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Abstract: The present outbreak of COVID-19 is a worldwide calamity for healthcare infrastructures.
On a daily basis, a fresh batch of perplexing datasets on the numbers of positive and negative
cases, individuals admitted to hospitals, mortality, hospital beds occupied, ventilation shortages,
and so on is published. Infections have risen sharply in recent weeks, corresponding with the
discovery of a new variant from South Africa (B.1.1.529 also known as Omicron). The early detection
of dangerous situations and forecasting techniques is important to prevent the spread of disease
and restart economic activities quickly and safely. In this paper, we used weekly mobility data to
analyze the current situation in countries worldwide. A methodology for the statistical analysis of
the current situation as well as for forecasting future outbreaks is presented in this paper in terms of
deaths caused by COVID-19. Our method is evaluated with a multi-layer perceptron neural network
(MLPNN), which is a deep learning model, to develop a predictive framework. Furthermore, the Case
Fatality Ratio (CFR), Cronbach’s alpha, and other metrics were computed to analyze the performance
of the forecasting. The MLPNN is shown to have the best outcomes in forecasting the statistics for
infected patients and deaths in selected regions. This research also provides an in-depth analysis of
the emerging COVID-19 variants, challenges, and issues that must be addressed in order to prevent
future outbreaks.

Keywords: COVID-19 variants; artificial neural network; B.1.1.529; Omicron; forecasting

1. Introduction

The present COVID-19 outbreak is a serious global crisis for healthcare infrastructures.
The pandemic has triggered a crisis due to which, schools, administrative institutions, and
financial institutions such as banks have been shut down in many major countries. Notably,
such disruptions not only cause problems for people in the short term but also have long-
term effects, for example, an increase in unemployment [1]. According to a study [2], the
situation causes a 2.5–3% decline in the economic stability of GDPs globally every month.
Furthermore, based on previous crises, it appears that younger and less-educated workers
are the most financially impacted [2]. COVID-19 is thought to have originated from animals.
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If communities do not follow preventive policies for this highly contagious disease, COVID-
19 can spread easily to healthy humans through close contact. Traveling has been the main
cause of the huge spread [3,4]. In the early days of the COVID-19 pandemic, almost all
reported cases were symptomatic. In a study by Noh J and Danuser G [5] of 50 countries,
the number of actual COVID-19 patients in 25 of those countries was predicted to be 5
to 20 times larger than confirmed infected cases. In several European countries in March
2020, the number of total cases/infected patients was around 2.5 times higher than actual
reported patients, and currently, it is estimated that the number of unseen infected cases is
still 1.5 times higher than reported cases because undiscovered or unseen patients could
be symptom-less or exhibit very subtle illness symptoms [6]. Researchers in the fields
of pharmacy, chemistry, mathematics, physics, statistics, economics, computer science,
geophysics, and medicine have joined hands to fight against COVID-19. However, no
one has reached a firm conclusion yet on how to overcome this problem. Furthermore,
the structure and symptoms are always mutating. The flu, body temperature, coughing,
and shortness of breath are the initial indications of the COVID-19 virus. The severe side
effects of this infection may cause acute respiratory disorder (a severe form of asthma),
pneumonia, heart failure, renal failure, and possibly death in the subsequent stages [7].
The COVID-19 spread could be significantly slowed down by employing precautionary
measures such as minimizing direct contact, social isolation, and smart lockdowns [8].

The accurate and robust forecasting of COVID-19 cases and deaths can assist govern-
ment interventions and encourage the general public to consider effective actions to slow
down the spread of this disease [9]. Researchers have conducted multiple studies to explore
the COVID-19 associated risk factors and emotional effects, covering various categories
such as nature, health, lockdown, etc., using different models [8,10]. Machine learning
models, such as random forest, support vector machine (SVM), K- nearest neighbors (KNN),
artificial neural networks, and many others, have also been used to predict the COVID-19
situation [11]. The reproduction rate of a disease is of great concern to epidemiologists
as this is what determines a pandemic; a reproduction rate greater than one indicates a
pandemic in the population [12]. The nature of COVID-19 has been studied by taking a
variety of mathematical models into account. The most used model for analyzing disease
dynamics is the Susceptible-Infectious-Recovered (SIR) model. This model uses a system of
differential equations that are time-dependent to predict epidemic growth. Researchers
have extensively employed the SIR model and different modified forms to study Ebola
and AIDS [13,14]. Godio et al. [15] studied the recent SARS-CoV-2 pandemic outbreak by
taking data from Italy using the SEIR epidemiological model. They used a Particle Swarm
Optimization (PSO) solver to create a stochastic method to fit the model parameters, which
improved the predictability of the prediction in a medium run of thirty days. Their findings
matched Spanish and South Korean statistics and forecasts. Baleanu et al. [16] and some
other researchers [17,18] used the Caputo–Fabrizio derivative to create a COVID-19 frac-
tional differential equation model. The data on COVID-19 reflect a sequence of observations
and time-series prediction approaches e.g., artificial neural network-based methods and
meta-predictors are all native to the statistics [19,20]. For time-series forecasting, ANNs are
frequently used [21]. ANN-based techniques have many advantages over machine learning
techniques and one of the key advantages is that ANN can be fed raw data and discover the
desired features automatically [22]. ANNs give accurate results based on numerous factors
such as performance, accuracy, latency, speed, convergence, and size [23,24]. It is important
to note that this research relies on artificial neural networks (ANNs) for forecasting the
COVID-19 situation in certain countries.

In this paper, we propose a model to forecast future COVID-19 scenarios in major
countries and provide insights for government bodies and policymakers. This work also
provides a detailed look at the current COVID-19 variants, challenges, and guidelines for
preventing the outbreak effectively. This forecasting is intended to assist organizations,
legislators, and the general public in implementing new tactics and reinforcing ongoing
COVID-19 precautionary actions. Additionally, this study could aid in relieving the socioe-
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conomic and psychological distress caused by COVID-19. The key contributions of this
study are given below.

Key Contributions

• Awareness about emerging variants of COVID-19: We have collected information
about COVID-19 including its types and emerging variants. It is important to note
that some of the variants can appear without any prior symptoms.

• Literature review: This article gives a brief overview of the related work recently un-
dertaken in the field of COVID-19 forecasting using data mining approaches including
machine learning, and deep learning techniques.

• Proposed Methodology: We proposed an artificial neural network-based methodology
for the statistical analysis of the current pandemic situation in some eastern and
western countries. The results show that our approach works well in terms of precision
and model fitting to statistical data.

• Challenges and future directions: We discussed the current issues associated with uti-
lizing Artificial Intelligence methods to resolve the COVID-19 pandemic. Furthermore,
we demonstrate how machine learning and deep learning can assist in preventing the
spread of COVID-19 in the future. We also address the potential future contributions
of AI and blockchain-based solutions to analyze the outbreak response.

2. Coronavirus

Coronaviruses are indeed a huge family of viruses that are found both in humans
and animals [25]. Seven different types have been identified, including the ones that
caused COVID-19 and the SARS and MERS illnesses. According to initial estimations,
the retrovirus seemed to be more contagious than the one that caused SARS, although it
appeared to be less probable to provoke catastrophic illnesses. We still have a lot to learn
about the novel coronavirus (COVID-19) [26].

2.1. Symptoms of COVID-19

COVID-19 has been related to a variety of indications, ranging from simple headaches
to life-threatening diseases. Upon being exposed to the illness, symptoms and signs may
appear after 2 to 14 days [27]. The severity of the symptoms varies from mild to severe.
COVID-19 is a virus that can cause the following symptoms in patients:

• Temperature or chills
• Runny nose
• Coughing
• Breathing problems
• Fatigue
• Aches in the muscles or throughout the body
• Loss of smell or taste
• Diarrhea
• Sore throat
• Nausea or vomiting

This is not an extensive list of all symptoms and manifestation. The CDC [27] continues
to update the list of possible symptoms whenever new information becomes available from
research labs or other academic sources. COVID-19 infection appears to put elderly persons
with serious medical conditions, such as diabetes, heart disease, or respiratory problems, at
an increased risk of developing more serious conditions.

2.2. Types of Coronavirus

In a new study on COVID-19, UK-based scientists discovered that there are six different
varieties of COVID-19 infection, each with its own set of symptoms.
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1. Flu-like without a temperature
Fatigue, muscle aches, absence of smell, sore throat, coughing, shortness of breath,
and no temperature are some of the additional symptoms.

2. Flu-like with temperature
Fatigue, absence of smell, sore throat, coughing, uncontrollable shaking, a decrease in
hunger, and a temperature.

3. Gastrointestinal
Fatigue, absence of smell, sore throat, a decrease in hunger, chest pain, no coughing,
and diarrhea.

4. Extreme level one, severe exhaustion
Fatigue, loss of smell, cough, chest pain, a temperature, and hoarseness.

5. Extreme level two, misconception (uncertainty)
Fatigue, absence of smell, a decrease in hunger, coughing, sore throat, chest pain, a
temperature, hoarseness, muscle pain, and confusion.

6. Extreme level three, abdominal and pulmonary
Fatigue, absence of smell, a decrease in hunger, coughing, sore throat, chest pain, a
temperature, hoarseness, and muscle pain.

2.3. Emerging Variants of COVID-19

New variants are emerging with time. For example, recently, a new mutant (B.1.1.529
also known as Omicron) has emerged, which is fast spreading and can pose a big threat
to the effectiveness of COVID-19 vaccinations [28]. Researchers are closely monitoring
this novel mutant of COVID-19. This variant contains various changes, which were earlier
reported in other mutants, particularly Delta. This new variant has been observed to
be expanding rapidly within South Africa. Nowadays, the main goal is to focus on its
expansion. The said mutation was identified in Botswana on 11 November 2021 [29] and
was identified in a South African traveler who traveled to Hong Kong. Omicron was added
to the list of “variants of concern” by the WHO, which also contains Alpha, Beta, Gamma,
and Delta. Viruses transform themselves all the time and the majority of mutations are
minor. Some of these mutations may be harmful to the virus itself, whereas others can
make the infection more aggressive or dangerous. Table 1 illustrates the alterations with the
highest risk, which are described as the “variants of concern” and are regularly observed by
healthcare practitioners. Regarding vaccinations against COVID-19, the vaccinations from
Chinese Sinopharm, Pfizer, and AstraZeneca are very efficacious against the variations
after two doses, whereas resistance after one dosage appears to be diminished [30].

There are several variants of SARS-CoV-2, including a brand-new, extremely conta-
gious variant that was detected in the United Kingdom [26]. Another of these new variants
is known as VOC202101/02 or P.1 and was reported in visitors from Brazil who traveled
to Japan in January 2021. This gene contains the 1–4 nt insertion, three reductions, four
identical modifications, and 17 distinct amino acid modifications [31]. Travel restrictions
were implemented in an effort to stop the spread of P.1 throughout the nation after it was
discovered in the United Kingdom [32]. However, another variety from Brazil (known
in the UK as VUI202101/01) was discovered in the UK and comprises a minor recessive
mutation. Eight instances of this type, which appeared to be of minimal significance, had
been reported as of 14 January 2021. The “expansion and importance of this mutation
continues under investigative process”, according to Public Health England (PHE). At same
time as the English variant, the South African variant appeared and has since been found
in at least 20 countries. According to South African genomic data, the 501Y.V2 mutation
swiftly supplanted other circulating progenitors in the country because it appeared to
have a greater infection rate and hence is more transmittable. The N501Y and E484K spike
protein variants are present in this version, as they are in the English and Brazilian variants.



Diagnostics 2022, 12, 2539 5 of 25

Table 1. Some of the recent variants categorized by WHO.

Scientific Name Name Given by the
WHO Spike Protein Substitutions Attributes

70del, A570D, 1. 50% higher spread capability
B..1.1.7 Alpha 69del, 2. Possible enhanced severity based

(S494P), on hospital admissions and case
(E484K), mortality rates

P681H, 144del, 3. Treatment with EUA monoclonal
N501Y, D614G, antibodies has no effect on
T716I, D1118H, susceptibility

S982A 4. Minimal effect on recovery and
(K1191N) post-vaccination serum

neutralizing

A701V, D215G, 1. 50% higher spread capability
B.1.351 Beta D614G, D80A, 2. Susceptibility to a combination

E484K, of bamlanivimab and etesevimab
N501Y, monoclonal antibody treatment
K417N, was drastically lowered; however,
241del there are other EUA monoclonal
242del antibody treatments available
243del 3. Condensed neutralization by

convalescent and post-vaccination sera

D138Y, D614G, 1. Susceptibility to the combination
P.1 Gamma E484K, H655Y, of bamlanivimab and etesevimab

K417T, L18F, monoclonal antibody treatment was
N501Y, P26S drastically lowered; however, there
R190S, T20N, are other EUA monoclonal antibody

T1027I treatments available
2. Condensed neutralization by convalescent
and post-vaccination sera

T95I, G142D, 1. Higher spread capability
B.1.617.2 Delta T19R, (V70F), 2. Possible decrease in neutralization

R158G, (A222V), by some EUA monoclonal antibody
E156-, F157-, treatments

D614G, D950N, 3. Possible decrease in neutralization
(W258L), (K417N) by post-vaccination sera

P681R, L452R,
T478K

2.4. Variants of Interest (VOI)

There is significant proof that the differences in the variants have a massive effect
on infectivity, disease intensity, and/or resistance, affecting the epidemiologic scenario in
the EU/EEA [30]. There is at least reasonable certainty in the findings for these features,
which included genetic, epidemiologic, and in vitro investigations. Additionally, all of the
prerequisites for the variants of concern and under investigation listed in Table 2 apply.
The indications are labeled to show whether they come from the variants themselves (v)
or from mutations linked to the variants (m). Evidence with a “low confidence” rating is
labeled to highlight that it is inconclusive. Blank fields or null fields indicate that there are
no existing evaluations or scientific evidence for the category, whereas “no” means that
there has been no change associated with the feature. B.1 is the comparable virus that is
presumed to be “wild-type” (with D614G and no other spike protein modifications) [27].
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Table 2. Variants of Interest (VOI) [27].

Labeled by
the WHO

Additional Variations
in the Lineage

Country First
Discovered

Spike Changes of
Interest

Date of First
Detection

Influence on
Transmissibility

Possibility of a Negative
Effect on Immunity

Transmission in
Europe

Eta
Q677H

E484K Nigeria D614G December 2020 – Neutralization (m) [33] Communities
B.1.525

Epsilon B.1.429, United States D614G September 2020 Ambiguous [26] Neutralization (v) [26] Inconsistent/TravelsB.1.427 L452R

Theta P.3 Philippine

D614G
E484K January 2021 Yes (m) [34] Neutralization (m) [33] Inconsistent/TravelsP681H
N501Y

B.1.616 France

D614G
G669S February 2021 Recognition (c) [25] – One-Time OccurrenceH655Y
V483A

Kappa B.1.617.1 India

D614G
E484Q December 2020 Yes (v) [35] Neutralization (v) [25,36] Multiple OccurrencesL452R
P681R

B.1.620 Not clear

D614G
E484K February 2021 Neutralization (m) [33,37] Multiple OccurrencesP681H
S477N

B.1.621 Colombia

D614G
E484K

January 2021 Yes (m) [34] Neutralization (m) [33] Inconsistent/TravelsP681H
N501Y
R346K
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2.5. Variants under Observation

SARS-CoV-2 variants under observation were discovered as indications through out-
break intelligence, rules-based genomic variant screening, and initial technical data [38].
There is some indication that they are similar to the VOIs in terms of quality; however, the
evidence is either inadequate or is still to be examined by the ECDC [27]. One or more
outbreaks in communities or proof of the communal spread of the mutation elsewhere in
the world must have been established for the mutations mentioned in Table 3.

Table 3. Variants under observation [27].

Labeled
by the
WHO

Additional
Variations in
the Lineage

Country
First

Discovered

Spike
Changes of

Interests

Date of First
Detection

Influence on
Transmitability

Possibility of a
Negative Effect on

Immunity

Proof of Link
to Intensity

Transmission
in Europe

D614G

B.1.617.3 India E484Q February 2021 Yes (m) [34] Neutralization (m) [26,33] – Not foundL452R
P681R

D614G

B.1.214.2 not clear (b) ins214TDR December 2020 – – – found (a)N450K
Q414K

E484K
A.23.1+E484K UK Q613H December 2020 – Neutralization (m) [33] – found (a)

V367F

A653V

A.27 not clear (b) N501Y December 2020 Yes (m) [34] Neutralization (m) [26] – found (a)L452R
H655Y

E484K
A.28 not clear (b) H655Y October 2020 – Neutralization (m) [33] – found (a)

N501T

C.16 not clear (b) L452R December 2020 – Neutralization (m) [33] – found (a)D614G

Labmda
D614G

C.37 Peru F490S December 2020 – – – found (a)
L452Q

A701V

B.1.351+P384L South Africa

D614G

December 2020 Yes (v) [39] Escape (v) [40,41] not clear [42] found (a)E484K
K417N
N501Y
P384L

A701V

B.1.351+E516Q not clear (b)

D614G

January 2021 Yes (v) [39] Escape (v) [40,41] not clear [42] found (a)E484K
E516Q
K417N
N501Y

D614G

B.1.1.7+L452R UK L452R January 2021 Yes (v) [34] Neutralization (m) [26] Yes (v) [43] found (a)P681H
N501Y

D614G

B.1.1.7+S494P UK N501Y January 2021 Yes (v) [34] Neutralization (m) [36] Yes (v) [43] found (a)P681H
S494P

C.36+L452R Egypt
D614G

December 2020 – Neutralization (m) [26] – found (a)L452R
Q677H

D614G

AT.1 Russia E484K January 2021 – Neutralization (m) [33] – found (a)ins679GIAL
N679K

Iota
A701V

B.1.526 US D614G December 2020 – Neutralization (m) [33] – found (a)
E484K

B.1.526.1 US D614G October 2020 – Neutralization (m) [26] – found (a)L452R
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Table 3. Cont.

Labeled
by

WHO

Additional
Variations in
the Lineage

First
discovered

Country

Spike
Changes of

Interests

Time of First
Detection

Influence on
Transmitability

Possibility of a Negative
Effect on Immunity

Proof of Link
to Intensity

Transition
in Europe

B.1.526.2 US D614G December 2020 – – – found (a)S477N

D614G
B.1.1.318 not clear (b) E484K January 2021 – Neutralization (m) [33] – found (a)

P681H

Zeta P.2 Brazil D614G January 2021 – Neutralization (m) [33] – found (a)E484K

B.1.1.519 Mexico D614G November 2020 – Neutralization (m) [26] – found (a)T478K

D614G

AV.1 UK E484K March 2021 – Neutralization (m) [33] – found (a)P681H
N439K

D614G

P.1+P681H Italy

H655Y

February 2021 – not clear – –E484K
N501Y
P681H
K417T

3. Related Work

Machine learning algorithms often employ data sequences collected over time as
the input data to forecast the COVID-19 pandemic situation. The COVID-19 spread has
been predicted using a variety of methodologies. The Long Short-Term Memory (LSTM)
algorithm is one of the methodologies that has been used. The multi-layer perceptron
(MLP), for example, is now being used to forecast the spread of COVID-19. This strategy
has made it easier to anticipate the maximum number of COVID-19 victims, the highest
proportion of survivors, and the highest number of fatalities per region in a specific time
period [44].

Al-Qanes et al. [45] developed a more advanced form of the adaptive neuro-fuzzy
infererence system (ANFIS) to calculate the infected patients in different four countries:
United States, Iran, Italy, and Korea. Their approach was founded on the marine preda-
tors algorithm, a revolutionary nature-inspired optimization. The ANFIS variables were
optimized using this technique, improving prediction accuracy. The model has shown
efficient prediction performance for MAE, RMSE, MAPE, and R2 [45]. Other research used
an improved ANFIS model by integrating the flower pollination algorithm (FPA) and salp
swarm algorithm (SSA). The proposed FPASSA-ANFIS framework was evaluated by em-
ploying verified data obtained from the WHO website. Additionally, the proposed model’s
performance was evaluated using two different datasets of weekly infected patients [20].

The Susceptible-Exposed-Infectious-Recovered (SEIR) approach was used by Al-
sayed et al. [46] to forecast pandemic peaks in Malaysia. Researchers have utilized the
ANFIS approach to anticipate the number of infected people in the short term. Additionally,
researchers have hypothesized that extending the treatment time may lessen the severity
of the pandemic at its height. The MAPE, RMSE, and R2 values for this study were 2.79,
46.87, and 0.9973, respectively [46]. Behnood et al. [47] evaluated the influence of several
climate-related elements and the size of the population on the spread of COVID-19 by
integrating the viral optimization algorithm (VOA) and ANFIS. They showed that the
density of the population had a surprising impact on how well their constructed scenarios
operated, highlighting the critical role that social distance plays in reducing the rate as
well as the spread of COVID-19. They reported the RMSE as 22.47, MAE as 7.33, and R2 as
0.83 [47].

Aora et al. [48] employed RNN-related LSTM variations to predict the number of
positive patients in India. The LSTM model was chosen for forecasting daily as well as
weekly COVID-19 patients with approximated errors of three percent for daily cases and
eight percent for weekly cases based on the lowest false alarm rate. Depending on the
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volume of confirmed patients and everyday progression of the designation of COVID-19
hotspots, they divided Indian states into various zones [48]. A bidirectional LSTM network
was used by Fokas et al. [49] to produce a reliable generalization of RNNs. This technique
was used to forecast new COVID-19 infected individuals in the United States, Spain, Italy,
Germany, France, and Sweden [49].

The regression model proposed by Yadav et al. [50] for the forecasting of COVID-19
cases was based on six regression analyses including quadratic, third-degree, fourth-degree,
fifth-degree, sixth-degree, and exponential polynomials. The sixth-degree polynomial
regression method was the best model for the forecasting of short-term new cases [50].
Geographical hierarchies were employed by Kim et al. [51] to develop Hi-COVIDNet in
accordance with a neural network of two-level machinery based on information gathered
from the continent and at the country level. This approach comprehended the complex
connections between far-off nations and connected their unique risks of infection to the
targeted community [51].

Three hybrid techniques for COVID-19 time-series forecasting were developed by
Abbasimehr and Paki [52] by combining the Bayesian optimization algorithm with the
multi-head attention, LSTM, and CNN deep learning techniques. These findings revealed
that deep neural networks outperformed the benchmark model in terms of both the short-
term and long-term predictions. In addition, the best deep learning model’s average SMAPE
had short-term forecasts of 0.25 and long-term forecasts of 2.59 [52]. Additionally, deep
neural networks (DNNs) have been proposed as a technique for prediction. This approach
is a significant substitute for estimating a partial differential equation’s solution [11]. Based
on the distribution of COVID-19 over three time periods, a recent work employed the
K-means approach to group countries into various clusters [11].

4. Methods

The proposed model for this work is the multi-layer perceptron neural network
(MLPNN), whose flowchart/structure is illustrated in Figure 1. For this study, we collected
data from the website of the World Health Organization [53]. The data used for this research
were statistical data and contained no personally identifiable human photos, audios, videos,
or other materials. Additionally, all procedures were conducted in accordance with the
necessary rules and laws. As shown in Figure 1, the downloaded dataset was pre-processed
using features extraction. We considered the categorical features (infected cases, number
of deaths, and number of weeks) for this study. We tuned the model by removing the
disconnected features that were causing the class imbalance, for example, we did not
consider patients who had other diseases such as heart disease, cancer, diabetes, old age,
etc. These features were causing a class imbalance, e.g., it was not necessary for all COVID-
19 infected patients to be heart patients and vice versa. After removing the disconnected
features, we normalized the data and initialized the input data by splitting it into subsets,
i.e., 80% for training and 20% for testing. This splitting is typically made in a layered or
randomized way to ensure the data are dispersed in the sample data of the subgroups,
which minimizes biases or deviations in the data. The classification model that we utilized
in the approach was trained using the training data and test data to evaluate the classifier’s
performance over an unobserved subset of the data. We applied a three-layered feed-
forward network (multi-layer perceptron neural network) model for training, testing, and
validation. The MPLN is discussed briefly in the following sections.
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Figure 1. Flowchart diagram of our proposed model.

4.1. Multi-Layer Perceptron Neural Network

We employed a multi-layer perceptron neural network [54] and a feed-forward neural
network with an input layer, hidden layers, and an output layer (see Figure 2). In this
research, two separate multi-layer perceptron neural networks were trained, i.e., one for
each of the goals— infected cases and deaths. The data of the infected cases and deaths
were used from various countries including China, Bangladesh, Germany, Italy, India, Iran,
Pakistan, and the United Kingdom.

Figure 2. Architecture of Artificial Neural Network.

Ten hidden neurons were used in a single hidden layer and a sigmoid function was
also used. The sigmoid is the activation function, which is specified as

Ni =
1

1 + e−∑ wki
(1)

where wki are the weights of input values and Ni is the value of the hidden neurons.
In the output layer, there are two input neurons that show the number of deaths

and number of active cases. Furthermore, Equation (2) defines the output of a hyperbolic
tangent transfer function that ranges from −1 to +1, that is,

N j =

(
2

1 + e−2 ∑ wij

)
− 1 (2)
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where wij is a weighted output between the hidden neuron i and the output neuron j. N j is
the output of j.

The best technique for calculating the best values for all the neural network variables,
for example, the input and output weights, are used in the supervised learning approach.
As a result, establishing the parameters of an ANN results in the development of an
ANN model. Training through observed values and optimization is known as supervised
learning (see Figure 3).

Figure 3. Cont.
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Figure 3. COVID-19 active cases and deaths in 60 weeks.

4.2. Mortality/Fatality Rate

The seriousness of a pandemic can be inferred from the fatality (case fatality ratio)
rates/ratios, defined by

CFR =

(
Deaths

Con f irmed cases

)
100 (3)

where CFR is the case fatality ratio.

4.3. Cronbach’s Alpha

Cronbach’s alpha is a risk-adjusted evaluation metric that shows us how much the
expected case returns differ from the actual case returns and whether deaths from COVID-
19 are above or below the active cases/deaths. We calculated the actual cases and death
ratio using Cronbach’s formula [55] (Equation (4)) as follows;

Cα =

(
K

K− 1

)(S2
y −∑ S2

i

S2
y

)
(4)

where Cα denotes the actual cases and deaths, S2 describes the number of samples, S2
y

represents the variance in the total score. S2
i is the variance of the individual week, whereas

∑ S2
i is the sum of the scores of the individual week.

4.4. Mean Absolute Error (MAE)

We used the mean absolute error (MAE) (see Equation (4)) to achieve forecasting with
minimized errors. Based on the MAE’s values, the mean absolute scaled error (MASE)
(Equation (5)) was calculated for the actual infected cases/deaths and predicted cases/deaths
for future weeks.

MAE =
1
k

k

∑
y=1
| ey | (5)

where y ≤ k and then the yth error ey is denoted by ey = xy− x̂y

4.5. Mean Absolute Scaled Error (MASE)

We computed the MASE (mean absolute scaled error) using the actual numbers of
infected cases and deaths and the forecasted values of the cases and deaths using the
following equation (Equation (6)).
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MASE =
1
k ∑k

y=1
∣∣ey
∣∣

1
k−1 ∑k

y=2
∣∣xy − xy−1

∣∣ (6)

4.6. Symmetric Mean Absolute Percentage Error (SMAPE)

We further calculated our data using SMAPE (Equation (7)). SMAPE uses the squared
values such as the root mean square error (RMSE) (Equation (8)).

SMAPE =
1
k

k

∑
y=1

∣∣ey
∣∣(∣∣xy

∣∣+ ∣∣x̂y
∣∣)/2

(7)

where k represents the sample size, xy indicates the actual values of the infected cases/deaths,
and x̂y indicates the forecasted values of the cases/deaths. y ≤ k and then the yth error ey
is denoted by ey = xy− x̂y

4.7. Root Mean Square Error (RMSE)

The RMSE computes the difference of the error between two actual values and the
forecasted values. We compared the anticipated value and real measurements, i.e., (a) the
predicted values and (b) the observed values, respectively. We divided the total number of
observations by the sum of all the values. Finally, we calculated the root mean square error
(RMSE) (8) below:

RMSE =

√
(O− E)2

n
. (8)

where n represents the total number of infected people, O denotes the number of observed
values of actual cases, and E represents the number of the total expected values.

4.8. Data Pre-Processing and Experimental Setup

Authentic sources [53] were used to collect the data. We used the datasets of various
countries including China, Bangladesh, Germany, Italy, India, Iran, Pakistan, and the
United Kingdom. This study contains no personally identifiable human photos, audios,
videos, or other materials. All procedures were followed in compliance with the necessary
rules and regulations. A Windows 10, 64-bit operating system, with 16 GB of RAM was
employed. For the training and validation datasets, we used CSV files. We normalized
the data and initialized the input data by splitting them into subsets, i.e., 80% for training
and 20% for testing. This splitting is typically made in a layered or randomized way to
ensure the data are dispersed in the sample data of the subgroups, which minimizes biases
or deviations in the data. K-fold validation was used to validate the performance of our
proposed framework.

4.9. Model Forecasting

A time-series analysis is a very important component of deep learning and is utilized
for forecasting. Time is the only input variable (independent feature) used to forecast
the target feature (dependent feature) in time-series data, which are a type of univariate
regressive data. It is used to predict the future values of coming occurrences and is crucial
for predicting the occurrence of respiratory disorders such as COVID-19. Positive cases are
growing every day, thus it is important to predict whether the rate of growth will continue
based on earlier data. Governments can mobilize resources to prevent disease transmission
based on forecasts and take action in the future to slow the pace of infection increase
without impacting more citizens. Forecast numbers cannot be assured because predictions
depend entirely on past patterns. To counter a pandemic emergency such as COVID-19,
governments can use this approximate projection of occurrences to evaluate future resource
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management. This section discusses the actual situation with COVID-19-infected cases and
forecasts future situations for infected cases and deaths.

Table 4 exhibits the CFRs for the selected countries as well as globally. A CFR of 5.33%
was reported for China, 2.99% for Italy, 2.85% for the United Kingdom, 1.17% for India, 1.58%
for Bangladesh, and 2.25% for Pakistan, whereas a global CFR of 2.08% was reported [53].
Due to the large number of deaths at the beginning of the pandemic, China had the highest
CFR among the other countries; however, after May, China’s fatalities decreased as a result of
the lockdowns used to contain the pandemic. It is worth noting that the CFR is influenced by
the number of tests performed and the size of the population. Therefore, a solid approach
should be developed to avoid this constraint. The CFR changes when new cases of infection
and fatalities appear. Tables 5 and 6 show the results for the alpha, MASE, SMAPE, MAE,
and RMSE for actual cases and deaths, respectively. Alpha returned a base value parameter
of between 0 and 1. MASE returned a mean absolute scaled error measurement of the
forecasting. The symmetric mean absolute percentage measurement parameter was returned
by the SMAPE function. The MAE returned the mean absolute error and the RMSE returned
the root mean squared error metric. Figure 3 denotes a detailed visualization of the weeks,
that is, 60 weeks on the x-axis and the number of infected patients plus the number of deaths
on the y-axis. Graph (A) shows the data from Bangladesh, graph (B) from China, graph (C)
from Germany, graph (D) from India, graph (E) from Iran, graph (F) from Italy, graph (G)
from Pakistan, and graph (H) shows the data from the United Kingdom.

Table 4. Case Fatality Ratios of COVID-19 [53].

Countries CFR (%)

Bangladesh 1.58

India 1.17

China 5.33

Pakistan 2.25

Iran 2.75

Germany 2.39

Italy 2.99

United Kingdom 2.85

World-wide 2.08

Table 5. Forecasting metric results for all active cases.

Country Alpha MASE SMAPE MAE RMSE

Bangladesh 0.5 5 0.47 66,660.96 10,128.56

China 0.9 0.15 0.45 205.99 270.5

Germany 0.25 3.2 0.34 19,705.31 22,740.67

India 1 0.86 0.2 20,950.76 30,570.1

Iran 1 0.59 0.14 14,199.15 18,578.85

Italy 1 1.33 0.12 12,815.17 15,552.92

Pakistan 1 0.97 0.17 2418.55 2875.24

United
Kingdom 0.1 15.74 0.69 135,707.55 152,719.52

Table 7 shows the test results of the best models for the death forecasting. Table 8
shows the weekly death forecasts for the upcoming months. The model forecast results for
India show an increase in weekly deaths at a faster rate compared to the other specified
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countries. Consequently, if the same strategy is maintained, COVID-19 will be completely
out of control in India and fatalities could reach more than 121 thousand by the start of
the upcoming year. The weekly death forecasts for Pakistan, Bangladesh, and Iran show
decreases but at a relatively slow rate. The forecasts indicate that for Pakistan, COVID-19
deaths in the 1st week of the upcoming month in 2022 are 380, and this number will
not exceed 537, with a confidence level of 95%. However, weekly deaths will reduce
to 316, indicating a reasonably considerable difference in a couple of months. For Iran,
the forecast for deaths is 1367 and will not exceed 1732, whereas for Bangladesh, it is
198 and will not exceed 292. The forecasting results for Germany are also declining at a
slower rate. The forecast results show that in the last week of the first month, the weekly
deaths will be 775 and will not exceed 5812, with a confidence level of 95%. The upper
limit suggests an alarming situation. It is highly recommended for their governments to
take steps and implement new policies as preventive measures regarding the pandemic
situation. The forecast for the UK shows that weekly deaths will increase and in the last
week of the upcoming month will be 126 and not exceed 8876. The results indicate that
these countries’ current strategies are working effectively in controlling the pandemic but
the future situation may worsen, as shown by the upper limit of the forecast; it is highly
recommended that they revise their policies in a timely manner.

Table 6. Forecasting metrics results of deaths.

Country Alpha MASE SMAPE MAE RMSE

Bangladesh 0.25 5.3 0.58 137.17 180.56

China 0.25 0.23 2 21.05 21.6

Germany 1 0.88 0.13 213.27 313.1

India 0.1 6.04 0.8 2508.59 4225.44

Iran 0.9 0.28 0.09 52.28 64.89

Italy 1 0.45 0.07 176.9 199.38

Pakistan 0.5 0.9 0.13 58.35 71.94

United
Kingdom 0 5.84 1.04 2523.59 2861.2

Finally, regarding Italy’s future scenario, the situation will not be as difficult as in
India. However, there is a considerably high weekly deaths forecast (more than a couple
of hundred) for the end of the current year and the start of the next year. Table 7 gives
a brief overview of the best models’ test results for death forecasting. The WHO should
give special consideration and help countries, such as India, Italy, and others with high
mortality forecasts for COVID-19, to fight against the pandemic.

Table 7. Test results of the best models for death forecasting.

Countries Best Model MAPE DFT p-Value * ACF1 **

Bangladesh 1,1,0 19.22 * 0.04 −0.002

China 5,1,1 inf * 0.01 −0.077

Germany 1,1,0 24.87 0.01 −0.042

India 0,2,0 16.24 * 0.01 0.089

Iran 0,1,3 13.39 * 0.01 0.040

Italy 4,1,0 36.17 0.01 0.010

Pakistan 1,1,0 18.62 * 0.01 −0.078

UK 2,1,1 27.59 0.01 0.029

World 1,1,0 12.01 0.05 −0.073
* Duckey Fuller test, alternative hypothesis: stationary; ** First-order autocorrelation function.



Diagnostics 2022, 12, 2539 16 of 25

Table 8. Upcoming 16-week forecast for weekly deaths from COVID-19 for Bangladesh, China,
Germany, India, Pakistan, Iran, Italy, the United Kingdom, and the world.

Pakistan Iran

Month Week Point
Forecast

95%
CI(Upper)

Point
Forecast

95%
CI(Upper)

1

1 380 537 1367 1732
2 342 615 1362 2070
3 326 696 1338 2493
4 320 772 1338 2878

2

1 317 842 1338 3185
2 316 905 1338 3447
3 316 962 1338 3681
4 315 1016 1338 3893

3

1 315 1065 1338 4089
2 315 1112 1338 4271
3 315 1156 1338 4443
4 315 1198 1338 4606

4

1 315 1238 1338 4762
2 315 1276 1338 4910
3 315 1313 1338 5053
4 315 1349 1338 5190

India Italy

Month Week Point
Forecast

95%
CI(Upper)

Point
Forecast

95%
CI(Upper)

1

1 30,506 32,639 714 1522
2 31,094 35,864 697 2310
3 31,682 39,664 740 3164
4 32,270 43,954 798 3910

2

1 32,858 48,679 845 4500
2 33,446 53,796 871 4944
3 34,034 59,275 878 5279
4 34,622 65,091 872 5549

3

1 35,210 71,223 861 5787
2 35,798 77,655 851 6014
3 36,386 84,372 845 6241
4 36,974 91,361 843 6469

4

1 37,562 98,612 844 6695
2 38,150 106,113 846 6917
3 38,738 113,858 848 7132
4 39,326 121,836 849 7338

Bangladesh UK

Month Week Point
Forecast

95%
CI(Upper)

Point
Forecast

95%
CI(Upper)

1

1 198 292 92 978
2 194 360 122 2148
3 192 420 140 3333
4 191 473 145 4344

2

1 191 520 141 5122
2 190 562 133 5695
3 190 599 126 6126
4 190 634 122 6476
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Table 8. Cont.

3

1 190 667 120 6790
2 190 697 121 7094
3 190 726 123 7400
4 190 753 125 7709

4

1 190 779 126 8015
2 190 804 126 8314
3 190 828 126 8601
4 190 851 126 8876

Germany China

Month Week Point
Forecast

95%
CI(Upper)

Point
Forecast

95%
CI(Upper)

1

1 881 1587 1 100
2 824 2078 1 204
3 798 2525 1 277
4 786 2923 1 354

2

1 780 3278 1 391
2 777 3597 0 400
3 776 3887 0 404
4 776 4154 0 404

3

1 775 4403 0 404
2 775 4635 0 412
3 775 4855 1 427
4 775 5063 1 458

4

1 775 5262 1 497
2 775 5453 1 522
3 775 5636 1 539
4 775 5812 0 545

World

Month Week Point Forecast 95% CI(Upper)

1

1 73,427 83,134
2 71,635 89,025
3 70,763 94,891
4 70,339 100,348

2

1 70,133 105,326
2 70,032 109,863
3 69,983 114, 019
4 69,960 117,857

3

1 69,948 121,430
2 69,942 124,779
3 69,940 127,941
4 69,938 130,941

4

1 69,938 133,801
2 69,937 136,539
3 69,937 139,169
4 69,937 141,702

Figure 4 represents a detailed view of the number of weeks on the x-axis and the
number of actual cases and predicted cases on the y-axis. Graph (A) shows the data from
Bangladesh, graph (B) from China, graph (C) from Germany, graph (D) from India, graph
(E) from Iran, graph (F) from Italy, graph (G) from Pakistan, and graph (H) shows the data
from the United Kingdom.
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(A) (B)

(C) (D)

(E) (F)

(G) (H)

Figure 4. Actual cases in 60 weeks and predicted cases in future weeks.

Figure 5 shows a detailed view of the total number of weeks on the x-axis and the
number of actual deaths and predicted deaths on the y-axis. Graph (A) shows the data
from Bangladesh, graph (B) from China, graph (C) from Germany, graph (D) from India,
graph (E) from Iran, graph (F) from Italy, graph (G) from Pakistan, and graph (H) shows
the data from the United Kingdom.
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(A) (B)

(C) (D)

(E) (F)

(G) (H)

Figure 5. Actual deaths in 60 weeks and predicted deaths in future weeks.

4.10. The Model’s Performance

The results of the best accuracy, training, testing, and validation of our framework are
briefly summarized in Figure 6. The results show a 99.60% accuracy, which means that
the validation effectiveness is satisfactory. These outcomes were seen when initializing the
input parameters for the model, indicating that the model was properly trained and the
data were error-free.

Figure 7 gives a brief visualization of the output results. The value of the training
correlation coefficient of the target output was observed to be 99.44%, the validation was
observed to be 99.77%, the testing was observed to be 64.16, and the overall value was
observed to be 90.6%, which means that our model was efficient. The correlation quantifies
the strength of a linear relationship between two variables. We used a correlation to
investigate whether a relationship existed between the variables to assume or fit a specific
model to our data. A value close to 1 (90.6% in this research) indicated that there was a
positive linear relationship between the data columns, which means that our proposed
model was precisely or accurately working on the given dataset.
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Figure 6. Training, validation, test, and best observed results.

Figure 7. Best fitting for training, validation, testing, and all observed results.
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5. Challenges and Future Directions

We discuss the current issues associated with utilizing Artificial Intelligence methods
to resolve the COVID-19 pandemic. Furthermore, we demonstrate how machine learning
and deep learning can assist in preventing the transmission rate of COVID-19 in the future.

5.1. Challenges

Applications based on AI for investigating COVID-19 are presently facing numerous
hurdles, for example, the scarcity, legislation, and inaccessibility of substantial data; there
are a lot of noisy data as well as false feedback; the inadequate alertness of the juncture
between medicine and computer science; the issue of security and data privacy, etc.

Policies and Regulations
As the epidemic spreads and the numbers of reported affected and deceased people

rises, several measures to limit the outbreak have been discussed, for example, social dis-
tancing and lockdowns. Authorities have an important role in establishing regulations and
rules to motivate citizens, experts, educators, entrepreneurs, medical centers, technology
giants, and large corporations to cooperate in COVID-19 mitigation during an outbreak.

Large-scale training data are scarce and unavailable
Many Artificial Intelligence deep learning (AIDL) systems rely on large-scale datasets,

including diagnostic image processing, with a variety of environmental variables. Yet,
because of COVID-19’s explosive expansion, there are inadequate resources for AI. In
practice, analyzing datasets is a time-consuming task and demands the support of trained
health professionals.

Noisy data and speculation on the internet
The problems occur as a result of a reliance on easily available online social networking

sites; vast amounts of audio/video, fake information, and misleading news have been
reported in thousands of different online channels without any substantial modifications.
Artificial intelligence-based techniques appeared to be slow when evaluating and process-
ing noisy data. Furthermore, the outputs of Artificial Intelligence ML and DL techniques
become skewed with noisy data. These issues reduce the performance and efficiency of
Artificial intelligence algorithms, especially for epidemic forecasts and spreading analyses.

Lack of integration between computer science and medicine arenas
Numerous Artificial Intelligence experts have a strong hold on computer science ap-

plications, but considerable expertise in diagnostic imaging, epidemiology, pharmacology,
and other relevant domains is also required to incorporate other medical information into
artificial intelligence methods in the war against COVID-19. To handle COVID-19, it will
be essential to arrange for specialists from different majors to work together and integrate
data from numerous works.

Data security and privacy
In the era of Artificial Intelligence, the cost of acquiring confidentiality of data is

incredibly low. In the presence of healthcare issues such as the current pandemic situation,
several government agencies strove to gather a wide range of personal data including
contact numbers, ID numbers, and medical data. How to properly maintain individual
confidentiality and human rights during Artificial Intelligence discovery and handling is a
topic worth tackling.

Unstructured data or incorrect structural data (e.g., numerical, text, and image data)
Working with incorrect facts and ambiguous data in textual material can be challenging.

It is possible for large amounts of data from several sources to be erroneous. Furthermore,
a lot of data makes it difficult to extract valuable bits of metadata.

Early detection of COVID-19 via image analysis such as chest X-rays and CT scans
Handling unbalanced datasets results in insufficient diagnostic imaging and extensive

training periods and being unable to describe the problems of the efficient outcomes.
Risk assessments of old-age people and patients with other diseases
Old-age people should be screened, functioning treatments and cures should be

discovered, risk assessments should be conducted, survival projections should be made,
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healthcare should be provided, and medical source planning should be conducted. The
task at hand is to obtain the physical features and therapeutic outcomes for patients. An
additional challenge is dealing with low-quality data, which can lead to skewed and
incorrect predictions for old-age people and people with other diseases, for example, heart
disease, diabetes, asthma, and so on.

5.2. Future Research Direction

Artificial Intelligence and blockchain-based solutions can also contribute to the fighting
the outbreak in the following ways.

Non-contact illness diagnostics
Using automatic feature categorization in X-ray and CT imaging during COVID-19

outbreaks will successfully limit the outbreaks. A patient’s posture can be detected and CT
image detection, X-rays, and smart camera facilities can all be utilized in AI-based systems.

Video diagnostics and consulting remotely
To deliver COVID-19 hospital admissions and early diagnosis data, a mix of Artificial

Intelligence and natural language processing (NLP) modules can be utilized to construct
remote diagnostic programs and automation systems.

Bio-technological research
AI-based algorithms can be utilized to accurately examine biomedical knowledge in

terms of biotechnological research, such as major protein structures, genomic sequencing,
and viral itineraries, to determine protein compositions and viral components.

Vaccination and drug development
AI-based algorithms can be used to find prospective medications and vaccinations, as

well as replicate drug–protein and vaccine–receptor pairings, allowing for the prediction of
future drug and vaccine responses in COVID-19 patients.

Fake information must be identified and screened
In order to provide real, accurate, and comprehensive COVID-19 statistics, Artifi-

cial Intelligence models must be used to filter out erroneous news and material online.
Blockchain-based [56] systems can be used to track and trace the actual information source.

Impact analysis and appraisal
Various sorts of computations can use machine learning, deep learning techniques

to evaluate the influence of different social management strategies on the spread of the
pandemic. Data could then be used to evaluate logical and efficient strategies for disease
prevention and control in the general public.

Tracking of patients’ contacts
By establishing social networking sites and an information architecture, blockchain-

based federated learning can be used to detect and track the characteristics of individuals
residing in close proximity to COVID-19 sufferers, effectively anticipating and tracking the
pandemic progression.

Smart robots
Robotic systems are likely to be used in activities, for example, public sanitation,

deliveries, supply chains, and in healthcare infrastructures that do not require human
resource management, e.g., medical treatment. This can stop the COVID-19 virus from
spreading.

Future work with descriptive federated learning methods
The effectiveness of federated learning methods and graphic properties that cause

distinctions between COVID-19 and other strains of tuberculosis must be determined. This
will aid radiologists and doctors in being more conscious of the infection and effectively
analyzing probable COVID-19 X-rays and CT imaging data.

Importance of COVID-19 diagnostic tools and treatment
These are both necessary but the early detection of COVID-19 is far more important.

Substantial future study efforts based on ML and DL are needed in order to identify
COVID-19 therapies.
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6. Conclusions

The applications of operational research that uses mathematical, statistical, and demo-
graphic modeling are crucial in assisting decision makers in education, health, socioeco-
nomic, and other aspects of daily life. By adopting preventative measures beforehand, the
transmission of COVID-19 could be considerably slowed. In order to maintain attention
on the most sensitive location, country, or region, scientists, research professionals, and
global leaders must be informed in advance of the emergency scenarios. For forecasting the
pandemic situation, this study proposed a multi-layer perceptron neural network (MLPNN)
with the integration of Cronbach’s alpha and the MAE, MASE, SMAPE, RMSE, and CFR.
We also focused on the current challenges in preventing the outbreak from further spread
and what is needed in the future to normalize social and economic activities. High accuracy
was observed in estimating the percentages of afflicted patients and deaths. According to
the MLPNN model’s encouraging results, the volume of COVID-19 people in India will
rise in the upcoming weeks and the death rate will also rise. This was evident from the
95% upper limit confidence interval, which was becoming wider for subsequent weeks.
In general, forecasts for the near future were more precise compared to the longer term.
Furthermore, providing the breakdown of the forecasting for each of the past COVID-19
variants could be a very interesting contribution to the research and will be explored in
future studies. For this research, we could not find actual data about the numbers of
patients who were affected by the particular variants in the selected countries.
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