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SUMMARY
Manyquantitative trait loci (QTLs) are in non-coding regions. Therefore,QTLsareassumed toaffect gene regu-
lation. Gene expression and RNA splicing are primary steps of transcription, so DNA variants changing gene
expression (eVariants) orRNAsplicing (sVariants) are expected to significantly affect phenotypes.Wequantify
the contribution of eVariants and sVariants detected from 16 tissues (n = 4,725) to 37 traits of�120,000 cattle
(average magnitude of genetic correlation between traits = 0.13). Analyzed in Bayesian mixture models,
averaged across 37 traits, cis and trans eVariants and sVariants detected from 16 tissues jointly explain
69.2% (SE = 0.5%) of heritability, 44% more than expected from the same number of random variants. This
69.2% includes an average of 24% from trans e-/sVariants (14%more than expected). Averaged across 56 lip-
idomic traits, multi-tissue cis and trans e-/sVariants also explain 71.5% (SE = 0.3%) of heritability, demon-
strating the essential role of proximal and distal regulatory variants in shaping mammalian phenotypes.
INTRODUCTION

Understanding how DNA variants shape phenotype is a central

goal in genetics and biology. Most complex, mammalian pheno-

types are influenced by the accumulated effects ofmany variable

sites in the genome known as quantitative trait loci (QTLs). Most

of these QTLs are in non-coding regions of the genome. Since

non-coding regions are usually involved in gene regulation,

numerous human studies havemapped regulatory loci, including

QTLs affecting gene expression (eQTLs)5,6 and RNA splicing

(sQTLs),7 with the expectation that they would explain variation

in complex traits.

Significant efforts in mapping regulatory variants in other spe-

cies have been initiated, including in livestock species. A Cattle

Genotype-Tissue Expression (CattleGTEx)8 consortium, part of

the Farm Animal GTEx (FarmGTEx), has been launched along

with new priorities for the Functional Annotation of Animal Ge-
C
This is an open access article under the CC BY-N
nomes (FAANG)9,10 consortium. Genome-wide association

studies (GWASs) of cattle are now carried out in more than

100,000 individuals11,12 to identify trait QTLs for dozens of com-

plex traits. Therefore, there are uniqueopportunities in non-human

species to dissect the impact of regulatory variants onmammalian

complex traits.

Despite being biologically important, regulatory variants

have been reported to contribute only a small part to variation

in mammalian complex traits.13,14 For example, a recent hu-

man study suggested that around 11% of trait SNP-based

heritability is attributable to eQTLs.13 Evaluating published hu-

man data, Connally et al.14 proposed the term ‘‘missing regu-

lation’’ to describe the result that genomic variants that affect

gene expression (eQTLs) explain so little of the genetic vari-

ance in conventional phenotypes. In cattle, limited overlaps

between eQTLs and trait QTLs estimated from 44,000 cattle

have been reported,15 and the total contribution of eQTLs to
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the heritability of cattle traits was estimated to be

around 10%.16

Herein, we address the contribution of regulatory variants to

mammalian complex traits with a comprehensive analysis of cat-

tle data.Wemapped eQTLs and sQTLs from transcriptomic data

across 16 tissues in more than 40 breeds from 4,725 cattle,

comprising between 105 and 945 individuals (average 295) per

tissue. In another �120,000 Australian cattle, we use a Bayesian

mixture model, allowing prior information that a variant affects

gene regulation,4 to estimate the genetic variance explained by

cis and trans eQTL and sQTL in 37 traits in dairy cows, and we

report the averaged partitioned heritability across these 37 traits.

Our analysis differs from many of those previously reported in

that we consider the effects of cis and trans eQTL and sQTL

derived from both single tissues as well as from multiple tissues.

To validate the estimates of partitioned heritability, we replicate

analyses in 56 lipidomic traits assayed by liquid chromatog-

raphy-mass spectrometry and found that, averaged across lipi-

domic traits, regulatory genetic variants can explain a large pro-

portion of genetic variance as well.

RESULTS

eQTLs and sQTLs were mapped in 16 tissues in either newly

generated data or data obtained from CattleGTEx v.08 in tissues

with a sample size >100 (Table S1) using a linear mixed-model

approach3 (see STAR Methods). After filtering out identical sam-

ples (similarity at SNPs >0.85; see Liu et al.8), there were 4,725

different samples across 16 tissues and, on average, 295 sam-

ples per tissue. Cis (±1 Mb gene or intron) e-/sQTLs were identi-

fied in the association analysis based on a cutoff of p < 53 10�6

in the association mapping. More stringent criteria were applied

to the selection of trans e-/sQTLs (from different chromosomes

to the gene or intron; see STAR Methods). A meta-analysis

across 16 tissues was conducted to identify multi-tissue eQTLs

and sQTLs (see STAR Methods). More than 1.8 million linkage

disequilibrium (LD)-pruned (r2 < 0.9) genome-wide variants

from �120,000 Australian cattle were placed into 13 classes

based on whether they mapped to variants designated as

eQTLs, sQTLs, or both eQTLs and sQTLs (esQTLs) that act in

cis or trans at both the single-tissue and multi-tissue levels

(Data S1). In the following sections, we use the term ‘‘regulatory

variants’’ to describe variants associated with changes in gene

expression (eVariants) and splicing (sVariants), which do not

necessarily imply causation.

Each of the 37 complex traits (Table S2) was analyzed with a

Bayesian mixture model called BayesRC.4 These 37 phenotypic

traits had genetic correlations ranging from �0.66 to 0.79 with a

mean of 0.04, and the averagemagnitude of correlation was 0.13

(Figure S1; Data S2), suggesting a diverse range of 37 pheno-

typic traits. Like BayesR,17,18 BayesRC assumes that the effect

of a variant on a complex trait is drawn from amixture of 4 normal

distributions with mean = 0 and variances of zero (no effect),

0.0001 (small effect), 0.001 (medium effect), or 0.01 (large ef-

fects) times the genetic variance. However, in BayesRC, the var-

iants are placed into non-overlapping classes based on prior in-

formation (e.g., with regulatory evidence), and the proportion of

each distribution in the mixture is allowed to vary between clas-
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ses. This allowed us to quantify the relative proportion of herita-

bility attributable to classes of variants acting as cis and trans

eQTLs and sQTLs, i.e., cis and trans eVariants and sVariants.

Here, the heritability is based on additive genetic variance due

to sequence variants using the methodology equivalent to esti-

mating ‘‘SNP-based heritability’’ in human genetics.19 As dairy

cattle have a small effective population size, the total heritability

estimated here (the denominator in proportions reported) is

approximately equal to the estimate of the heritability using pedi-

gree data. In BayesRC, the proportion of heritability explained

was also estimated for a class of ‘‘remaining variants’’ with no

regulatory evidence.We used this estimate together with its ratio

of genomic size (proportion of variants relative to the total num-

ber of variants analyzed) to other classes of regulatory variants to

derive an expected proportion of heritability explained by each

class of variants, assuming they explained the same amount

per variant as the remaining class (Table 1; STAR Methods).

Bayesian partitioning heritability across e-/sVariants
The BayesRC analysis was performed when the regulatory clas-

ses were defined based on each individual tissue (e.g., eVariants

called for a given tissue). While the classes were defined from all

tissues in a single analysis (e.g., eVariants were called in at least

one of the 16 tissues). Table 1 gives the BayesRC results for the 7

prior classes (fitted jointly) averaged across the 37 traits and 16

tissues for the single-tissue analyses and across the 37 traits

formulti-tissue analyses. The 7 prior classes categorized the var-

iants into non-overlapping groups of cis- and trans-regulatory

variants and variantswith no regulatory evidence. In single-tissue

and multi-tissue analyses, all 6 regulatory classes had a higher

proportion of variants affecting phenotypes than the remaining

class with no regulatory evidence (Table 1; STAR Methods). In

particular, 6 regulatory classeshadahigherproportion of variants

with medium or large effects on phenotypes than the remaining

class. Consequently, the variance explained by the 6 regulatory

classes was higher than expected if they explained the same

amount per variant as the remaining classes (Table 1; STAR

Methods). There was no overlap of variants between classes.

In the multiple tissue analysis, all tissues and samples were

combined to increase power to detect regulatory variants, and

this resulted in more variants classified as regulatory and fewer

variants defined as having no regulatory evidence in the ‘‘remain-

ing’’ class. Also, within the regulatory classes, more variants

affected both gene expression and RNA splicing, resulting in

the esVariant class having more variants, whereas the eVariant

and sVariant classes had fewer variants (Table 1). As a result of

the larger number of regulatory variants discovered, the multi-

tissue analysis across 37 phenotypic traits found that, on

average, 69.2% of the genetic variance was explained by regu-

latory variants (SD = 9.7%, 44% more than expected by the

same number of random variants; Figure S2A), whereas the

average of the single-tissue analyses was 25% (SD = 9.9%,

22% more than expected; Figure S2B). As the multi-tissue anal-

ysis had more than a 16-fold increase in sample size compared

with each single-tissue analysis (4,725 vs. 295), our results sug-

gest that the increased power in themulti-tissue analyses, due to

the larger sample size, allowed for better estimates of the genetic

effects of e-/sVariants on phenotypic traits. A full list of



Table 1. Summary of the proportion (%) of heritability (SNP-based) and trait-associated variants (trait QTLs) affecting gene expression

(eVariants), RNA splicing (sVariants), or variants affecting both expression and splicing (esVariants)

Tissue Class

N

class

%

class

Small

(SE)

Medium

(SE)

Large

(SE)

O[% h2]

(SE), %

E[% h2]

(SE), %

O[% QTLs]

(SE), %

E[% QTLs]

(SE), %

Single

tissue

cis.eVariants 7,921 0.42 166.5 (3.9) 16.7 (0.5) 0.6 (0.0) 3.78 (0.09)**** 0.32 (0.01) 9.12 (0.30)**** 0.002 (0.000)

cis.sVariants 26,222 1.39 324.9 (11.7) 25.0 (0.8) 0.7 (0.0) 6.23 (0.18)**** 1.05 (0.05) 4.60 (0.20)**** 0.005 (0.000)

cis.esVariants 4,598 0.24 106.4 (3.3) 11.2 (0.3) 0.6 (0.0) 2.66 (0.08)**** 0.18 (0.01) 20.86 (1.06)**** 0.001 (0.000)

trans.eVariants 3,003 0.16 128.4 (3.0) 13.9 (0.4) 0.5 (0.0) 3.04 (0.07)**** 0.13 (0.00) 19.03 (0.77)**** 0.001 (0.000)

trans.sVariants 32,083 1.70 296.9 (4.6) 28.9 (0.8) 0.7 (0.0) 6.27 (0.11)**** 1.34 (0.02) 2.61 (0.08)**** 0.007 (0.000)

trans.esVariants 2,740 0.15 109.9 (2.5) 12.0 (0.4) 0.5 (0.0) 2.65 (0.06)**** 0.11 (0.00) 17.25 (0.96)**** 0.001 (0.000)

remaining 1,805,933 95.93 6,726.8 (53.7) 98.1 (2.1) 1.7 (0.1) 75.38 (0.41) 75.38 (0.41) 0.38 (0.00) 0.38 (0.003)

Multi-

tissue

cis.eVariants 1,919 0.10 84.9 (9.3) 9.5 (1.0) 0.4 (0.0) 2.09 (0.18)**** 0.06 (0.00) 14.53 (1.47)**** 0.000 (0.000)

cis.sVariants 252,518 13.41 1,611.2 (74.4) 55.7 (5.5) 1.0 (0.1) 21.46 (0.77)**** 7.57 (0.39) 1.29 (0.05)**** 0.066 (0.003)

cis.esVariants 275,390 14.63 1,593.8 (60.3) 53.6 (4.8) 1.5 (0.3) 21.77 (1.01)**** 8.26 (0.43) 1.18 (0.04)**** 0.072 (0.004)

trans.eVariants 227,126 12.07 987.8 (39.6) 32.3 (3.2) 0.8 (0.0) 13.13 (0.36)**** 6.81 (0.35) 0.93 (0.04)**** 0.059 (0.003)

trans.sVariants 47,694 2.53 365.4 (25.7) 23.0 (2.0) 0.6 (0.0) 6.21 (0.36)**** 1.43 (0.07) 2.31 (0.16)**** 0.012 (0.001)

trans.esVariants 49,692 2.64 244.6 (18.8) 17.8 (1.7) 0.6 (0.0) 4.51 (0.30)**** 1.49 (0.08) 1.89 (0.16)**** 0.013 (0.001)

remaining 1,028,161 54.62 2,708.2 (138.5) 44.1 (9.5) 0.9 (0.2) 30.83 (1.59) 30.83 (1.59) 0.27 (0.01) 0.27 (0.014)

Within each non-overlapping class, the total number of variants (N class) and their genome proportion (% class, number of variants in the class/total

number of variants analyzed), the number of variants with small effects (‘‘small’’), medium effects (‘‘medium’’), and large effects (‘‘large’’) averaged

across 16 tissues and 37 traits are given. These numbers are used to estimate the observed heritability explained (O[% h2]) and the proportion of trait

QTLs in each class (O[%QTLs]). The number of variants within the remaining class (no regulatory evidence) is used to estimate the expected proportion

of heritability explained (E[% h2]) and the proportion of trait QTLs in each class (E[% QTLs]). The standard errors as shown in parentheses are derived

based on the estimates across 37 traits. ****p of heritability enrichment < 0.0001 (difference between observed and expected across 37 traits and 16

single tissues or 1 multi-tissue, two-sided test).
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partitioned heritability across tissues and traits can be found in

Data S3.

Including more regulatory variants in the model increased the

heritability explained, with the largest proportions of heritability

explained by eVariants and sVariants detected from all tissues

analyzed jointly (Figure 1A). To further illustrate this, as well as

the 7 classes defined by both eVariants and sVariants, we per-

formed BayesRC analyses using 3 classes defined only by eVar-

iants or by sVariants (Table S3). Based on e-/sVariants detected

from single tissues averaged across tissues and traits, when

eVariants and sVariants were analyzed separately, cis and trans

eVariants explained 5.6% (SE = 0.1%) and 4.1% (SE = 0.1%) of

heritability, respectively, and cis and trans sVariants explained

8.3% (SE = 0.2%) and 7.6% (SE = 0.1%) of heritability, respec-

tively (Table S3). When eVariants and sVariants were analyzed

jointly in the single-tissue scenarios, cis and trans esVariants ex-

plained 12.7% (SE = 0.1%) and 12% (SE = 0.1%) of heritability,

respectively (Figure 1A; Table 1).

Based on e-/sVariants detected from multiple tissues

across traits, when eVariants and sVariants were analyzed

separately, cis and trans eVariants explained 29% (SE = 1%)

and 21% (SE = 0.5%) of heritability, respectively, and cis

and trans sVariants explained 58% (SE = 1%) and 8% (SE =

0.4%) of heritability, respectively (Table S3). When eVariants

and sVariants were analyzed jointly in the multi-tissue sce-

narios, cis and trans esVariants explained 45.3% (SE =

0.5%) and 23.9% (SE = 0.3%) of heritability, respectively (Fig-

ure 1A; Table 1; Data S3).
As a check on the BayesRC method, we also analyzed the

same data using the GCTA implementation of REML to partition

the genetic variance in the 37 complex traits into that caused by

multi-tissue cis and trans e-/sVariants and non-regulatory vari-

ants (seeSTARMethods).ConsistentwithBayesRC results, aver-

aged across 37 traits, GREML analyses showed that multi-tissue

cis e-/sVariants explained 62% (SE = 2%) of heritability and that

multi-tissue transe-/sVariants explained 23% (SE=2%)of herita-

bility (Figure S3). We also implemented and tested LD score

regression (LDSC)20 in estimating heritability in cattle (STAR

Methods; Table S4). LDSC-estimated heritability for known

heritable cattle traits such as milk yield16,21,22 was close to 0 or

negative. Using the same data, GREML- or BayesR-estimated

heritability of these traits ranged from 0.4 to 0.72. Therefore,

LDSC was not used to partition heritability in the current study.

By ranking classes of variants based on the difference between

the observed and expected proportion of heritability explained

(Figure 1B), multi-tissue cis sVariants and cis esVariants explained

the most additional variance. Multi-tissue trans eVariants, sVar-

iants, and esVariants also explained more heritability than ex-

pected from the number of variants in each class. At the single-tis-

sue level, cis and trans sVariants had the greatest additional

variance explained. In additional analyses, e-/sVariants under at

least two chromatin immunoprecipitation sequencing (ChIP-seq)

peaks10,23,24 (regardless of histone post-translationalmodification

type) explainedmoreheritability thanexpectedbut not necessarily

more than e-/sVariants outside of peaks (Figure S4). Analysis of

histone post-translational modifications with ChIP-seq data may
Cell Genomics 3, 100385, October 11, 2023 3
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Figure 1. Averaged proportions of genetic variance or heritability explained by regulatory variants across 37 traits

(A) Left panel: when only variants affecting gene expression (eVariants) were considered.Middle panel: when only variants affecting RNA splicing (sVariants) were

considered. Right panel: eVariants and sVariants were considered jointly. Where ‘‘e’’ is the expected proportion of heritability explained by the genomic size, ‘‘o’’

is the observed proportion of heritability, and ‘‘Multi.tissue’’ is the regulatory variants detected from 16 tissues. Means and standard error bars across 37 traits are

presented. In the right panel, multi-tissue analysis observed that, averaged across 37 traits, the largest proportion of heritability was explained by regulatory

variants (total = 69.2%, cis = 45.3%, and trans = 23.9%).

(B) Enrichment of heritability across fitted classes in the joint model (6 regulatory classes). The enrichment was calculated as the difference between the observed

proportion of heritability explained and the expected proportion of heritability explained from the number of variants in each class. ****p of heritability < 0.0001

(difference between observed and expected across 37 traits and 16 single tissues or 1 multi-tissue, two-sided test).
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achievedifferent results given that someof thesesites likelyareac-

tivators, and others repressors, of gene expression.

BayesRC estimated the number of trait-associated variants,

i.e., trait QTLs, with small, medium, and large effects within

each regulatory class. We then compared the proportion of var-

iants within each class that fell into the small-, medium-, and

large-effect trait QTL distributions. By comparing each regulato-

ry class with the remaining class (no regulatory evidence), we

estimated the additional proportion of trait QTLs in each class

above that expected by the number of variants of that class (Fig-

ure 2A). Overall, the enrichment of trait QTLs in e-/sVariants was

similar across different effect-size groups. Across analyzed

traits, multi-tissue cis eVariants had the greatest additional pro-

portion of trait QTLs above what was expected. Driven by the

relatively small number of variants identified (e.g., Table 1), trans

e-/sVariants also had a high additional proportion of trait QTLs

above expected in both single-tissue and multi-tissue analyses.

Verification of heritability explained by e-/sVariants
To verify our results, we re-classified 1.8 million variants where

regulatory variants and variants conserved across 100 verte-

brates16 were fitted together and used this file to re-analyze 37
4 Cell Genomics 3, 100385, October 11, 2023
traits (STAR Methods). The results show that although

conserved variants were significantly enriched with respect to

heritability, cis-e-/sVariants still explained the largest proportion

of heritability and had the strongest enrichment (Table S5). We

also analyzed regulatory variants with coding variants annotated

by Ensembl VEP25 (STAR Methods; Table S6). Coding variants

and regulatory variants were both significantly enriched with her-

itability, and those coding variants that also had cis-regulatory

function showed the strongest enrichment of heritability (Table

S7). In total, 8,125 coding variants accounting for 0.4% of vari-

ants analyzed explained 6.6% heritability. This is comparable

to previous estimates in humans.20,26–28 As there were a small

number of coding variants, regulatory variants still explained

the majority of heritability across traits (Table S7).

It is possible that the classes of regulatory variants differ in

minor allele frequency (MAF) or LD and that this explains the

enrichment of trait QTLs and genetic variance within regulatory

classes. To test this possibility, we implemented a MAF-LD

matched enrichment test (see STAR Methods) using GWAS re-

sults of 37 traits on 16 million sequence variants.12 For each

class of regulatory variants, e.g., cis eQTLs, we sampled a

random set of variants (repeated 1,000 times) with matched
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Figure 2. Amount of trait-associated variants (trait QTLs) that were also variants affecting gene expression (eVariants), splicing (sVariants),

or both (esVariants)

(A) For each class, the difference between the observed proportion (or concentration) of trait QTLs and the expected proportion of trait QTLs by genome size in the

BayesRC analysis is the additional proportion of trait QTLs included. ****p of heritability enrichment < 0.0001 (difference between observed and expected across

37 traits and 16 single tissues or 1 multi-tissue, two-sided test).

(B) The enrichment of trait QTLs in regulatory variants was determined as the difference (t value) of variant effects in GWASs between a set of e-/sVariants and a

set of random variants with matched LD and MAF to the e-/sVariant set. The blue dashed line indicates t = log(2), which is equivalent to the p value threshold of

0.05. Each violin bar represents the results across 37 traits. Conditional.GWAS, GWAS results conditioned on the top-2 trait QTLs per chromosome from the

results of the ordinary GWAS; Ordinary.GWAS, no top trait QTLs fitted.
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MAF and LD, and then we compared the GWAS effects between

the set of regulatory variants and the set of random variants with

matched MAF and LD. To ensure that the results are not driven

by a few large-effect trait QTLs, we carried out another set of

GWASs of the 37 traits conditional on the effects of the top 2 var-

iants per chromosome at least 1Mb apart (i.e., we fitted the top 2

variants per chromosome in the statistical model as fixed effects;

see STAR Methods). We then applied the MAF-LD matched

enrichment test to the conditional GWAS. As shown in Figure 2B,

across traits and tissues, both proximal and distal regulatory var-

iants were significantly enriched with trait QTLs compared with

random variants with matched MAF and LD using both the orig-

inal and conditional GWASs. The strongest enrichment of trait

QTLs was found in e-/sVariants frommultiple tissues. We further
tested these MAF-LD tests using coloc,29 and these results also

support the enrichment of e-/sVariants above LD-MAF matched

random variants (Figure S5). Therefore, these results confirmed

that the enrichment of trait QTLs in regulatory variants was not

driven by MAF or LD.

We next examined whether the contribution of regulatory var-

iants to trait heritability was consistent between different popula-

tions and could be reproduced using different datasets. As there

are 37 phenotypic records on both 110,000 cows and (daughter

records of) 9,000 bulls, we conducted BayesRC, fitting the 7

classes of regulatory variants separately in bulls and cows to

check the variability of the enrichment of heritability between

different cattle datasets. As the bulls and cows have different

phenotypic variances and low genetic relationships due to
Cell Genomics 3, 100385, October 11, 2023 5



A B Figure 3. Consistency and lipidomic analysis

of heritability explained by regulatory vari-

ants

(A) A scatterplot of the heritability explained by 6

classes of regulatory variants across tissues and

traits between bulls and cows. Each point repre-

sents the fraction of heritability of a trait for a class

within a tissue in two sexes. Colors of lines are the

regressions for heritability partitioned using multi-

tissue, single-tissue, and cis- and trans-regulatory

variants, respectively.

(B) The proportion of heritability explained by multi-

tissue regulatory variants above that expected by

genomic size averaged across 56 lipidomic traits

and different classes. ****p of heritability enrich-

ment < 0.0001 (difference between observed and

expected across 56 lipidomic traits and 16 single

tissues or 1 multi-tissue, two-sided test).
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different LD structures, results from one population can be vali-

dated using the other population.30,31 We found that the Pearson

correlation of partitioned heritability across 6 regulatory classes

from different tissues for 37 traits was 0.87, with the correlation

from single and multiple tissues being 0.87 and 0.77, respec-

tively (Figure 3A). Higher correlations for single-tissue analysis

were due to there being more estimated points (16 tissues 3

37 traits.)

To further verify the large proportion of heritability explained

by regulatory variants, we used multi-tissue e-/sVariants to

define classes for BayesRC to partition heritability in 56 polar

lipid traits assayed by liquid chromatography-mass spectrom-

etry (LCMS) on 320 cattle (see STAR Methods and Table S8).

Across these 56 traits, on average, cis and trans e-/sVariants

together explained 71.5% (SE = 0.3%) of the heritability,

36.6% (SE = 0.6%) more than expected if the regulatory vari-

ants explained as much genetic variance per variant as the var-

iants that are neither eVariants nor sVariants (Figures 3B and

S6; Data S4). Both cis and trans e-/sVariants contribute sub-

stantially to the heritability of polar lipids (Figure 3B). A full list

of partitioned heritability for the polar lipid phenotypes can be

found in Data S4.

Examples of trait QTLs as e-/sVariants
In Figure 4, we provide examples where cis- or trans-regulatory

variants significantly affect complex traits and are also sup-

ported by external functional information. We considered vari-

ants with previously defined posterior inclusion probability

(PIP) >0.25 as potentially causal.4 For instance, we highlight a

cis eVariant from blood at chr15:42,044,576 (rs137255300) that

affected both the birth size and the concentration of lactosylcer-

amide in the milk of cattle (Figure 4A, left and middle panels).

Chr15:42,044,576 is a missense mutation25 for IRAG1 and is

conserved across 100 vertebrates (PhastCon score = 0.999),

but this mutation also affects the expression of CTR9 (Figure 4A,

right panel), which is a transcription factor. Another example is a

multi-tissue trans eVariant (chr5:105,773,809, rs109676906),

which significantly affects cattle height (Figure 4B). This single

mutation explained �0.6% of the phenotypic variance of stature

in 133,306 cattle acrossmore than 19 populations/breeds.11,32 A

list of cis and trans e-/sVariants affecting different complex and
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lipidomic traits with their functional annotation is provided in

Data S5.

DISCUSSION

Our analysis of large datasets in cattle demonstrates that both

cis- and trans-regulatory variants significantly contribute to vari-

ation in complex traits. Such contribution is not due to the LD or

MAF of regulatory variants, and it increases whenmore regulato-

ry variants of different types (e.g., eVariants and sVariants) and a

large number of tissues are included in the analysis. When cis

and trans eVariants and sVariants frommultiple tissues are jointly

analyzed, on average, they accumulatively explain themajority of

heritability across 37 analyzed phenotypic traits (mean = 69.2%

with SE = 0.5% and SD = 9.7%; Figures 1A and S2; Data S3).

Therefore, we expect that as more regulatory variants are

discovered from more assays, tissues, and individuals, they

will explain an even larger proportion of the heritability of com-

plex traits. We also analyzed regulatory variants with conserved

and with coding variants (Tables S6–S8). Although we found that

all 3 categories are significantly enriched in heritability, regulato-

ry variants still explained the majority of heritability due to the

large number. However, we observed that coding variants with

cis-regulatory roles had strong heritability enrichment. This

new observation points to the existence of important mutations

that could affect both protein coding and the expression of

nearby genes. In humans, protein-coding variants affecting

skin diseases via their effects on gene expression have been

reported.33

The e-/sVariants are identified by association analysis, and we

used all possible knowledge to adjust confounders, although it is

impossible to remove all unwanted factors including cellular com-

positions in theRNA-seqdata.However,wemappede-/sVariants

in CattleGTEx data and used them to partition trait heritability in

another independent 100,000 cows. Such analysis externally vali-

dated results from e-/sQTLs mapping. That is, if e-/sVariants

explain a significant amount of trait heritability in an independent

dataset, most of them must have biological significance.

Although in the best scenario, e-/sVariants from multi-tissue

analyses explained 69.2% of heritability as an average across

37 traits (Figure S2A), e-/sVariants from single-tissue analyses
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Figure 4. Examples of cis and trans eVariant-affecting complex traits
(A) A candidate causal mutation (chr15:42,044,576, rs137255300) within IRAG1 for birth size (left panel, n = 103,350) and the concentration of lactosylceramide

(middle panel, n = 320) is a cis eVariant forCTR9 in blood (right panel, n = 945). Chr15:42,044,576 is also amissensemutation for IRAG1 at a site conserved across

100 vertebrates. The y axis of the left and themiddle panels are the posterior inclusion probability (PIP) of BayesRC and the y axis of the right panel is the�log10(p)

of eVariant mapping in blood.

(B) A candidate causal mutation (chr5:105,773,809, rs109676906) within Cyclin D2 (CCND2) for stature (black point in left and middle panels) is a trans eVariant

across multiple genes and tissues (right panel). Chr5:105,773,809 is also a lead variant in a meta-GWAS of cattle stature across 18 (excluding the current study)

global populations32 The y axis of the left panel is the PIP of BayesRC and the y axis of the middle panel is the �log10(p) of meta-analysis GWAS of 120,097

Australian and New Zealand cattle. The right panel is the heatmap of effects of the trans eVariant on the expression of genes averaged within each tissue, where

‘‘mean t’’ is the average t value across genes for each tissue and ‘‘mean |t|’’ is the geometric mean of the magnitude of t values across genes for each tissue.
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with a much smaller sample size compared with multi-tissue

analysis (295 vs. 4,725) only explained 25% heritability on

average across 37 traits (Figure S2B). This is comparable with

what was reported in recent human studies.13,14 Also, compared

with the previous cattle study,16 where cis eVariants contributed

�15% of heritability, the current study increased the sample

sizes for the mapping of e-/sVariants by up to 20-fold (n =

�205 vs. n =�4,725). The current study also increased the sam-

ple size of the mapping of complex traits by 2.5-fold, which in-

creases the power of the BayesRC analysis. Therefore, our

study, along with others, highlights the importance of sample

size in the mapping of e-/sVariants and the detection of their

overlap with trait QTLs.

Our analysis supporting the direct role of regulatory variants in

shaping complex traits has several differences from previous

studies, which may have led to our conclusions. One obvious

distinction is that cattle are a different species from humans,

although previous studies showed high similarities in genomic

features between these two species.32,34
The second distinction of our study is that when analyzing

variant-trait associations, we used Bayesian methods. Our

BayesRC4 analysis used raw data that fit all variants simulta-

neously, while most human studies use GWASs or summary sta-

tistics of GWASs (e.g., Yao et al.13), which associate one variant

at a time with the phenotype. BayesRC4 selects the variants to

include in the model and estimates their effects jointly. It also al-

lows the distribution of effects to vary between classes and fits

the different class annotations jointly in the model. When similar

Bayesian methods were used in human datasets,35,36 they

showed better performances in training genomic predictors

than using GWAS results. However, these Bayesian analyses

did not fit different distributions of variant effect to different clas-

ses of regulatory variants. In addition, raw data are more power-

ful than summary statistics, when they are available.

The third distinction is that we jointly modeled multiple cate-

gories of regulatory variants, including eVariants and sVariants

from multiple tissues. Although sVariants were first discovered

to be important to complex traits in humans,7 they have not
Cell Genomics 3, 100385, October 11, 2023 7
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always been analyzed together with eVariants in human studies

of the phenotypic effects of regulatory variants.13,14,37,38 The

current study observed that at the same p value threshold,

more sVariants (3 times more in single-tissue analysis) were

called than eVariants, and therefore, they alone or in combination

with eVariants explained more heritability than eVariants alone.

In fact, multi-tissue sVariants alone explained a similarly large

proportion (66%; Figure 1A) of heritability to the proportion of

heritability explained jointly by eVariants and sVariants (69.2%;

Figure 1A). This again validates the important role of sVariants

in shaping mammalian complex traits.

The fourth difference between this study and most others is

that we included trans eVariants and sVariants, whereas most

only included cis. In the human GTEx analysis,39 only a few trans

eVariants were identified, and this may have limited their use in

the downstream analysis. Due to the small effect size, trans

eVariant mapping requires a large sample size, but the accumu-

lated phenotypic effects of them may be more estimable. The

CattleGTEx had different individuals per tissue, which means

the total sample size approaches 5,000 in the multi-tissue anal-

ysis. Discovered from the CattleGTEx population and tested in

the Australian cattle population, on average across 37 traits, sin-

gle-tissue trans e-/sVariants explained 12% of heritability and

multi-tissue trans e-/sVariants explained 24% of heritability (Fig-

ure 1A). These findings demonstrate the important role of distal

regulatory variants in shaping complex traits.

To further validate the contribution of regulatory variants to

phenotypes, we applied the same BayesRC methods fitting the

multi-tissue e-/sVariant data as biological priors to a set of polar

lipid phenotypes. These traits, where large effect trait QTLs exist,

are genetically simpler than traits like milk production or body

size.16,40 We found that, on average across 56 polar lipid pheno-

types, 71.5% of heritability could be explained by both cis- and

trans-regulatory variants (Figure S6). Among analyzed lipid and

phenotypic traits, we highlighted an example where cis eVariant

chr15:42,044,576 (rs137255300) affected both the birth size and

the concentration of lactosylceramide in milk (Figure 4A). Its

causal candidacy for these two traits is supported by external

functional annotation, as it is also a missense mutation and a

conserved site across 100 vertebrates. It is worth noting that

chr15:42,044,576 is a missense mutation for IRAG1 but that it

affected the expression of the nearby transcription factor gene

CTR9, which appears to show bystander effects like FTO.30,41

This implies complex consequences of large-effect mutations

on both activities of protein coding and transcription and that

some coding variants can also impact gene expression. Also,

CTR9 has been implicated in embryonic organogenesis and

the maintenance of embryonic stem cell pluripotency.42 This ap-

pears to be consistent with its effects on birth size observed in

the current study. We also highlight a multi-tissue trans eVariant

chr5:105,773,809 (rs109676906) within CCND2 affecting cattle

stature. This mutation is not at a conserved site but had a large

and replicable effect on stature in �200,000 cattle across 19

populations across the globe.32 Its effect on gene expression

in different tissues tended to have different directions (Figure 4B),

which is consistent with the expectation of effect patterns of

trans eQTLs.5 The relatively strong effects of this trans eVariant

on brain and muscle tissues appear to support its role in regu-
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lating body size. In addition, some regulatory variants/regions

defined by us could directly act on metabolites and/or protein

expression, which will require further investigations.

Taken together, using cattle as a model, we demonstrate the

significant and direct role of cis- and trans-regulatory variants

in shaping mammalian complex traits. Our findings suggest

that many trait QTLs have an impact on the regulation of

transcription. Therefore, with proper analysis and sufficient po-

wer, regulatory variants not only provide etiology behind the

genome-to-phenome relationship but also are a powerful

resource to directly map causal variants for mammalian complex

traits.
Limitations of the study
In the current study, we are not able to include structural vari-

ants, and their contribution to cattle trait heritability will require

further investigation. The ongoing work of improved annotation

of the bovine genome and functional elements may also improve

our understanding of the trait heritability explained by regulatory

variants in cattle.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

RNA-seq data This study NCBI SRA BioProject accessions:

PRJNA392196, PRJNA616134,

PRJNA305942, PRJNA392196,

PRJNA917329

Linear mixed model-based Summary

statistics of mapped eQTLs and sQTLs

from each of the 16 tissue and the

multi-tissue analysis

This study https://melbourne.figshare.com/articles/

dataset/eQTL_and_sQTL_from_16_cattle_

tissues_linear_mixed_model_/19793047

(https://doi.org/10.26188/19793047)

Cattle GTEx RNA-seq data

and summary stats

Liu et al.8 http://cgtex.roslin.ed.ac.uk/

DNA sequence of 1000 Bull Genome Daetwyler et al.1,2 https://www.ebi.ac.uk/eva/

?eva-study=PRJEB42783

Software and algorithms

Customsed code related

to heritability analyses

This study https://github.com/rxiangr/e-sQTL_h2

(https://sandbox.zenodo.org/account/

settings/github/repository/rxiangr/

e-sQTL_h2 or https://doi.org/10.5072/

zenodo.1219141)

Code to implement Coloc by Cattle GTEx Liu et al.8 https://github.com/shuliliu/cattleGTEx/

tree/master/GWAS_eQTLs/Coloc (https://

zenodo.org/badge/latestdoi/484289386)

Coloc Giambartolomei et al.29 https://cran.r-project.org/web/packages/

coloc/vignettes/a01_intro.html

PLINK Chang et al.43 https://www.cog-genomics.org/plink/

GCTA Yang et al.3 https://yanglab.westlake.edu.cn/

software/gcta/#Overview

BayesRC MacLeod et al.4 https://bmcgenomics.biomedcentral.com/

articles/10.1186/s12864-016-2443-6

METAL Willer et al.44 https://genome.sph.umich.edu/wiki/

METAL_Documentation

LDSC Finucane et al.20 https://github.com/bulik/ldsc

FastQTL Ongen et al.45 https://github.com/francois-a/fastqtl
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Ruidong

Xiang (ruidong.xiang@unimelb.edu.au).

Materials availability
This study did not generate new unique reagents.

Data and code availability
The newly generated RNA-seq data (356 blood and 268 milk cells) are publically available via NCBI SRA (BioProject accessions:

PRJNA392196, PRJNA616134, PRJNA305942, PRJNA392196, PRJNA917329). Other RNA-seq data can be accessed via the

CattleGTEx consortium:http://cgtex.roslin.ed.ac.uk/. Linear mixed model-based summary statistics of mapped eQTLs and sQTLs

from each of the 16 tissue and the multi-tissue analysis is available at figshare: https://melbourne.figshare.com/articles/dataset/

eQTL_and_sQTL_from_16_cattle_tissues_linear_mixed_model_/19793047 with DOI: 10.26188/19793047. The DNA sequence

data as part of the 1000 Bull Genomes Consortium1,2 are available to consortium members and the membership is open. Sequence
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data of 1832 samples from the 1000 Bull Genome Project have been made publicly available at EBI: https://www.ebi.ac.uk/eva/?

eva-study=PRJEB42783. DataGene Limited (http://www.datagene.com.au/) manages the raw phenotype and genotype data of

Australian dairy animals and access to these data for research purposes may be granted upon request to DataGene. Other support-

ing data are shown in the Supplementary Materials of the manuscript. The linear mixed model analysis used GCTA.3 The Bayesian

analysis used BayesRC.4 Code for these analyses is uploaded to GitHub and ZENODO: https://github.com/rxiangr/e-sQTL_h2

(https://sandbox.zenodo.org/account/settings/github/repository/rxiangr/e-sQTL_h2 or https://doi.org/10.5072/zenodo.1219141).

The implementation of coloc used the CattleGTEx code at GitHub and ZENODO: https://github.com/shuliliu/cattleGTEx/tree/

master/GWAS_eQTLs/Coloc (https://zenodo.org/badge/latestdoi/484289386).

METHOD DETAILS

RNA-seq data
The RNA-seq and genotype data analyzed included those generated by Agriculture Victoria Research (AVR) in Victoria, Australia, and

those provided by the CattleGTEx consortium8 (Table S1). Blood samples were taken from 390 lactating cows from 2 breeds, and

milk samples from 281 lactating cows from 2 breeds as approved by DJPR Animal Ethics Committee (application numbers 2013-

14 and 2018–2019), Australia. As lactation is the most important physiological state for dairy traits all animals were lactating and

ranged from 1 to 369 days in milk (DIM). Breed and DIM were fitted as categorical and quantitative fixed effects respectively

(described below). The processing of samples, RNA extractions, and library preparation followed that previously described.46,47

RNA sequencing (RNA-seq) was performed on a HiSeq3000 (Illumina Inc) or NovaSeq6000 (Illumina Inc) genome analyzer in a

paired-end, 150-cycle run. Only RNA-seq data of 356 Holstein and 26 Jersey with >50million reads for milk cells or >25 million reads

for white blood cells and had concordant alignment rate48 > 80% were used. QualityTrim (https://bitbucket.org/arobinson/

qualitytrim) was used to trim and filter poor-quality bases and sequence reads. Adaptor sequences and bases with a quality score

of <20 were removed. Reads with a mean quality score less than 20, greater than 3 N, greater than three consecutive bases with a

quality score less than 15, or a final length of fewer than 50 bases were discarded. High-quality raw reads were aligned to the ARS-

UCD1.2 bovine genome49 with STAR48 using the 2-pass method. The gene counts were extracted by FeatureCount.50 Leafcutter51

was used to generate junction files which were then used to create the RNA splicing phenotype matrix, i.e., intron excision ratio.51

The RNA-seq gene counts of 15 tissues (Table S1) with sample size >100 were downloaded fromCattleGTEx website http://cgtex.

roslin.ed.ac.uk/. The blood counts generated by AVR and CattleGTEx were combined. We used PCA52 plot to check the blood tran-

scriptome data and we found no evidence of batch effects between AVR and Cattle GTEx blood samples (Figure S7). All gene counts

were normalised by voom53 and then underwent quantile normalisation for the following analyses. Junction files from CattleGTEx

tissues were also downloaded and data from each tissue was processed by leafcutter51 to generate RNA splicing phenotype.

Milk cell data used in this study was only from AVR.

Genotype data
The genotype data for Australian animals including those used for e/sQTLsmapping (blood andmilk cells) and association analysis of

phenotypes (described later) were 16,251,453 sequence variants imputed using Run7 of the 1000 Bull Genomes Project.54,55 The

details of the imputation were described previously.12 Briefly, the imputation of biallelic sequence variants was performed with Mini-

mac356,57 and those variants with imputation accuracyR2 > 0.4 andminor allele frequency (MAF) > 0.005 in both bulls and cowswere

kept. Bulls were genotyped with either a medium-density SNP array (50K: BovineSNP50 Beadchip, Illumina Inc) or a high-density

SNP array (HD: BovineHD BeadChip, Illumina Inc) and cows were genotyped with the BovineSNP50 Beadchip (Illumina Inc). The ge-

notype data for CattleGTEx animals were generated previously8 and included a total of more than 6 million sequence variants

imputed also using Run7 of the 1000 Bull Genomes Project. Because the CattleGTEx used RNA-seq-called variants for imputation,

a more stringent imputation threshold R-square (>0.8) was chosen by pilot paper.8 As same as described above, the variants with

MAF >0.005 were kept.

Phenotype data
Data was collected by farmers and processed by DataGene Australia (http://www.datagene.com.au/) for the official May 2020

release of National breeding values. No live animal experimentation was required. DataGene provided the bull and cow pheno-

types as de-regressed breeding values or trait deviations for cows, and daughter trait deviations for bulls (i.e., progeny test

data for bulls). DataGene corrected the phenotypes for herd, year, season and lactation following the procedures used for routine

genetic evaluations in Australian dairy cattle. Phenotype data included a total of 8,949 bulls and 103,350 cows, including Holstein

(6,886_/87,003\), Jersey (1562_/13,353\), cross-breed (36_/5,037\) and Australian Red (265_/3,379\) dairy breeds. In total, 37

traits were studied that related to milk production, mastitis, fertility, temperament and body conformation and the details of these

traits can be found in.12

Mapping and selection of eQTLs and sQTLs
A GWAS approach that fits random effects of a relationship matrix3 can control false correlations and that was used in the current

study to map eQTLs and sQTLs in each tissue one variant at a time:
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yU = Xb+Zgall +Wv+ e (Equation 1)

where yU is an n 3 1 vector of omics values such as gene expression or RNA splicing, X was the design matrix allocating phe-

notypes to fixed effects; b is a vector of fixed effects like breeds, different experiments, PCs of population structure, or PEER58

factors derived by the CattleGTEx consortium,8 Z is a matrix allocating records to individuals; gUall
is an n 3 1 vector of the total

genetic effects of the individuals with g � N(0, Galls
2
g) where Gall is the genomic relationship matrix (GRM) built by all the variants

(GCTA or VanRaden’s method or –make-grm-alg 0); W is the design matrix of variant genotypes (0, 1, 2) and v is the variant ad-

ditive effect; e is the error term. For AVR blood samples breed and days in milk (DIM) were fitted as fixed effects in the model. For

the milk samples, experiment, DIM and the first and second principal components, extracted from the expression count matrix,

were fitted as fixed effects. This aimed at adjusting the high expression of casein genes in milk cells based on previous experi-

ences.46 The nature of dataset dictates that we cannot fully remove and/or adjust all unwanted effects, including different cellular

compositions in the RNA-seq data.

cis e/sQTLs were defined as those variants within ±1Mb of the transcription start site of a gene or down/upstream of an intron with

p < 5e-6 in GWAS. This threshold resulted in, on average across tissues, the false discovery rate (FDR) was 0.0158(6e-5) for eQTLs

mapping and 0.0164(2e-5) for sQTLs mapping (see Equation 2 described in the following). Trans e/sQTLs were defined as those not

on the same chromosome of the gene expression or splicing feature with p < 5e-6 in GWAS. Only the top 3 trans e/sQTLs per chro-

mosome were selected. This is because previous studies of CattleGTEx6,8 showed on average, there were 3 causal mutations per

locus. In addition, we impose (FDR):

FDRU = p
�
1 � Propsig

� �
Propsigð1 � pÞ (Equation 2)

where p is the GWAS p value cutoff, e.g., 5e-6, Propsig is the proportion of variants significant given the GWAS p value cutoff to the

total number of variants analyzed. If FDRU R 0.05 for a feature, no trans e/sQTLs were selected. Also, those e/sQTLs under at least

two ChIP-seq peaks identified from multiple studies10,23,24 targeting multiple histone post-translational modifications were used in

the Bayesian analysis described below.We did not consider trans e/sQTLs on the same chromosome as the gene/intron. Small effec-

tive population size has caused long-range LD in cattle so that variants >1 Mb from a gene may be in LD with cis acting regulatory

variants. Also, in both human6 and Cattle GTEx,8 trans e/sQTLs were defined as those on different chromosomes than the gene/

intron. Imposing additional FDR on mapping trans e/sQTLs provided greater stringency in mapping trans e/sQTLs reducing the

chance of false positives to ensure higher probability of replication in future studies.

Our method used a linear mixedmodel to map e/sQTLs while others (e.g.,6,8) used permutation methods such as FastQTL.45 While

FastQTL is powerful, most CattleGTEx samples are from the public domain with cryptic relationships. Therefore, we prefer to fit a

relationship matrix (GRM) as a random effect to account for these relationships. FastQTL does not allow random effects. As a veri-

fication, we compared our results with FastQTL e/sQTLsmapping results generated by CattleGTEx. Using thep1
59 as themeasure of

agreement, we found that more than 92% (average p1 > 0.95 for eQTLs and average p1 > 0.92 for sQTLs) of e/sVariants identified by

our analysis were replicated in results generated using FastQTL CattleGTEx (Figure S8). Therefore, there was strong agreement be-

tween the two results. There are also other software to conduct sQTLs mapping based on transcripts instead of introns, such as

sQTLseekeR260 and THISTLE.61 However, since the transcripts in the cattle reference genome are not as well-annotated as in hu-

mans, we chose leafcutter, which does not rely on the genome annotation, for the current study.

Meta-analysis of e/sVariants
Because data from different tissues of CattleGTEx were from different individuals, combining results from each tissue can increase

the chance of detecting causal regulatory variants. The human GTEx5,6 showed that cis e/sVariants to a large extent showed consis-

tent effects across tissues. Although, the ranking of the effects of the same variant across tissues may be different. For trans e/sVar-

iants, it is not expected that their effects will be consistent across tissues. Considering these factors, we implemented the following 2

formulae in meta-analyses of e/sVariants:

c2
meanð1Þ = ðtÞ2 3 ngt (Equation 3)
c2
squreðngtÞ =

Xngt

1
t2 (Equation 4)

In Equation 3, it is assumed that the effects of a variant across genes and tissues were largely consistent; the chi-square is based on

themean of the t value (bv/se) of variants where bv was the estimated SNP effects and se is the standard error frommixed linear regres-

sion (Equation 1); t is themean of the t-value of a variant across all genes that it affected across all tissues the effects weremeasured;

ngt is the number of genes and tissues where the effect of this variant was estimated; c2
mean was tested against a chi-square distri-

bution with 1 degree of freedom. In Equation 4, it is not assumed that the effects of a variant across genes and tissues were largely

consistent; the chi-square is based on the sum of the square of t values of variants across all genes and tissues; c2
square was tested

against a chi-square distribution with ngt degree of freedom. For cis e/sQTLs, both c2
meanð1Þ and c2

squareðngtÞ were calculated and
e3 Cell Genomics 3, 100385, October 11, 2023
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variants with a p < 5e-8 for either c2
meanð1Þ or c2

squareðngtÞ were called significant. For trans e/sQTLs, variants with p < 5e-8 for

c2
squareðngtÞ and effects estimated in at least two tissues were called significant.

As a verification, we used the established methodMeta-Tissue.62 All single-tissue eVariant and sVariant results used for the above

analysis were re-analysed by Meta-Tissue using default settings. Using the p1
59 as the measure of agreement, we found that more

than 99% (p1 > 0.99) of e/sVariants identified by our meta-analysis were replicated in results generated by Meta-Tissue.

BayesRC using cis and trans e/sVariants
BayesRC4 extends the classic BayesR algorithm17,18 to incorporate independent classes of variants (‘c’) to model informative bio-

logical priors. Similar to the classic BayesR, BayesRCmodels the prior of variant effects which is a mixture distribution of four normal

distributions including a null distribution, zero-effect [Nð0;0:0s2gÞ], and three others: small-effect [Nð0;0:0001s2gÞ], medium-effect [Nð0;
0:001s2gÞ] and large-effect [Nð0;0:01s2gÞ], where s2g is the additive genetic variance for the trait. The BayesRC4 model used here for

association analysis of phenotypes was:

ypM = Wv+Xb+ e (Equation 5)

where yPM
was the vector of corrected phenotypes for a given trait, W was the design matrix of marker genotypes; centered and

standardised to have a unit variance; v was the vector of variant effects; X was the design matrix allocating phenotypes to fixed ef-

fects; bwas the vector of fixed effects of breeds. BayesRCwas conducted for 37 traits on cows and bulls separately (Table S2). Sep-

aration analysis of cows and bulls was required due to the different variances in the phenotypes of bulls (smaller variance) and cows

(larger variance). This difference cannot be simply adjusted for by fitting a sex effect. Also, separating the analysis provides validation

which has been routine in animal analyses (e.g.,63). As a result of 50,000 iterations with 25,000 burn-ins of Markov chain Monte Carlo

(MCMC), the effect v for each variant jointly estimated with other variants was obtained. This mixture of distributions is modeled inde-

pendently in each class of variants to allow for different mixture models per class (‘c’).

To better understand the contribution of regulatory variants to complex traits, we used different classifications to jointly or sepa-

rately model eVariants and/or sVariants.When eVariants and sVariants weremodeled jointly, 7 classes of variants were created (Data

S1) with the 7th class being the remaining variants neither eVariants nor sVariants.When eVariants and sVariants weremodeled sepa-

rately, 3 classes of variants were created for eVariants and sVariants separately and the 3rd class was the remaining variants neither

eVariants nor sVariants. Such classification, i.e., one 7-category classification and two 3-category classifications (eVariants and

sVariants separately) was created for e/sVariants mapping at both the single-tissue andmulti-tissue levels.When creating these clas-

ses, variants detected as both cis e/sVariants and trans e/sVariants were set to cis e/sVariants. For better computational efficiency,

we LD pruned (r2 < 0.9) those 16million variants using plink43 and used the resultant 1,882,504 variants for BayesRC.We also consid-

ered e/sVariants underR 2 ChIP-seq peaks from multiple studies10,23,24 targeting multiple histone post-translational modifications.

When ChIP-seq peaks were considered, 13 classes were created (Figure S4) and these classes were analyzed in BayesRC as

described above.

Partitioning heritability across functional classes
MCMC in BayesRC estimated additive genetic variance (Va) based on sequence variants and the total error variance (Ve) and this can

be used to calculate the heritability of each trait �
h2 = Va

� ðVa + VeÞ
�

(Equation 6)

Results fromBayesRC from cows and bulls were analyzed separately and the average of the two estimates was presented. MCMC

in BayesRC also estimated the number of variants in each class (e.g., cis eVariants, trans eVariants) that fell into the 4 distributions of

effects: zero-effect [Nð0;0:0s2gÞ], small-effect [Nð0;0:0001s2gÞ], medium-effect [Nð0;0:001s2gÞ] and large-effect [Nð0;0:01s2gÞ], where s2g
was the additive genetic variance for the trait. This can be used to partition Va and thus, h2, into each class:

Vaclass = Va 3NSclassi
30:01%+Va 3Nmclassi

3 0:1%+Va 3Nlclassi
3 1% (Equation 7)

where Nsclassi
was the number of small-effect variants in class i (e.g., cis eQTLs), Nmclassi

was the number of medium-effect variants in

cis e/sQTLs andNlclassi
was the number of large-effect variants in cis e/sQTLs. Then for each class, we used Equation 6 to calculate h2

for each class (h2classi ), and then the proportion of h2 explained by each class as:

h2
classi

% = h2
classi

,XN class

1
h2
classi

(Equation 8)

where N:class was the total number of classes fitted in the model.

We derive an expected h2classi%, or Eðh2classi%Þ using the h2class%and the proportion of variants for the remaining class (variants were

neither eQTLs nor sQTLs):

Eðh2
classi

%
�

= h2
classremaining

%
.
variantsclassremaining% 3 variantsclassi% (Equation 9)
Cell Genomics 3, 100385, October 11, 2023 e4
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where h2classremaining
% was the proportion of heritability explained by the class of remaining variants, Variantsclassremaining

% was the pro-

portion of the class of remaining variants to the total number of variants analyzed and Variantsclassi%was the proportion of the class i

of variants (e.g., cis eQTLs) to the total number of variants analyzed.WhenEðh2classi%Þwas derived, h2classi% �Eðh2classi%Þ can be used
to estimate the amount of heritability explained by each class as a deviation from that expected by the size of class i. The significance

of enrichment was determined by a t-test with the null hypothesis that h2classi% � Eðh2classi%Þ = 0, i.e., across all analyzed traits, the

mean difference between the observed and expected proportion of heritability explained is 0. Alternatively, Eðh2classi%Þ can be derived
using all variants, i.e.,

nSNPsclassi
nSNPsall

and the enrichment of heritability would be h2classi% � nSNPsclassi
nSNPsall

(Equation 9a) which was used previ-

ously.20 We applied this formula to our data and found that the heritability enrichment estimated by Equation 9a had a correlation

(rho) of 0.98 with the heritability enrichment estimated by Equation 9 (Figure S9A). There were hardly any differences in the heritability

enrichment between the twomethods per each regulatory class (Figure S9B). However, when using Equation 9a to derive the enrich-

ment, the remaining class had negative values (Figure S9B). To increase the interpretability of the enrichment results, we used Equa-

tion 9 to estimate the heritability enrichment in the manuscript.

Applying the same mechanism as above, we estimated the expected proportion of trait-associated variants (QTLs) for each class:

E
�
QTL%classi

�
= QTL%classremaining

.
Variantsclassremaining

%3Variantsclassi %; (Equation 10)

where QTL%classremaining
was the proportion of trait QTLs in the class of remaining variants. Then QTL%classi � EðQTL%classi Þ can be

used to estimate the proportion of trait QTLs included in each class as a deviation from that expected by the size of class i.

Partitioning heritability using REML
To verify the results obtained from BayesRC, we conducted additional analyses using gREML implemented in GCTA.3 We imple-

mented a 3-GRMmodel where the 1st GRMwas built using multi-tissue cis e/sVariants (variants that were either significant cis eVar-

iant or cis sVariant in the 16-tissue meta-analysis), the 2nd GRM was built using multi-tissue trans e/sVariants and the 3rd GRM was

built using the remaining variants (no regulatory evidence). We then fitted the 3 GRMs jointly in the linear mixed model to partition

heritability across 37 traits of 100k cows (Figure S3).

LD score regression (LDSC)
The python package was downloaded from https://github.com/bulik/ldsc and installed. The reference panel data used Holstein and

Jersey cattle from the 1000 Bull Genome2 (N = 935) which represent the majority of the cattle breeds in the current study. Those 1.8

million variants used in the current study were used with LDSC. ldsc.py –l2 function was used to estimate LD score using the recom-

mended setting.20 munge_sumstats.pywas used to organise GWAS summary statistics for cattlemilk traits12 known for their high her-

itability.16,21,22 These LD scores andGWASsummary statswere used to estimate the heritability ofmilk traits using the function ldsc.py

–h2 with default settings. As a comparison, the same variants and phenotypes were analyzed by BayesR64 and GCTA-GREML3 to

estimate heritability (Table S4). GCTA-GREML used a genomic relationship matrix made of those 1.8 million variants and this relation-

shipmatrix was also used for a birariate analysis (–reml-bivar) for genetic correlation between pairs of 37 traits (Data S2 and Figure S1).

Comparing regulatory variants with conserved variants in BayesRC
We constructed a new class file fitting regulatory variants (e/sVariants) and conserved variants (PhastCon score >0.9) together. The

variants conserved 100 vertebrates were obtained from a previous study.16 The regulatory variants were based on the variants iden-

tified as either eQTLs or sQTLs across all tissues (significant in meta-analysis). In classifying 1.8million variants analyzed, there were 6

groups: 1. cis-regulatory variants (cis e/sQTLs, 1,092,791 variants); 2) cis-regulatory variants that are also conserved across 100 ver-

tebrates (28,735 variants); 3) trans-regulatory variants (trans e/sQTLs, 40,783 variants); 4) trans-regulatory and conserved variants (849

variants); 5) conserved variants (no overlaps with regulatory variants, 16894 variants), and the remaining variants (702,452 variants).

Then, analyses of BayesRC (Equation 5) and partitioning genetic variance (Equations 7, 8, 9, and 10) were conducted (Table S5).

Comparing regulatory variants with coding variants in BayesRC
We used Ensemble Variant Effect Predictor (VEP)25 to annotate analyzed variants and identified 8,125 variants related to coding

(Table S6). We then used these 8,125 variants together with identified regulatory variants to classify 1.8 million variants analyzed:

1. cis-regulatory variants (cis e/sQTLs, 1,115,975 variants); 2) cis-regulatory variants that were annotated as coding variants

(5,551 variants); 3) trans-regulatory variants (trans e/sQTLs, 41,609 variants); 4) trans-regulatory that were annotated as coding var-

iants (23 variants); 5) coding variants that were not regulatory (2,551 variants), and the remaining variants (716,795 variants). Then,

analyses of BayesRC (Equation 5) and partitioning genetic variance (Equations 7, 8, 9, and 10) were conducted (Table S7).

MAF-LD matched enrichment test
Using the Australian cattle genotype data the 16million sequence variants were first divided into 20 bins using LD score (50kbwindow

size) calculated using GCTA.3 Within each of these LD bins, we then divided variants into 20 bins of MAF. This divided the 16 million
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variants into 400 LD-MAF bins. Then, for a given set of regulatory variants, e.g., cis eVariants from blood, we laid them over 400 LD-

MAF bins to identify LD-MAF bins associated with this set of regulatory variants and the number of regulatory variants falling into each

bin (Nregbini
). Within each of these LD-MAF bins associated with the regulatory variants, we sampled a random set of Nregbini

variants.

This random sampling was repeated 1000 times. For the set of regulatory variants, we used the significance from the GWAS and

conditional GWAS (detailed in the next paragraph), i.e., -log(GWAS p), to indicate the effect size which was averaged across all reg-

ulatory variants. Then, for each of 1000 sets of LD-MAFmatched random variants, the average -log(GWAS p) was also calculated.We

then used a t-test to quantify the difference of � logðGWAS pÞ between regulatory variants and LD-MAF matched random variants,

where we used the t value to indicate the enrichment of GWAS hits in regulatory variants compared to that expected by random var-

iants with matched LD and MAF.

We also implemented the LD-MAF enrichment test using coloc29 and aWilcoxon signed-rank test (Figure S5). For coloc we applied

the pipeline implemented by the CattleGTEx.8 Briefly, for a trait, variants with GWAS p value <10�5 were used and for regulatory var-

iants, we used multi-tissue significant e/sVariants. coloc.abf function was used and variants with the PP.H4 (posterior probability of

colocalization) > 0.8 were determined as colocalised. Then the proportion of colocalised variants was the number of them divided by

the total number of variants analyzed. This proportion of colocalised variants was estimated for real e/sVariants and was also carried

out for 1000 sets of random variants with matched MAF and LD to targeted e/sVariants. The one proportion for colocalised real

e/sVariants and the 1000 proportions of colocalised random variants were compared using wilcox.test() in R. The colocalization be-

tween eQTLs and sQTLs and their fine-mapping were analyzed in Liu et al.8

GWAS and conditional GWAS were used for the enrichment test
The original GWAS of 37 traits in cows had been conducted previously.12 Briefly, the following linear mixed model analysing each

variant one at a time was used:

y = mean+breed+bx+a+error (Equation 11)

where y = vector of phenotypes for bulls or cows, breed = four breeds for cows (Holstein, Jersey, Australian Red and MIX); bx =

regression coefficient b on variant genotypes x; a = random polygenic effects � N(0, Gsg
2) where G = genomic relatedness matrix

based on all variants and sg
2 = random polygenic variance; error = the vector of random residual effects �N(0, Ise

2), where I = the

identity matrix and se
2 the residual variance. The construction of GRM followed the default setting (–make-grm) in GCTA.3

The above-described MAF-LDmatched enrichment test used both the original and conditional GWAS. The purpose of using condi-

tionalGWAStoconduct theenrichment testwas tomakesure that theenrichmentwasnotdrivenbya few large-effect traitQTLsoneach

chromosome. We first selected the top 2 variants based on the p value of the original GWAS on each chromosomewhich were at least

1Mb apart. Thenwe fit these�23 30 top variants in the COJOanalysis implemented inGCTA65 to obtainGWAS results conditioned on

these top variants for 37 traits. Then the MAF-LDmatched enrichment test was applied to the results of conditional GWAS of 37 traits.

Polar lipid mQTLs
We previously developed metabolomics techniques for bovine milk.40,66,67 Therefore, we used these relatively novel traits in cattle to

study and validate the phenotypic effects of regulatory variants. The discovery of milk fat polar lipid QTLs (mQTLs) was based on the

mass spectrometry quantified concentration of 59 polar lipids inmilk from338Holstein cows (Table S8). The bovinemilk was collected

as described previously46 and polar lipids were extracted from bovine milk following the previously developed protocols.67 The chro-

matographic separation of polar lipids used a Luna HILIC column (2503 4.6 mm, 5 mm, Phenomenex) maintained at 30�C. The lipids

were detected by the LTQ-Orbitrap mass spectrometer (Thermo Scientific) operated in electrospray ionization positive (for most polar

lipid classes) or negative (for analysis of PI) Fourier transformmode. The identification of lipid species present inmilk was performed as

previously reported.67 Quantification of selected polar lipid species was based on the peak area of parent ions after normalization by

the internal standard. After a quality check, data from 56 lipidomic traits from 320 cows were used for further analysis.

We applied the same BayesRC model in Equation 5 to analyze each of these polar lipids, with additional fixed effects of year and

batch. The biological prior for the analysis of polar lipids used the 7 classes of regulatory variants detected from multiple tissues as

this set explained the largest proportion of the heritability for conventional traits. Thenwe applied Equations 6, 7, and 8 to partition the

heritability of polar lipid traits. We raised the MAF cutoff to >0.025 in the analysis of polar lipid traits as the sample size is relatively

small. The sample size for lipidomic traits was relatively small and therefore, we used GCTA-GREML3 to re-estimate heritability with

standard errors. In 53 converged GREML analyses, 42 heritability estimates (79%) had significance p < 0.05 (Data S6), suggesting

reasonable power in this dataset.

Conserved variants
Conserved genome sites in cattle were based on the lifted over (https://genome.ucsc.edu/cgi-bin/hgLiftOver) of human sites with

PhastCon score68 >0.8 computed across 30 mammals and 100 vertebrate species. The human PhastCon data was downloaded

from UCSC genome database (http://hgdownload.cse.ucsc.edu/goldenpath/hg38/phastCons30way/and http://hgdownload.cse.

ucsc.edu/goldenpath/hg38/phastCons100way/). The downloaded Wiggle files were converted to bed files which were used by

the LiftOver tool as input. Another input for LiftOver was the chain file between hg38 and cattle ARS-UCD1.2.
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Meta-analysis of GWAS
For variants that appeared in multiple studies, we used the formula based on the inversed variance from METAL44 to conduct meta-

analysis. When combined betameta and semeta were obtained we calculated the tmeta = betameta/semeta and the phenotypic variance

explained by a variant was determined by the formula:

Vp = c2�
N = t2

�
N = ðb=seÞ2

.
N (Equation 12)

where where Vp was the proportion of phenotypic variance explained by a variant, c2 was the chi-square value of the effect of the

variant which is equal to the square of t value (b/se), t2, of the effect of the variant from GWAS; N was the sample size of the

GWAS; b was the GWAS beta of the variant and se is the standard error of b.

QUANTIFICATION AND STATISTICAL ANALYSIS

Details regarding statistical tests, significance thresholds, sample sizes and p value can be found in the tables and figure legends, as

well as in the relevant sections above.
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