
royalsocietypublishing.org/journal/rsbl
Research
Cite this article: Lindenfors P, Wartel A, Lind
J. 2021 ‘Dunbar’s number’ deconstructed. Biol.

Lett. 17: 20210158.
https://doi.org/10.1098/rsbl.2021.0158
Received: 22 March 2021

Accepted: 14 April 2021
Subject Areas:
evolution/behaviour

Keywords:
phylogenetic comparative studies, social

evolution, brain evolution, primates, mammals
Author for correspondence:
Patrik Lindenfors

e-mail: patrik.lindenfors@iffs.se
Electronic supplementary material is available

online at https://doi.org/10.6084/m9.figshare.

c.5409173.

© 2021 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution
License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original
author and source are credited.
Evolutionary biology

‘Dunbar’s number’ deconstructed

Patrik Lindenfors1,2, Andreas Wartel2 and Johan Lind2

1Institute for Futures Studies, Box 591, 101 31 Stockholm, Sweden; and 2Centre for Cultural Evolution,
Stockholm University, Sweden

PL, 0000-0003-3245-0850; AW, 0000-0003-1592-409X; JL, 0000-0002-4159-6926

A widespread and popular belief posits that humans possess a cognitive
capacity that is limited to keeping track of and maintaining stable relation-
ships with approximately 150 people. This influential number, ‘Dunbar’s
number’, originates from an extrapolation of a regression line describing
the relationship between relative neocortex size and group size in primates.
Here, we test if there is statistical support for this idea. Our analyses on
complementary datasets using different methods yield wildly different num-
bers. Bayesian and generalized least-squares phylogenetic methods generate
approximations of average group sizes between 69–109 and 16–42, respect-
ively. However, enormous 95% confidence intervals (4–520 and 2–336,
respectively) imply that specifying any one number is futile. A cognitive
limit on human group size cannot be derived in this manner.
1. Introduction
‘Dunbar’s number’ is the notion that there exists a cognitive limit on human
groups of about 150 individuals. [1,2] This because ‘[t]o maintain group cohe-
sion, individuals must be able to meet their own requirements, as well as
coordinate their behaviour with other individuals in the group. They must
also be able to defuse the direct and indirect conflicts that are generated by fora-
ging in the same space’. [3] According to the hypothesis, since the neocortex is
commonly believed to play a crucial role in handling social relationships [4], its
size should set an upper limit on the number of stable social relationships that
primate brains can keep track of and maintain.

The number 150 was established by extrapolating a regression line describ-
ing the relationship between group size and relative neocortex size in primates,
to humans. [1,2,5,6] That there exists a correlation between group size and rela-
tive neocortex size has been replicated in several studies (e. g. [7–14]), though in
some cases only for female primates [15,16], but often not finding a significant
relationship (making an estimate of Dunbar’s number unachievable)
[11,14,17,18]. However, the replication studies are of somewhat limited value
as most studies have used the same brain data. [14] Additional studies have
been made using similar reasoning, but analysing relative brain size instead
of relative neocortex size (e. g. [9,19,20]).

The expected human group size of 150 has been substantiated by obser-
vations of human communities with group sizes ranging between 100 and
200, including hunter–gatherer communities, military units, businesses, 18th-
century and Neolithic villages, information from the Domesday Book [2] and
Christmas card networks [6].

‘Dunbar’s number’ is often cited1, has had great impact in popular culture
(e.g. it featured prominently in Malcolm Gladwell’s book Tipping point [21]) and
has had consequences such as the Swedish Tax Authority restructuring their
offices to stay within the 150-person limit [22], with the implicit but hopefully
unintended assumption that their employees have neither family nor friends
outside work.
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2Table 1. Estimates of human group sizes from phylogenetic comparative analyses of relative primate brain and neocortex sizes. Due to the probabilistic nature
of Bayesian statistical tests, replications of these analyses will yield similar but not necessarily identical results.

model estimated human group size lower 95% bound upper 95% bound

Bayesian analyses

group sizea∼ neocortexb + rest of brainb (n = 71) 69.2 3.8 292.0

group sizea∼ neocortexb/rest of brainb (n = 71) 108.6 4.6 520.0

group sizea∼ brain weightc + body weightc (n = 142) 79.8 4.1 329.9

generalized least-squares

group sizea∼ neocortexb + rest of brainb (n = 71) 16.4 2.1 127.7

group sizea∼ neocortexb/rest of brainb (n = 71) 42.0 5.2 336.3

group sizea∼ brain weightc + body weightc (n = 142) 23.6 3.2 175.6

Bayesian analyses

group sizea∼ brain volumed + body weightd (n = 126) 79.1 4.0 335.4

generalized least-squares

group sizea∼ brain volumed + body weightd (n = 126) 23.8 3.2 177.8
aDeCasien et al. [18] & Kappeler & Heymann [34].
bNavarrete et al. [24] & DeCasien et al. [18].
cDeCasien et al. [20].
dIsler et al. [26].
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Attempting to make a decisive deconstruction of the
empirical basis of Dunbar’s number, we here perform Baye-
sian and generalized least-squares (GLS) phylogenetic
comparative analyses on larger datasets of the relationship
between group size and both relative brain and relative neo-
cortex sizes, and then extrapolate from these relationships to
arrive at an updated estimate of the cognitive limit on human
group size, including confidence intervals.
2. Methods
Volumes on brain components were averaged from three sources
[18,23,24]. Only measurements of individuals where both brain
volume and neocortex volume were available were included in
analyses of neocortex size. However, one of the datasets contains
brain region measurements that differ significantly from the
others [25]. For this reason, we replicated our analyses using
data from only the most carefully collected dataset [18]. These
results are presented in the electronic supplementary material,
appendix S1 (electronic supplementary material, tables S2 and
S3). The results from these analyses do not differ in any meaning-
ful way from those provided in the main paper, however. We
also present results from measurements of endocranial volumes
with corresponding estimates of body mass [26] and replicate
all analyses also on anthropoid primates only (electronic sup-
plementary material, tables S1 and S3). Average brain weights,
body weights and group size data were taken from one recent
study [20], complemented with additional group size data
where available [26]. Measures on the human brain [27] and
body mass [28] were collected separately. Consensus phyloge-
nies for each dataset were obtained from the 10kTrees website
[29]. All brain measures were log-transformed prior to analysis,
except when using ratios, that instead were arcsine-square root
transformed.

All analyses were executed in R using the packages NLME
[30], APE [31], MASS [32] and BRMS [33]. We used Bayesian
multilevel models with varying intercepts over species specified
by a covariance matrix and phylogenetic generalized least-
squares (PGLS) regressions throughout. In all Bayesian analyses,
group size was modelled as a continuous gamma distribution
and not discrete Poisson because available data are averages cal-
culated from different sources. Results for the Bayesian analyses
will differ some for each time running the analyses and are only
fully reproducible using the same machine. For the Bayesian ana-
lyses, uncertainty associated with phylogeny was added by
taking random samples from the posterior distribution of the
existing random effects, centred around zero and used for calcu-
lating confidence intervals. Ninety-five per cent of confidence
intervals for GLS were calculated without phylogenetic effects.
As electronic supplementary material, appendix S2, we include
the R-code and resulting output.
3. Results
Our results (table 1) reveal that estimates of expected human
group sizes vary depending on method and variable choice
(Bayesian approximations between 69.2 and 108.6 and GLE
approximations between 16.4 and 42.0). Note that these esti-
mates (as was true for Dunbar’s original estimated group
size) are averages, not estimates of upper bounds. If an
upper constraint from this type of statistical reasoning was
to be determined, a better approach would be to specify the
upper boundary of the 95% confidence interval. As is
shown in table 1, however, 95% confidence intervals yield
enormous variation in their estimates, 3.8–520.0 and
2.1–336.3, respectively, and thus indicate upper limits far
exceeding 150 in almost all cases.

The best model to test the hypothesis, given Dunbar’s
original formulation (a cognitive limit on group size deduced
from relative neocortex size) and the current state-of-the-art
of comparative phylogenetic studies, is the Bayesian analyses
of group size using the volume of the neocortex, with the
volume of the rest of the brain included as a covariate. The
estimate from this analysis indicates a human group size
average of 69.2 individuals, with a 95% confidence interval
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ranging from 3.8 to 292.0 individuals. This is not very infor-
mative. We also provide results from other methods and
variable choices, for comparison, both in table 1 and in elec-
tronic supplementary material, appendix S1. These do not
provide estimates with more enlightening estimated confi-
dence intervals, though one of our estimates actually came
close to 150 (electronic supplementary material, appendix
S1; table 1, top row: 134.0), but again, the confidence intervals
were enormous (7.0 to 583.2).
/journal/rsbl
Biol.Lett.17:20210158
4. Discussion
Most research on primate social evolution has not concerned
cognitive limitations but instead generally focused on the so-
called ‘socio-ecological model of primate social evolution’
where primate group size mainly is determined by socio-
ecological factors having to do with foraging and predation,
infanticide and sexual selection—not on brain or neocortex
size. According to this model of social evolution, females
go where it is safe and where there are resources, while
males go where the females are [35–38].

Further, it is easily observed that human brains function
differently from those of other primates [38–42], as is evi-
denced by the existence of cumulative cultural evolution
resulting in marvels such as Stockholm, symphonies and
science [43–45]. This was concisely summarized by de Ruiter
et al. [22] in their examination of Dunbar’s number: ‘Dunbar’s
assumption that the evolution of human brain physiology cor-
responds with a limit in our capacity to maintain relationships
ignores the cultural mechanisms, practices, and social struc-
tures that humans develop to counter potential deficiencies’.

Also, researchers have disputed the empirical observation
of mean human group sizes approximately averaging around
150 persons, presenting empirical observations of group sizes
indicating a wide variety of other numbers [46–53]. Thus,
ecological research on primate sociality, the uniqueness of
human thinking and empirical observations all indicate that
there is no hard cognitive limit on human sociality. Our
reanalysis provides the last piece of evidence needed to
disregard Dunbar’s number.

In summary, extrapolating human cognitive limits from
regressions on non-human primate data is of limited value
for both theoretical and empirical reasons. It is our hope,
though perhaps futile, that this study will put an end to the
use of ‘Dunbar’s number’ within science and in popular
media. ‘Dunbar’s number’ is a concept with limited
theoretical foundation lacking empirical support.
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Endnotes
1Dunbar’s original paper has over 2500 citations on Google Scholar.
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