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ABSTRACT
Gastric inhibitory polypeptide/glucose-dependent insulinotropic polypeptide (GIP) is one
of the incretins, which are gastrointestinal hormones released in response to nutrient
ingestion and potentiate glucose-stimulated insulin secretion. Single fat ingestion stimu-
lates GIP secretion from enteroendocrine K cells; chronic high-fat diet (HFD) loading
enhances GIP secretion and induces obesity in mice in a GIP-dependent manner. How-
ever, the mechanisms of GIP secretion from K cells in response to fat ingestion and GIP
hypersecretion in HFD-induced obesity are not well understood. We generated GIP-green
fluorescent protein knock-in (GIPgfp/+) mice, in which K cells are labeled by enhanced GIP-
green fluorescent protein. Microarray analysis of isolated K cells from GIPgfp/+ mice showed
that both fatty acid-binding protein 5 and G protein-coupled receptor 120 are highly
expressed in K cells. Single oral administration of fat resulted in significant reduction of
GIP secretion in both fatty acid-binding protein 5- and G protein-coupled receptor 120-
deficient mice, showing that fatty acid-binding protein 5 and G protein-coupled recep-
tor 120 are involved in acute fat-induced GIP secretion. Furthermore, the transcriptional
factor, regulatory factor X6 (Rfx6), is highly expressed in K cells. In vitro experiments using
the mouse enteroendocrine cell line, STC-1, showed that GIP messenger ribonucleic acid
levels are upregulated by Rfx6. Expression levels of Rfx6 messenger ribonucleic acid as well
as that of GIP messenger ribonucleic acid were augmented in the K cells of HFD-induced
obese mice, in which GIP content in the small intestine is increased compared with that
in lean mice fed a control diet. These results suggest that Rfx6 is involved in hypersecre-
tion of GIP in HFD-induced obese conditions by increasing GIP gene expression.

GIP AND OBESITY
Obesity is recognized as a worldwide problem, especially for
developing insulin resistance and increasing the risk of type 2
diabetes1. The average body mass index (BMI) of Japanese dia-
betic patients has been increasing in recent years, in parallel
with an increase in dietary fat intake. Preventing diet-induced
obesity has become an urgent challenge for society as a whole.
Gastric inhibitory polypeptide/glucose-dependent insulinotro-

pic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) are
incretins, peptide hormones released from the gastrointestinal

tract into circulation in response to nutrient ingestion that
potentiate glucose-stimulated insulin secretion2–4. GIP is
secreted from K cells located in the upper small intestine; GLP-
1 is secreted from L cells located in the lower small intestine
and colon. Dietary lipid is an especially strong stimulant of
GIP secretion. Total plasma GIP levels in wild-type (WT) mice
after oral lard administration are much higher than that after
oral glucose administration5. The peak value of plasma GIP in
response to a high-fat meal (450 kcal containing 33.3% fat) is
threefold higher than that by 75 g oral glucose tolerance test in
human subjects, suggesting that the fat content in a mixed meal
strongly stimulates GIP secretion6.
GIP is considered to increase the volume of adipose tissue

by two major pathways: directly by binding to the GIP receptor
located on the adipocytes7,8 and indirectly, by accelerating fat

Received 5 November 2015; revised 9 December 2015; accepted 21 December
2015
This article is based on the presentations given by the authors at a symposium,
Incretin 2015, July 29–31, 2015, Vancouver, BC, Canada.

20 J Diabetes Investig Vol. 7 No. S1 April 2016 ª 2016 The Authors. Journal of Diabetes Investigation published by Asian Association of the Study of Diabetes (AASD) and John Wiley & Sons Australia, Ltd
This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution
in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

MINI REVIEW

http://creativecommons.org/licenses/by-nc-nd/4.0/


deposition and expansion of fat depots by increasing insulin
secretion from pancreatic b-cells9. Studies of GIP receptor
knockout mice show GIP to be an obesity-promoting factor in
high-fat diet (HFD) conditions10, and show deletion of GIP
receptor signaling to cause resistance to diet-induced obesity11.
Additionally, we reported that partial reduction of GIP allevi-
ates obesity and lessens the degree of insulin resistance without
exacerbating glucose tolerance under HFD conditions12.
Increased plasma GIP levels in obesity have been shown in sev-
eral studies13–16. We previously reported that the plasma GIP
level after glucose loading is positively correlated with body
mass index in healthy subjects17. Furthermore, a report showing
that healthy human subjects given high fat food for 2 weeks
show increased plasma GIP levels without developing obesity,
suggesting that GIP hypersecretion precedes obesity18.
These findings suggest that there are both acute mechanisms

of GIP secretion in response to a single administration of fat
and chronic mechanisms for hyperproduction of GIP under
HFD feeding. However, the precise mechanisms of GIP secre-
tion and GIP production have remained unclear, mainly
because of inability to isolate GIP-producing K cells from
intestinal epithelium. Recently, we generated GIP-GFP knock-in
mice, in which K cells are labeled by enhanced green fluores-
cent protein, and have succeeded in isolating K cells using a

flow cytometry technique. On the basis of microarray analysis
of K cells isolated from GIP-GFP knock-in heterozygous
(GIPgfp/+) mice, we showed that some factors highly expressed
in K cells are involved in fat-induced GIP secretion and GIP
hypersecretion in diet-induced obesity.

FATTY ACID-BINDING PROTEIN 5
Fatty acid-binding protein 5 (FABP5) is a 15 kDa cytosolic
protein with a high affinity to long chain fatty acids, which has
been known as an intracellular chaperon transporting long
chain fatty acids into various organelles. Using microarray anal-
ysis, we showed that FABP5 is expressed in murine K cells,
and investigated the physiological function of FABP5 in
K cells5. Immunostaining of intestinal mucosa showed that
GIP-positive cells were totally merged with FABP5-positive
cells, and that 90% of FABP5-positive cells were merged with
GIP-positive cells. To evaluate the acute GIP secretory response
in FABP5 knockout (FABP5-/-) mice, lard (10 mL/kg) and glu-
cose (2 mg/kg) were injected orally, and plasma glucose and
serum levels of GIP, GLP-1 and insulin were measured. Plasma
glucose, insulin and GLP-1 levels after both glucose and lard
administration were similar in FABP5+/+ mice and FABP5-/-

mice (Figure 1a–c,e–g). Plasma GIP levels after lard injection
were significantly lower in FABP5-/- mice compared with those
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Figure 1 | Oral glucose and lard oil tolerance tests to fatty acid-binding protein 5 (FABP5) knockout mice. Concentrations of (a,e) blood glucose, (b,
f) serum insulin, (c,g) plasma total glucagon-like peptide-1 (GLP-1) and (d,h) plasma total gastric inhibitory polypeptide/glucose-dependent
insulinotropic polypeptide (GIP) after oral administration of (a–d) 2 g/kg glucose and (e–g) 10 mL/kg lard. **P < 0.01 between wild-type mice (WT;
n = 4; green circle) and FABP5 knockout mice (FABP5 KO; n = 5; orange circle) mice.
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in FABP5+/+ mice (Figure 1h), but there were no significant
differences in the results of oral glucose tolerance test (Fig-
ure 1d). Given that FABPs are known to function as an intra-
cellular lipid chaperone, we speculated that there would be a
mechanism by which fatty-acid permeates the cell membrane
of K cells for FABP5-associated GIP secretion in response to
fat ingestion. To examine the significance of micelle-aided
incorporation of long chain fatty acids into K cells in the pres-
ence of bile, as is the case with absorptive epithelial cells in the
small intestine, we evaluated GIP secretion after glucose or lard
administration in mice subjected to common bile duct ligation
(BDL), in comparison with mice subjected to sham operation.
Although GIP secretion after glucose injection remained unaf-
fected by BDL, the secretion after lard injection was seriously
diminished in BDL mice. Dissociation of the effect of BDL on
GIP secretion after glucose and lard administration suggests
that bile is the crucial factor in GIP secretion in response to
fat, but not to glucose. As an ex vivo experiment, the upper half
portion of the small intestine was harvested from FABP5+/+

and FABP5-/- mice, shredded into small pieces, and incubated
in conditioned media as follows: 5.5 mmol/L glucose Dul-
becco’s modified Eagle medium as a control, 100 lmol/L oleic
acid, 4 v/v% of bile and 100 lmol/L oleic acid plus 4 v/v% of
bile. We found no GIP release after 15 min incubation with
bile, and a very small increase in GIP concentration in the
media after the incubation with oleic acid. By contrast, there
were marked increases of GIP secretion from the samples incu-
bated with oleic acid plus bile, and the FABP5-/- samples
showed a 3.4-fold decrease compared with that in FABP5+/+

samples. To assess potential effects of FABP5-deficiency on
bodyweight and composition, mice were fed HFD for 10 weeks,
and whole-body computed tomography scans of HFD-fed
FABP5+/+, FABP5-/-, GIP-GFP knock-in homozygous (GIPgfp/
gfp)-FABP5+/+ and GIPgfp/gfp-FABP5-/- mice were compared.
Under HFD feeding conditions, FABP5-/- mice showed signifi-
cantly decreased bodyweight gain compared with FABP5+/+

mice, but there was no significant difference in bodyweight
between GIPgfp/gfp-FABP5+/+ and GIPgfp/gfp-FABP5-/- mice, in
which GIP expression is genetically deleted. Whole-body com-
puted tomography scan showed that body fat mass was signifi-
cantly reduced in FABP5-/- mice compared with that in
FABP5+/+ mice, and that body fat mass in GIPgfp/gfp-FABP5+/+

and GIPgfp/gfp-FABP5-/- mice was comparable. These results
show that FABP5 is involved in fatty acid-induced acute GIP
secretion, and that it contributes to the development of HFD-
induced obesity in a GIP-dependent manner.

G PROTEIN-COUPLED RECEPTOR 120
Receptors for long-chain fatty acids (G protein-coupled receptor
[GPR]40 and GPR120)19,20, short-chain fatty acids (GPR41 and
GPR43)21 and oleoylethanolamide (GPR119)22 are known to be
involved in GLP-1 secretion. However, the role of fatty acid-sen-
sing G protein-coupled receptors (GPCRs), except for GPR40
and GPR119, in GIP secretion from K cells remains unclear19,22.

To evaluate the expression levels of fatty acid-sensing GPCRs
in K cells, we carried out reverse transcription polymerase
chain reactions using isolated K cells from GIP-GFP knock-in
mice23. Although GPR119 showed a tendency toward abun-
dance in GFP-positive K cells of the lower small intestine, the
difference between GFP-positive and GFP-negative cells was
not significant. GPR40 and GPR43 were highly expressed in
K cells of the lower small intestine. In contrast, GPR120 was
highly expressed in K cells of the upper small intestine and not
of the lower small intestine. We have found that not only
K cell number, but also GIP content and GIP messenger
ribonucleic acid (mRNA) expression in K cells are greater in
the upper small intestine compared with those in the lower
small intestine23, suggesting that K cells in the upper small
intestine contribute more to nutrient-induced GIP secretion
than K cells of the lower small intestine. In such a context, it
might be assumed that GPR120, which is highly expressed in
K cells of the upper small intestine, is crucial for fatty acid-
induced GIP secretion.
To ascertain the role of GPR120 in GIP secretion, we mea-

sured plasma GIP levels after oral lard oil administration in
WT mice and GPR120 knockout (GPR120-/-) mice23. Glucose-
induced GIP secretion was similar between WT and GPR120-/-

mice (Figure 2a,b). In contrast, GIP secretion induced by lard
oil in GPR120-/- mice was significantly reduced to 25% of that
in WT mice (Figure 2c,d). Furthermore, we examined the effect
of grifolic acid methyl ether, which competitively inhibits long-
chain fatty acid-induced activation of GPR120 signaling24, on
GIP secretion. Treatment of mice with grifolic acid methyl
ether resulted in decreased lard oil-induced GIP secretion, but
not in glucose-induced GIP secretion. These results suggest that
fatty acids derived from lard oil stimulate GIP secretion
through GPR120 signaling.

REGULATORY FACTOR X6
Several studies have reported that GIP secretion is increased in
obesity13–16. However, the mechanisms involved in GIP hyper-
secretion from K cells in obesity remain unclear, mainly
because of difficulties in separating these cells from other
intestinal epithelial cells in vivo. It has been shown that pancre-
atic and duodenal homeobox 1 (Pdx1), which is known to be
an important transcription factor in pancreatic development
and pancreatic b-cell maturation25, has a critical role in GIP
production in K cells26,27. However, the contribution of Pdx1
and other transcription factors in obesity-associated GIP hyper-
secretion has not been confirmed. Based on microarray analysis
data, we showed that mRNA of regulatory factor X6 (Rfx6) is
highly expressed in K cells28. Immunohistochemistry of the
small intestine from GIP-GFP knock-in mice confirmed that
Rfx6-expressing cells correspond to GFP-expressing cells, show-
ing that Rfx6 is highly expressed in K cells in the murine small
intestine.
The Rfx gene family of transcription factors was first detected

in mammals as regulatory factors that bind to the promoter
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regions of major histocompatibility complex class II genes29;
seven types of Rfx (Rfx1–7) have so far been identified. All Rfx
transcription factors have a winged helix deoxyribonucleic acid
binding domain. Rfx1–4 and -6 have a dimerization
domain30,31, and Rfx6 forms homodimers or heterodimers with
Rfx2 or Rfx332,33. Rfx6 was initially isolated from human gen-
ome sequences in 200830. Serial Analysis of Gene Expression
(SAGE) frequency data showed high expression of Rfx6 mRNA
in the pancreas, liver and heart, and reverse transcription poly-
merase chain reaction analysis showed high expression of Rfx6
mRNA in the human pancreas and intestine34. Rfx6-deficient
mice were previously generated, and none of the endocrine
cells, excluding pancreatic polypeptide-expressing cells, were
detected in the islets of these mice34. These results suggest that
Rfx6 plays a critical role in generating the endocrine cells in
islets, but it has been unknown whether Rfx6 is associated with
generation of enteroendocrine cells, such as K cells.
To examine the involvement of Rfx6 in GIP gene expression,

we evaluated Gip mRNA expression and content under the
inhibition of Rfx6 expression in vitro. By treatment with Rfx6
small interfering RNA, mRNA expression and cellular content
of GIP were significantly decreased in mouse enteroendocrine
cell line STC-1 cells. We assessed the interaction of the Rfx6
and the GIP gene by one-hybrid assay. Rfx6 effectively bound
to a fragment of the GIP promoter (5216–6512 bp upstream of
the GIP promoter). In the luciferase promoter assay, GIP pro-

moter activity of the fragments containing 5216–6512 bp
upstream of the GIP promoter was high. These results suggest
that Rfx6 binds to the region 5216–6512 bp upstream of the
GIP promoter, which regulates GIP promoter activity. Further-
more, we confirmed that GIP mRNA expression levels were
significantly increased in Rfx6-overexpressing STC-1 cells,
showing that Rfx6 expressed by K cells plays an important role
in GIP gene expression.
To investigate the mechanisms of GIP hypersecretion in

HFD-induced obesity in vivo, GIP-GFP heterozygous mice
were fed a control-fat diet (CFD) or HFD, and K cells were
isolated for further evaluation. From 1 week after starting
these diets onward, the bodyweight of the HFD group
remained significantly higher compared with that of the
CFD group. After CFD or HFD feeding for 8 weeks, oral
glucose tolerance tests were carried out. GIP secretion (area
under the curve-GIP) of the HFD group was increased by
approximately 1.5-fold compared with that of the CFD
group. These results show that HFD feeding increases GIP
secretion and induces obesity in GIP-GFP heterozygous mice,
even though they have only one normal GIP gene, indicating
that these mice represent a useful model for analysis of the
mechanisms involved in the augmentation of GIP secretion
in HFD-induced obesity.
To determine whether GIP hypersecretion is caused by an

increased number of K cells in HFD-fed GIP-GFP heterozy-
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gous mice, the number of K cells in the upper small intestine
of CFD-fed mice and HFD-fed mice were estimated and com-
pared. We could not detect an increase of K cell number in the
duodenum or upper small intestine of HFD-fed GIP-GFP
heterozygous mice by immunohistochemistry and flow cytome-
try analysis. In addition, in K cells purified by using flow
cytometry, the expression levels of GIP mRNA were almost 10-
fold higher in the HFD group than those in the CFD group.
These results show that GIP hypersecretion under HFD-
induced obesity is not due to an increase in K cell number, but
to an increase of GIP mRNA expression and content in K cells.
Furthermore, the expression levels of Rfx6 and Pdx1 mRNA
were significantly increased in K cells of HFD-induced obese
mice compared with those of CFD-fed lean mice (Figure 3). In
previous studies, it has been reported that Pdx1 binds 150 bp
upstream of the GIP promoter and activates the GIP promoter
in STC-1 cells, and that Pdx1 expression is essential for pro-
ducing GIP in K cells26,27. Thus, an increase in Rfx6 and Pdx1
expressions in K cells of HFD-induced obese mice is consistent
with the in vitro data showing that Rfx6 and Pdx1 are involved
in GIP gene expression.
In summary, we found that transcription factor Rfx6 is

highly expressed in K cells, and is involved in the regulation of
GIP expression. We also showed that expression of Rfx6 and

Pdx1 is upregulated in the K cells of HFD-induced obese mice,
which suggests that induction of Rfx6 as well as Pdx1 plays a
critical role in GIP hypersecretion in HFD-induced obesity.
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CONCLUSION
Gene analysis of K cells isolated from GIP-GFP mice enabled
us to identify candidate genes that contribute to acute and
chronic mechanisms stimulating GIP secretion in response to
fat ingestion: FABP5 and GPR120 play crucial roles in acute
fat-induced GIP secretion, and Rfx6 is involved in hypersecre-
tion of GIP in HFD-induced obese conditions by increasing
GIP gene expression (Figure 4). Although further, detailed anal-
yses are required to clarify the intracellular signaling of GIP
secretion and synthesis in response to nutrient ingestion, regu-
lation of GIP secretion could provide a novel therapeutic
approach to prevent obesity, insulin resistance and subsequent
type 2 diabetes.
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