this study was to examine the efficacy of using ERPs

as an outcome measure for cognitive workload in HMI,

specifically, during myoelectric prosthesis control. Secondly, to

use the ERP measures exhibiting main effects for cognitive

workload to compare two myoelectric strategies, DC and PRC.

The results indicated an inverse relationship between cognitive
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workload and amplitude on P200, P300, and LPP following

presentation of novel auditory probes. LPP amplitude was higher

on the complex task using PRC compared to DC, suggesting a

subtle difference in cognitive workload between DC and PRC.

The current study examined only a virtual arm task in healthy

participants with in-tact limbs, and requires replication in patients

with amputations, and adaptation to manipulation and mobility

tasks using a prosthesis. However, the ERP approach, and other

EEG measures are adaptable to a variety of HMI tasks as objective

outcome measures of cortical and attentional effort.
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