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Abstract

Membrane-protein design is an exciting and increasingly successful research area which

has led to landmarks including the design of stable and accurate membrane-integral pro-

teins based on coiled-coil motifs. Design of topologically more complex proteins, such as

most receptors, channels, and transporters, however, demands an energy function that bal-

ances contributions from intra-protein contacts and protein-membrane interactions. Recent

advances in water-soluble all-atom energy functions have increased the accuracy in struc-

ture-prediction benchmarks. The plasma membrane, however, imposes different physical

constraints on protein solvation. To understand these constraints, we recently developed a

high-throughput experimental screen, called dsTβL, and inferred apparent insertion ener-

gies for each amino acid at dozens of positions across the bacterial plasma membrane.

Here, we express these profiles as lipophilicity energy terms in Rosetta and demonstrate

that the new energy function outperforms previous ones in modelling and design bench-

marks. Rosetta ab initio simulations starting from an extended chain recapitulate two-thirds

of the experimentally determined structures of membrane-spanning homo-oligomers with

<2.5Å root-mean-square deviation within the top-predicted five models (available online:

http://tmhop.weizmann.ac.il). Furthermore, in two sequence-design benchmarks, the

energy function improves discrimination of stabilizing point mutations and recapitulates nat-

ural membrane-protein sequences of known structure, thereby recommending this new

energy function for membrane-protein modelling and design.

Author summary

Membrane proteins comprise a third of the genome and have essential roles as

intermediaries between the cell and its environment. Despite exciting recent progress in

membrane-protein modelling and design, however, these fields lag far behind advances

in soluble proteins, chiefly because of inaccurate modelling of the membrane environ-

ment. Recently, our lab developed an assay, called dsTβL, that used high-throughput

experimental screening to infer the energetics of each amino acid across the bacterial

plasma membrane. Here, we encode the dsTβL energetics in the Rosetta software

suite for biomolecular modelling and design and subject the energy function to three

structure prediction and design benchmarks. The new energy function consistently
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outperforms the previous Rosetta membrane energy function. Additionally, ab initio
structure prediction of homooligomeric membrane proteins results in accurate predic-

tions in⅔ of the examples in our benchmark. Therefore, we present a web server, called

TMHOP, to compute the structures of single-pass homooligomeric membrane proteins

directly from sequence. The results suggest that the automated design of large and com-

plex membrane proteins is within reach.

Introduction

Membrane proteins have essential biological roles as receptors, channels, and transporters.

Over the past decade, significant progress has been made in the design of membrane proteins,

including the first design of membrane-integral inhibitors [1], a transporter [2,3], and a de
novo designed structure based on coiled-coil motifs [4]. Despite this exciting progress, how-

ever, modelling, design, and engineering of membrane proteins lag far behind those of soluble

proteins [5]. This lag is due, in part, to the relatively small number of high-resolution mem-

brane-protein structures [6] and is exacerbated by these proteins’ typically large size. Clearly,

however, the heterogeneity of a membrane protein’s environment, comprising water, lipid,

and polar headgroups, is the most significant complication [7]. Therefore, modelling solvation

is a fundamental problem that impacts all membrane-protein structure prediction and design.

Current energy functions used in modelling and design incorporate simplified solvation

models [8]. For instance, RosettaMP uses information inferred from water-to-cyclohexane

partitioning [9] as a proxy for amino acid solvation in the plasma membrane [10,11]. Due to

these simplifications, expert analysis has been a prerequisite for accurate membrane-protein

modelling and design [12,13]. Automating modelling and design processes and extending

them to complex membrane proteins will likely require an accurate energy function that cor-

rectly balances intra-protein interactions, membrane solvation and water solvation [14–16].

To understand the contributions to membrane-protein solvation, we recently established a

high-throughput experimental screen, called deep sequencing TOXCAT-β-lactamase (dsTβL),

which quantified apparent amino acid transfer energies from the cytosol to the E. coli plasma

membrane [17]. From the resulting data, we inferred apparent position-specific insertion pro-

files for each amino acid relative to alanine, reconciling previously conflicting lines of evidence

[18]. Foremost, the lipophilicity inferred for hydrophobic residues, such as Leu, Ile, and Phe,

was greater than previously measured in some membrane mimics, including the water-to-

cyclohexane transfer energies that are the basis for membrane solvation in Rosetta [9,11,16]

(approximately 2 kcal/mol according to dsTβL compared to ½ kcal/mol), and in line with

theoretical considerations [19,20]. Second, the profiles exhibited a strong 2 kcal/mol prefer-

ence for Arg and Lys in the intracellular side of the plasma membrane compared to the extra-

cellular side. While this preference, known as the “positive-inside” rule, was revealed based on

sequence analysis 30 years ago [21–23], the dsTβL assay was the first to indicate a large energy

gap favouring positively charged residues in the intracellular relative to the extracellular mem-

brane leaflet. The accuracy and generality of the dsTβL apparent transfer energies were partly

verified by demonstrating that they correctly predicted the locations and orientations of mem-

brane spans directly from sequence even in several large and complex eukaryotic transporters

[24]. Taken together, these results provided reassurance that the dsTβL apparent insertion

energies correctly balanced essential aspects of membrane-protein solvation.

As the next step towards accurate all-atom membrane-protein modelling and design, we

develop a new lipophilicity-based energy term based on the dsTβL amino acid-specific
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insertion profiles and integrate this energy term in the Rosetta centroid-level and all-atom

potentials. We furthermore develop a strategy to enhance conformational sampling of mem-

brane-spanning helical segments and of helix-tilt angles observed in naturally occurring mem-

brane proteins. Encouragingly, the new energy function outperforms previous ones in three

benchmarks essential to modelling and design: atomistic ab initio structure prediction starting

from completely extended chains of single-spanning membrane homo-oligomers of known

structure, prediction of mutational effects on stability, and sequence recovery in combinatorial

sequence design. An automated web server for structure prediction in transmembrane homo-

oligomeric proteins (TMHOP) is available at (http://tmhop.weizmann.ac.il) and may enable

modelling of the membrane-spanning domains of receptors. We conclude that the combina-

tion of lipophilicity and energetics developed for soluble proteins provides a basis for accurate

structure prediction and design of membrane proteins.

Results

A lipophilicity-based membrane-protein energy function

The recent all-atom energy function in Rosetta, ref2015, is dominated by physics-based terms,

including van der Waals packing, hydrogen bonding, electrostatics and water solvation [25].

This energy function was parameterized on a large set of crystallographic structures and exper-

imental data of water-soluble proteins and was shown to outperform previous energy func-

tions in several structure-prediction benchmarks. For membrane-protein modelling and

design, however, the ref2015 solvation potential is relevant only to the water-embedded

regions of the protein; a different potential is required to model the energetics of amino acids

near and within different regions of the plasma membrane.

Accordingly, we sought to replace the ref2015 solvation model with one that encodes a

gradual transition from the default water-solvation that evaluates regions distant from the

plasma membrane and the dsTβL insertion profiles near and within the plasma membrane.

The dsTβL profiles were inferred from an experimental mutation analysis of a monomeric

membrane span into which each of the 20 amino acids were individually introduced at each

position [17]; the profiles were then normalized to express the apparent transfer energy for

each amino acid at each position relative to a theoretical poly-Ala membrane span, yielding

apparent ΔΔGAla—>mut at each position across the plasma membrane (Fig 1). As a first step to

encoding these energy profiles in Rosetta, we smoothed these profiles and symmetrised them

with respect to the presumed membrane midplane, except the profiles for Arg, His, and Lys,

for which the “positive-inside” rule applies (S1 Fig).

Next, we implemented an iterative strategy to encode the dsTβL energetics in a modified

ref2015 all-atom energy function which we called ref2015_memb. To enable efficient confor-

mational search as required in ab initio structure prediction and de novo design, we also

encoded this energetics in the centroid-level energy function [26]. As a reference state in both

all-atom and centroid-level modelling, we generated an ideal poly-Ala α helix and placed it

perpendicular to the membrane plane. At each position along the helix (including the aqueous

and membrane phases), we introduced each of the 19 point mutations, relaxed the models

using the all-atom or centroid-level energy function, and computed the energy difference due

to each single-point mutation ΔΔGAla—>mut. In the first iteration of these calculations, the

unmodified ref2015 or centroid-level energy functions were used, resulting, as expected, in

large deviations from the apparent energies observed in the dsTβL profiles (red lines in Fig 1).

We then added a new context-dependent 1-body energy term, called MPResidueLipophilicity,

which encoded the difference between the computed and dsTβL energies for each mutation at

each position, ΔΔΔGAla—>mut. We iterated mutation, relaxation, energy calculations, and
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MPResidueLipophilicity updates for each of the mutations at each position up to ten times, not-

ing that the computed energies converged with the trends observed in the experiment (blue and

red lines in Fig 1, respectively). Scripts for calibrating the all-atom and centroid energy functions

are available at github.com/Fleishman-Lab/membrane_protein_energy_function to enable

adapting future improvements of the Rosetta energy functions to encode the dsTβL energetics.

The dsTβL apparent energy profiles were inferred from a monomeric segment [17]. Conse-

quently, the profiles express the lipophilicity of each amino acid relative to Ala across the

membrane when that amino acid is maximally solvent-exposed. To account for amino acid

burial in multispan or oligomeric membrane proteins, we derived a continuous, differentiable

and easily computable weighting term that expresses the extent of a residue’s burial in other

protein segments. For any amino acid, this weighting term is based on the number of heavy-

atom neighbours within 6 and 12 Å distance of the amino acid’s Cβ atom (Eq 1) resulting in a

weight that expresses the extent to which a residue is buried in other protein segments or

exposed to solvent (0 to 1, respectively). Water-embedded and completely buried positions are

treated with the ref2015 solvation energy; fully membrane-exposed positions are treated with

the MPResidueLipophilicity energy, and positions of intermediate exposure are treated with a

linearly weighted sum of the two terms.

In summary, the actual contribution from solvation of an amino acid is a function of its

exposure to the membrane and depends on the amino acid’s lipophilicity according to the

dsTβL apparent energy and the position’s location relative to the membrane midplane. Note

that this energy term averages lipophilicity contributions in the plasma membrane and does

not express atomic contributions to solvation that are likely to be important in calculating

membrane-protein energetics in different types of biological membranes [11,27], in non-heli-

cal membrane-exposed segments, or surrounding water-filled cavities [28].

The dsTβL assay reports on residue-specific insertion into the plasma membrane. Ab initio
modelling and de novo design, however, also require a potential that addresses the protein

backbone solvation. Although the low-dielectric environment in the core of the membrane

enforces a strong tendency for forming canonical α helices [7], deviations from canonical α
helicity can make important contributions to membrane-protein structure and function [29].

Therefore, we encoded an energy term, called MPHelicality, that allows sampling backbone

dihedral angles and penalises deviations from α helicity (Eq 5). MPHelicality enforces strong

constraints on the dihedral angles in the lipid-exposed surfaces at the core of the membrane

Fig 1. The lipophilicity-based ref2015_memb energy function. Membrane-insertion profiles for six representative amino acids are

shown. Raw dsTβL data (purple dots), ref2015 (dashed green line), the ref2015_memb potential (dashed blue line) and the dsTβL

profiles (red line). Negative and positive membrane depths indicate the inner and outer membrane leaflets, respectively; the

presumed membrane midplane is at 0.

https://doi.org/10.1371/journal.pcbi.1007318.g001
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and is attenuated in regions that are buried in other protein segments and in the extra-mem-

brane environment (using the same weighting as for lipophilicity, Eq 1); this term thus allows

significant deviations from α helicity only in buried or water-embedded regions.

In preliminary ab initio calculations starting from a fully extended chain, we noticed that

conformational sampling significantly favoured large helical tilt angles relative to the mem-

brane normal (θ in Fig 2). By contrast, 50% of naturally observed membrane spans exhibit

small tilt angles in the range 15–30˚. The skew in conformational sampling towards large tilt

angles is expected from previous theoretical investigations according to which the distribution

of helix-tilt angles in random sampling is proportional to sin(θ), substantially preferring large

angles compared to the distribution observed in natural membrane proteins [30]. To eliminate

this skew in conformational sampling, we introduced another energy term, called MPSpanAn-

gle (Eq 4 and Fig 2), that strongly penalised large tilt angles, guiding ab initio sampling to tilt

angles observed in natural proteins.

In summary, ref2015_memb encodes three new energy terms relative to the soluble energy

function ref2015: (1) a lipophilicity term based on amino acid type, membrane-depth, and

burial; (2) a penalty on deviations from α helicity in backbone-dihedral angles; and (3) a pen-

alty on the sampling of large tilt angles with respect to the membrane-normal (S1 Table). In

the calculations reported below, the penalties on deviations from α helicity and helix-tilt angles

Fig 2. Observed versus expected tilt angles in membrane-spanning helices relative to the membrane normal. The distribution of

helix tilt angles (θ in the inset sphere) in natural membrane proteins shows a strong preference for small angles (red bars, left),

whereas the distribution resulting from random conformational sampling is proportional to sin(θ) (blue bars) [30] significantly

overrepresenting large tilt angles. The MPSpanAngle energy term (green line; Eq 4) penalises large tilt angles and focuses ab initio
conformational sampling on tilt angles observed in membrane-protein structures. inset The expected distribution of helix-tilt angles

is proportional to the circumference of a circle plotted by that helix around an axis perpendicular to the membrane-normal (panel

adapted from ref. [30]). The membrane plane is depicted as a grey circle.

https://doi.org/10.1371/journal.pcbi.1007318.g002
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are implemented in all centroid-level ab initio structure prediction simulations; all-atom calcu-

lations use the ref2015 energy modified with the lipophilicity term (ref2015_memb).

Ab initio structure prediction in membrane proteins

Previous structure-prediction benchmarks started from canonical α helices or from monomers

obtained from experimental structures of homodimers and used the bound-structures in grid

search or rigid-body docking [11,16,31–34]. Additionally, structure-prediction studies used

experimental constraints, conservation analysis or correlated-mutation analysis to predict resi-

due contacts in order to constrain conformational sampling [12,13,35–40]. Several automated

predictors dedicated to single-span dimers used shape complementarity [41,42], sequence-

packing motifs [43] or comparative modelling [44], but to the best of our knowledge, ab initio
modelling calculations, starting from a fully extended chain, have not been described. Given

that deviations from canonical α helicity make important contributions to membrane-protein

structure and function [29], we decided to apply a more stringent test using ab initio model-

ling, sampling all symmetric backbone, sidechain, and rigid-body degrees of freedom.

To test ab initio modelling using the new energy function, we applied the fold and dock

protocol [45], which has been successfully applied in a variety of soluble-protein structure pre-

diction and design studies [46–49]. Briefly, fold and dock starts from an extended chain and

conducts several hundred iterations of symmetric centroid-level backbone-fragment insertion

and relaxation moves. It then applies symmetric all-atom refinement including all dihedral

sidechain and backbone degrees of freedom (S1 Movie). To generate an energy landscape, we

ran 5,000 independent trajectories (50,000 for high-order oligomers) for every 19 and 21 resi-

due subsequence of each homooligomer, filtered the resulting models according to energy and

structure parameters (Methods), and isolated the lowest-energy 10% of the models. Models

were then clustered according to their energies and conformations, and five cluster representa-

tives were compared to the experimental structures (Figs 3 and 4, Table 1). For comparison,

we applied the described methodology using ref2015_memb, ref2015 and the current mem-

brane-protein energy function in Rosetta, RosettaMP [11].

The Protein Data Bank (PDB) contains 17 nonredundant (sequence identity <80%) NMR

and X-ray crystallographic structures (adopted from Lomize et al. [44]) of natural single-span

homodimers, two tetramers and one pentameric structure. Of the 20 cases in the benchmark,

fold-and-dock simulations using ref2015_memb predicted near-native (<2.5 Å root-mean-

square deviation [RMSD]) low-energy models for 14 homooligomers compared to nine using

RosettaMP; of the 14 oligomers accurately predicted by ref2015_memb, the soluble energy

function ref2015 also resulted in nine correct predictions. Prediction success rate using

ref2015_memb was somewhat higher for right-handed relative to left-handed homodimers

(80 and 50%, respectively; S2 Table), reflecting the tendency of right-handed homodimers to

be more tightly packed [31], and in 11 cases, a near-native prediction was found among the

top 3 lowest-energy predicted models (Fig 3). Of the three high-order oligomers tested,

ref2015_memb successfully recapitulated the structures of the M2 tetramer and phospholam-

ban pentamer. The PREDDIMER [42] and TMDIM [43] structure-prediction web servers,

which do not use ab initio modelling, found models at<2.5 Å RMSD for nine and eight of the

17 homodimers, respectively. Thus, ab initio calculations using ref2015_memb accurately pre-

dict structures in two-thirds of the homooligomers in our benchmark, including high-order

oligomers that cannot be predicted by other automated methods. Given the high success rate

of the ab initio calculations, we developed a web-accessible server for predicting the structures

of membrane-spanning homo-oligomers such as are observed in receptor tyrosine kinases and

other membrane proteins (http://tmhop.weizmann.ac.il).

Membrane-protein energy function
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The successfully predicted homooligomers exhibit different structural packing motifs. The

majority of the homodimer interfaces are mediated by the ubiquitous Gly-xxx-Gly motif [50],

in which two small amino acids separated by three positions on the primary sequence enable

close packing between the helices. There is uncertainty whether these motifs additionally form

stabilising Cα hydrogen bonds [51,52]. Our structure-prediction analysis cannot resolve this

uncertainty; note, however, that the new energy function ref2015_memb does not encode

Fig 3. Energy landscapes for the TMHOP ab initio structure prediction benchmark. All models that passed the energy and

structure-based filters are shown as semi-transparent grey dots. Each of the five lowest-energy clusters is indicated by coloured

circles (lowest-to-highest energy: red, blue, green, purple and black). The PDB entry is indicated on each panel, and the

oligomeric state is specified by grey circles for oligomeric states than homodimers. Y-axes report the ref2015_memb energy

normalised by the monomeric sequence length of each model.

https://doi.org/10.1371/journal.pcbi.1007318.g003
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terms for Cα hydrogen bonds and yet recapitulates a large fraction of the homodimer struc-

tures (Figs 3 and 4, and Table 1). The underlying reason for successful prediction is that

the dsTβL energetics encodes a strong penalty on exposing Gly residues to the lipid bilayer

(approximately 2 kcal/mol/Gly at the membrane mid-plane; Fig 1), driving the burial of Gly

Fig 4. Structural comparison of the top-predicted model (by RMSD) produced by TMHOP and the experimentally determined

structure (gold and grey, respectively). PDB entry, RMSD and the model’s ranking (in energy) among the top-5 predicted models

are indicated. Only accurately predicted structures (< 2.5 Å) are shown.

https://doi.org/10.1371/journal.pcbi.1007318.g004

Membrane-protein energy function

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007318 August 28, 2019 8 / 20

https://doi.org/10.1371/journal.pcbi.1007318.g004
https://doi.org/10.1371/journal.pcbi.1007318


amino acids within the homodimer interface (i.e., “solvophobicity”). Thus, lipophilicity and

interfacial residue packing are sufficient for accurate structure prediction in a large fraction of

the targets we examined.

In several single-spanning membrane receptors, conformational change in the membrane

domain is thought to underlie receptor activation. For instance, past modelling of the ErbB2

membrane domain suggested two non-overlapping interaction sites involving two small-xxx-

small motifs within the membrane domain and a molecular switching mechanism that under-

lies receptor activation [54]. The only experimental structure for ErbB2 involves the N-termi-

nal small-xxx-small motif [55], which is recapitulated by the second predicted cluster (Fig 5A),

whereas in the fourth predicted cluster, dimerisation is mediated via the C-terminal motif (Fig

5B), suggesting that in some cases, TMHOP may provide structural hypotheses for alternative

binding modes for receptor homooligomeric domains.

Using the dsTβL assay, we also examined the effects of dozens of point mutations in glyco-

phorin A on apparent association energy (ΔΔGbinding) in the bacterial plasma membrane [17].

As a stringent test of the new energy function, we conducted fold-and-dock calculations using

both ref2015_memb and RosettaMP starting from the sequences of each of the point mutants.

To reduce uncertainty in interpreting the experimental results, we focused on 32 mutations

that exhibited large apparent energy changes in the experiment (|ΔΔGbinding|� 2 kcal/mol)

and compared the median computed ΔΔGbinding of the lowest-energy models to the experi-

mental observation (Fig 6, S3 Table). ref2015_memb outperformed RosettaMP, correctly

assigning 81% of mutations as stabilizing or destabilizing compared to 66% for RosettaMP.

Table 1. TMHOP Structure prediction benchmark. Grey cells indicate RMSD< 2.5Å or fraction of native contacts using ref2015_memb> 0.7.

RMSD of nearest model structure (Å)

PDB code # subunits1 fraction of native contacts2 ref2015_memb RosettaMP ref2015 PREDDIMER TMDIM

2J5D 2 0.92 0.95 1.04 1.06 8.37 2.44

2L6W 2 0.90 0.98 2.67 2.04 2.28 5.22

1AFO 2 0.87 1.02 2.87 1.13 1.99 0.84

2L2T 2 0.86 1.01 4.77 6.40 1.85 0.75

2MEU 2 0.80 1.17 2.81 4.65 2.71 4.05

2J7A 2 0.80 0.85 3.36 0.94 9.74 6.54

2M0B 2 0.72 1.12 1.57 1.55 3.22 1.78

2K9Y 2 0.58 2.39 1.82 1.59 1.89 3.88

2K1K 2 0.54 1.62 1.38 1.18 1.77 1.51

2LZ3 2 0.47 2.24 2.14 1.95 2.09 3.56

2MK9 2 0.41 2.30 2.15 2.56 6.88 2.95

2HAC 2 0.30 2.13 3.24 2.31 2.06 2.34

2JWA 2 0.17 2.63 1.36 NA 2.42 2.21

2LZL 2 0.00 4.72 4.54 NA 3.64 3.55

2L9U 2 0.00 5.22 4.15 NA 4.24 1.66

2L34 2 0.00 3.98 3.92 NA 1.12 4.84

2MIC 2 0.00 3.25 3.33 NA 8.70 5.57

3LBW 4 0.14 2.45 1.82 7.10 NA NA

2KIX 4 0.10 3.43 4.06 NA NA NA

2KYV 5 0.22 2.29 1.82 1.46 NA NA

1 oligomeric state (dimer, tetramer, or pentamer)
2 fraction of native contacts in the lowest RMSD model from ref2015_memb. A contact is defined as two positions across the interface that are closer than 8 Å. The

fraction of all contacts in the native structure recapitulated by the model is reported.

https://doi.org/10.1371/journal.pcbi.1007318.t001
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Fig 5. Low-energy predicted models of ErbB2 recapitulate two binding modes thought to underlie receptor activation. (A) The

ErbB2 experimental structure (PDB entry 2JWA, grey) and a representative of the second-best cluster (orange). (B) The fourth-best

cluster (orange), RMSD 5.8 Å from 2JWA, exhibits a right-handed conformation in which Gly68 and Gly72 are buried, in qualitative

agreement with experiments [53] and modelling [54].

https://doi.org/10.1371/journal.pcbi.1007318.g005

Fig 6. Predicted versus experimental ΔΔGbinding values of single-point mutations in glycophorin A. The structure of every point mutant was

predicted ab initio, and the median ΔΔGbinding relative to the wild type sequence is reported. Only point mutations that exhibited |ΔΔGbinding|� 2 kcal/

mol in the experiment were analysed. TP, TN, FP, and FN—true positive, true negative, false positive, and false negative, respectively.

https://doi.org/10.1371/journal.pcbi.1007318.g006
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The six false-positive predictions using ref2015_memb are due to mutations at position Gly86,

which is exposed to the membrane, explaining why our simulations predict these mutations to

be neutral or favourable. Note that as observed in studies of mutational effects on stability in

soluble proteins, the correlation coefficient between computed and observed values is low

(Pearson r2 = 0.21 and 0.02 for ref2015_memb and RosettaMP, respectively) [56–59]. Such low

correlation coefficients provide an impetus for improving the energy function; however, as we

previously demonstrated, discriminating stabilizing from destabilizing mutations is sufficient

to enable the design of accurate, stable, and functionally efficient proteins [59–64].

We next tested sequence-recovery rates using combinatorial sequence optimisation based

on ref2015, ref2015_memb, and RosettaMP in a benchmark of 20 non-redundant structures

(<80% sequence identity) ranging in size from 124–765 amino acids [65]. ref2015_memb out-

performed the other energy functions, exhibiting 83% sequence recovery, on average, when

each design was compared to the target’s natural homologs (Table 2). To our surprise, the solu-

ble energy function ref2015 outperformed RosettaMP in this test and was almost as successful

as ref2015_memb (78% overall success), implying that the packing and electrostatic models of

ref2015 [25] enabled at least some of the improvement observed in sequence recovery by

ref2015_memb (see S1 Table for a comparison of the energy functions). High sequence recov-

ery in both buried and exposed positions implies that ref2015_memb may be applied effec-

tively to design large and complex membrane proteins.

Discussion

An accurate energy function is a prerequisite for automated modelling and design, and solva-

tion makes a critical contribution to protein structure and function. The recent dsTβL appar-

ent energies of insertion into the plasma membrane [17] enabled us to derive an empirical

lipophilicity-based energy function for Rosetta. The results demonstrate that ref2015_memb

outperforms RosettaMP in three benchmarks that are important for structure prediction and

design. As ref2015_memb is based on the current state-of-the-art water-soluble Rosetta energy

function, prediction accuracy is high for ref2015_memb both in soluble regions and in the

core of the membrane domain. Thus, the lipophilicity preferences inferred from the dsTβL

energetics together with the residue packing calculations in Rosetta enable accurate modelling

in several ab initio prediction cases. The current energy function and the fold and dock proce-

dure accurately model homooligomeric interactions in the membrane and the effects of point

mutations, suggesting that they may enable the accurate design of homooligomeric single-

span receptor-like transmembrane domains. The high accuracy models generated by the

TMHOP method also suggest that laborious and often failed experiments to determine the

structures of homooligomeric receptor membrane domains may be circumvented through ab
initio modelling.

Table 2. Sequence recovery rates in Rosetta combinatorial sequence optimisation.

Sequence recovery1 Homology recovery2

buried exposed all buried exposed all

ref2015_memb 0.52 0.32 0.42 0.86 0.81 0.83

ref2015 0.53 0.33 0.43 0.85 0.71 0.78

RosettaMP 0.23 0.20 0.21 0.64 0.70 0.67

1 Only exact matches to the natural protein sequence are counted as recovered
2 For each target protein, a position-specific scoring matrix (PSSM) was computed from a multiple-sequence alignment. At each position, recovery was considered if the

amino acid identity had a PSSM score� 0.

https://doi.org/10.1371/journal.pcbi.1007318.t002
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Nevertheless, certain important attributes of membrane-protein energetics are not yet

addressed by ref2015_memb; for instance, atomic-level solvation and the impact on electro-

static interactions due to changes in the dielectric constant in various parts of the membrane

are currently not treated [16,28] and warrant further research. Furthermore, the dsTβL profiles

are based on measurements conducted on α-helical proteins in E. coli inner membranes.

Ref2015_memb may, therefore, not perform as well in outer-membrane proteins or in proteins

residing in membranes with a substantially different lipid composition. The benchmark

reported here provides a basis on which improvements in the energy function can be verified.

Furthermore, structure prediction in heterooligomers is important for understanding receptor

cross-activation and for the design of membrane inhibitors [1]. In preliminary calculations,

however, we found that fold and dock simulations of heterooligomeric systems fail to converge

due to the much larger conformation space open to a non-symmetric system. A potentially

exciting extension of the current work is to use the information on preferred crossing angles

between membrane helices to constrain conformational sampling in heterooligomers [66,67].

We recently showed that evolution-guided atomistic design calculations, which use phylo-

genetic analysis to guide the design processes [68], enabled the automated, accurate and effec-

tive design of large and topologically complex soluble proteins. Designed proteins exhibited

atomic accuracy, high expression levels, stability [59,60,69], binding affinity, specificity [64],

and catalytic efficiency [62,63]. Membrane proteins are typically large and challenging targets

for conventional protein-engineering and design methods. Looking ahead, we anticipate that

evolution-guided atomistic design using ref2015_memb may enable reliable design in this

important but often formidable class of proteins.

Methods

Rosetta source code

All code is available in the Rosetta release at www.rosettacommons.org (git version:

b210d6d5a0c21208f4f874f62b2909f926379c0f). Command lines and RosettaScripts [70] are

available in the supplement.

Membrane-insertion profiles

The original dsTβL insertion profiles [17] were modified to generate smooth and symmetric

functions [24]. The polar and charged residues Asp, Glu, Gln and Asn, which exhibited few

counts in the deep sequencing analysis, were averaged such that the insertion energy at the

membrane core (-10 to 10 Å; negative values correspond to the inner membrane leaflet and

positive values to the outer leaflet) was applied uniformly to the entire membrane span. The

profile for His was capped at the maximal value observed in the experiment (2.3 kcal/mol)

between 0Å (membrane midplane) and 20 Å. The dsTβL profile for Cys is unusually asymmet-

ric. Cys residues are rare in membrane proteins [71] and are likely to have similar polarity to

Ser. We, therefore, applied the profile measured for Ser to Cys. To convert the values from the

dsTβL insertion profiles to Rosetta energy units (R.e.u.) they were multiplied by 2.94 following

the interpolation reported in ref. [25]. The dsTβL profiles spanned 27 positions, and we corre-

spondingly translated them to span -20 to +20 Å relative to the membrane midplane.

Residue lipophilicity

The context-dependent, one-body energy term MPResidueLipophilicity was implemented to

encode the dsTβL insertion profiles in ref2015. Starting from an ideal poly Ala α helix embed-

ded perpendicular to a virtual membrane, every position was mutated to all 19 identities,
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relaxed, and the energy difference between the ref2015 energy and the dsTβL energy was

implemented in MPResidueLipophilicity. This process was repeated ten times to reach conver-

gence, and the resulting energy profiles were fitted by a cubic spline [72], generating continu-

ous, differentiable functions for all 19 amino acids relative to Ala, which was assumed to be 0

throughout the membrane. The splines were recorded in the Rosetta database and are loaded

at runtime. Insertion -profile adjustments were done using a python3 script available at

github.com/Fleishman-Lab/membrane_protein_energy_function.

Residue burial

The number of protein atoms within 6 and 12 Å of each amino acid’s Cβ atom is computed

and transformed to a burial score (Eq 1). We used sigmoid functions which range from 0 to 1,

corresponding to completely buried and completely lipid-exposed, respectively.

burial ¼
1

1þ eS6ðN6
i � O6Þ
�

1

1þ eS12ðS12
i � O12Þ

ð1Þ

Where N is the number of heavy atoms and S and O determine the slope and offset of the

sigmoids and are different for all-atom and centroid calculations. Each parameter has different

thresholds at 6 or 12 Å. For all-atom calculations, S = 0.15 and 0.5 and O = 20 and 475, for 6

and 12 Å radii, respectively. For centroid-level calculations, S = 0.15 and 5 and O = 20 and 220

for 6 and 12Å radii, respectively. For each amino acid, the product of the 6 and 12Å sigmoid

functions is taken, producing a continuous, differentiable function that transitions from bur-

ied to exposed states. These parameters were determined by visualising the burial scores of all

amino acids in several polytopic membrane proteins of known structure.

Tilt-angle (Θ; Fig 2) penalty

All membrane-spanning helices reported in the PDBTM [73] dataset (version 20170210) were

analyzed for their tilt angles with respect to the membrane normal. A second-degree polyno-

mial was fitted to this distribution using scikit-learn [74].

f ðyÞ ¼ � 2:36� 10� 4 � y
2
þ 0:01095� yþ 0:0202 ð2Þ

As Bowie noted, the expected distribution function of helix-tilt angles is sin(Θ) [30]. We,

therefore, used a partition function to convert the expected distribution (sin(Θ)) and observed

one (Eq 2) to energy functions, finally subtracting the expected energy from the observed one

to derive the helix-tilt penalty function:

penalty ¼ � ðlnð� 2:36� 10� 4 � y
2
þ 0:01095� yþ 0:0202Þ � lnðsinðyÞÞÞ ð3Þ

Where θ is given in degrees. In order to simplify runtime calculations, we approximated Eq

3 using a third-degree polynomial (using scikit-learn) (Fig 2).

penalty ¼ 1:51� 10� 4 � y
3
� 8:925� 10� 3 � y

2
þ 0:187� y � 0:532 ð4Þ

Penalizing deviations from ideal α helicity

The MPHelicality energy term penalizes the energy of every position that exhibits ϕ-ψ torsion

angles significantly different from ideal α helices. A paraboloid function was manually cali-

brated to express a penalty for any given (ϕ, ψ). The paraboloid centre, for which the penalty is

0, was set to the centre of the helical region according to the Ramachandran plot (ϕ = 60˚, ψ =

45˚) [75]. The paraboloid curvature was set to 25, such that the penalty is low throughout the
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ϕ-ψ torsion angles space observed for α helices [75]. As segments buried against the protein

should not be penalized to the same extent as those completely exposed to the membrane, the

burial approximation of Eq 1 is used to weight MPHelicality. Moreover, as the protein extends

outside of the membrane, the penalty is attenuated with a function that follows the trend

observed for the hydrophobic residues, Leu, Ile, and Phe (see Fig 1A). In effect, the MPHelical-

ity term favours α helicity in lipid-exposed surfaces in the core of the membrane, thereby

enforcing some of the electrostatic and solvophobic effects that are essential for correctly

modelling the backbone but are not expressed in the residue-specific dsTβL energy profiles.

MPHelicality ¼
1

254
� ðð�i þ 60Þ

2
þ ðci þ 45Þ

2
Þ

2
�

zi
10

� �4

1þ
zi
10

� �4
� buriali ð5Þ

Where ϕ and ψ are given in degrees, z is the distance from the membrane midplane of resi-

due i, and burial is calculated as in Eq 1.

A benchmark for structure prediction of single-span homooligomers

17 structures of single-span homodimers, two homotetramers and one pentamer were selected

from the PDB (S2 Table). For each structure, a 20–30 residue segment comprising the mem-

brane-spanning domain was manually chosen. A sliding window then extracted all 19 or 21

residue subsequences. For each subsequence, three and nine residue backbone fragments were

generated using the Rosetta fragment picker application [76]. The fold-and-dock protocol [45]

was used to compute 5000 models (50,000 models for tetramers and the phospholamban pen-

tamer), and the lowest-energy 10% of the models were subsequently filtered using structure

and energy-based filters (solvent accessible surface area >500 Å; shape complementarity [77]

Sc>0.5; ΔΔGbinding <-5 R.e.u.; rotameric binding strain [78] < 4 R.e.u.; helicality <0.1 R.e.u.

(computed using Eq 5); and closest distance between the interacting helices < 9 Å, as calcu-

lated by the filter HelixHelixAngle). For each target, the filtered models from all subsequences

were then pooled together and clustered using a score-wise clustering algorithm. This is an

iterative process, where each iteration calculates the RMSD of all unclustered models to the

best-energy model, and removes the ones closer than 4 Å. RMSD to NMR structures were cal-

culated with respect to the first model in the PDB entry.

A benchmark for ΔΔGbinding predictions of single-spanning homodimers

Glycophorin A mutants that exhibited |ΔΔGbinding|> 2 kcal/mol according to the dsTβL study

[17] were modelled using the same fold-and-dock protocol described for the structure predic-

tion of homodimers. To reduce computational load, we used a single sequence (73-ITLIIFGV-

MAGVIGTILLI-91), and the median of computed ΔΔGbinding for the top models was reported

(models were filtered using structure and energy based filters; solvent accessible surface

area> 600 Å, packing > 0.4, shape complementarity > 0.5, ΔΔGbinding < -10 R.e.u., binding

strain < 4 R.e.u. MPHelicality < 0.1, minimal atomic distance between helices < 4.5 Å and

minimal distance between helix vectors < 8 Å. Of these models, only the top 10% scoring

models were used).

Sequence-recapitulation benchmark

20 structures of polytopic membrane-spanning proteins were taken from ref. [65], 11 of

which were symmetric complexes. All were refined (eliminating sidechain conformation infor-

mation before refinement), and for each protein, 100 designs were computed using combina-

torial sequence design followed by sidechain and backbone minimization, and the lowest-

Membrane-protein energy function

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007318 August 28, 2019 14 / 20

https://doi.org/10.1371/journal.pcbi.1007318


energy 10 designs were checked for the fraction of mutations relative to the target protein. For

each target protein, a multiple-sequence alignment was prepared: homologous sequences were

automatically collected using BLASTP [79] on the nonredundant sequence database [80] with

a maximal number of targets set to 3,000 and an e-value� 10−4. All sequences were clustered

using CD-hit [81] with a 90% sequence identity threshold. Sequences were then aligned using

MUSCLE [82] with default parameters. A position-specific scoring matrix (PSSM) was calcu-

lated using PSI-BLAST [83]. In the sequence-recovery benchmark, where homologous

sequences are considered, the substitution of a given position to an identity with a PSSM

score� 0 is considered a match.

Supporting information

S1 Table. Comparison of energy term weights. ref2015_memb is identical to the ref2015

energy function, except for the addition of the mp_ terms, whereas RosettaMP is based on

score12[10]. For a detailed explanation on energy terms see ref [25,26,84]. 1 used only in cen-

troid-level sampling. 2 used in centroid-level sampling and full-atom sampling of single span-

ning proteins.

(PDF)

S2 Table. Structures in the prediction benchmark. 1small-xxx-small in sequence.

(PDF)

S3 Table. Raw data on the ΔΔGbinding prediction data.

(PDF)

S4 Table. Structures for the sequence recovery benchmark.

(PDF)

S1 Movie. A representative fold and dock simulation for glycophorin A. In the first 25 sec-

onds of the movie, simulations are in centroid mode, followed by all-atom refinement.

(MP4)

S1 Fig. Adjustment and calibration of insertion profiles. Each panel shows membrane

insertion profiles for a different amino acid. Raw dsTβL data (purple dots, right-hand Y-

axis), dsTβL adjusted profiles (red line), ref2015 insertion profiles (green) and ref2015_memb

profiles (blue dashed line). Different residues affect the α helix differently, and therefore have

different baselines. Note that Pro has no profile under ref2015_memb due to its effect on the

backbone.

(TIF)

S1 File. RosettaScripts XMLs and command lines for all benchmarks.

(PDF)

S2 File. Top models from structure prediction benchmark.

(GZ)
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