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Aims: Electronic health records (EHR), containing rich clinical histories of large 
patient populations, can provide evidence for clinical decisions when evidence 
from trials and literature is absent. To enable such observational studies from EHR 
in real time, particularly in emergencies, rapid confounder control methods that 
can handle numerous variables and adjust for biases are imperative. This study 
compares the performance of 18 automatic confounder control methods. Methods: 
Methods include propensity scores, direct adjustment by machine learning, similarity 
matching and resampling in two simulated and one real-world EHR datasets. Results 
& conclusion: Direct adjustment by lasso regression and ensemble models involving 
multiple resamples have performance comparable to expert-based propensity scores 
and thus, may help provide real-time EHR-based evidence for timely clinical decisions.
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Background
To realize the promise of electronic health 
records (EHR) for enabling learning health sys-
tems, there is increasing demand for evidence 
generated from EHR in real-time for clinical 
decision support at the point of care [1–4]. The 
scale and depth of EHR data, representing 
large patient populations and their rich clini-
cal histories, offer new opportunities to learn 
practice patterns from real-world patients, 
signaling trends which may be impossible to 
detect in clinical trials, or providing guidance 
when randomization is not possible.

Indeed, there have been several precedents 
for clinicians using the EHR to learn from 
past patient records. Feinstein et al. created 
an electronic ‘library of clinical experience’ 
consisting of 678 highly similar lung can-
cer patients from whom to obtain personal-
ized prognosis [5]. Frankovich et al. [6], in the 
absence of evidence from existing literature, 
analyzed the EHR of patients similar to their 

pediatric lupus patient. Within a few hours, 
they estimated the increased risk of throm-
bosis and promptly decided on prophylactic 
anticoagulant therapy. However, extract-
ing reliable and valid evidence from EHR 
through observational studies remains a spe-
cialized endeavor [4], requiring careful design 
and controls. To enable such use of EHR data 
especially for clinically urgent decisions at the 
bedside, we have proposed a ‘green button’ [3] 
(analogous to ‘info buttons’ [7]) that will gen-
erate practice-based evidence from EHR in 
real-time by automatically selecting relevant 
patients, aggregating their characteristics and 
evaluating their outcomes [3,8,9].

There have been encouraging efforts 
enabling such a button. The first step is cohort 
selection, which can be performed by elec-
tronic phenotyping approaches [10–13]. These 
methods can automatically select patients 
with desired characteristics with high accu-
racy, obviating the need for laborious manual 
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chart review, the current gold standard for identifying 
patients. However, the next step, confounder adjustment 
– required for validity of observational studies in which 
biases cannot be randomized away [14] – is difficult to 
automate because it relies on expert knowledge to select 
appropriate confounder variables. Typical approaches 
such as direct adjustment (DA) by multivariate regres-
sion following Cepada’s rule of 8 [15] (i.e., at least eight 
events per variable in model) or propensity scores (PS) [16] 
both require extensive expert consultation.

Several heuristics have been developed for the auto-
matic handling of confounders [17–23]. To date, auto-
mated methods include: first, filters to select confound-
ers by predefined criteria (e.g., prevalence) for modeling 
PS [17]; second, machine-learning (ML) [19–21,23,24] algo-
rithms with automatic variable selection for modeling 
PS and third, matching by nearest neighbors based on 
multivariate similarity [18]. These methods, while com-
parable [19–21,25,26] or better [17,20,22,24,25,27] than expert-
based PS, have mostly been confined to the PS frame-
work. However, PS whether generated by experts or 
automated means are not foolproof. PS has been shown 
to approximate random matching at times and its util-
ity as the default mechanism for confounder control has 
been questioned [28]. Hence, there is a need to explore 
methods other than PS such as DA by machine learn-
ing or repeated matching resembling ensemble models.

To this end, using three datasets, this study will com-
pare first, PS-based approaches; second, DA by ML; 
third, matching by patient similarity and fourth, match-
ing by multiple resamples akin to ensemble modeling 
(Table 1). This comprehensive comparison includes high-
dimensional non-PS methods such as DA by machine 
learning for the purpose of assessing various automatic 
confounder control methods for quick and accurate 
cohort studies to facilitate timely clinical decisions.

Methods
Datasets
To ensure comparability with other benchmarking 
studies [20,21,29], we included a widely used simulated 
dataset [19], which mimics the presence of various types 
of confounding and exposure-outcome associations. 
However, since it contains only ten variables, it does 
not test the strengths of the high-dimensional methods. 
Therefore, we included another simulated dataset with 
100 variables. A real-world clinical dataset, representa-
tive of the increased dimensionality and complexity of 
EHR data including clinical text, was also included.

Our synthetic datasets contain a combination of 
pre-exposure variables (expected to contribute to 
the estimation of a propensity score) together with 
instrumental variables (IV) and colliders. An IV is a 
pre-exposure variable affecting only exposure but not 

independently affecting the outcome. However, an IV 
could become related to the outcome via unobserved 
or residual confounding and thereby introduce bias. A 
collider is a variable affected by two independent vari-
ables such that the pathways originating from the two 
independent variables collide at the collider variable. 
Controlling for a collider could open a path between 
the exposure and outcome and create a spurious asso-
ciation [30]. Hence, both IV and colliders should be 
excluded from PS formulation [29–33].

Simulated dataset 1: 2000 patients × 10 variables
A small dataset (2000 patients by 10 variables x

1
–x

10
,) 

was simulated as described in Setoguchi et al. (Sce-
nario E) [19]. Supplementary Data A describes the 
variables in this dataset: binary variables (x

1
, x

3
, x

5
, 

x
6
, x

8
 and x
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) and continuous variables (x

2
, x

4
, x

7
 and 

x
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) of which x
7
 was an IV. Weak (r = 0.2) and strong 

(r = 0.9) correlations were introduced among some 
variables (Supplementary Data A Figure 1). From the x

i
 

variables, we generated corresponding exposure (E = 0 
or 1) and outcome (Y = 0 or 1) using logistic models 
(Supplementary Data A Equations 2 & 3, respectively) 
such that the beta coefficient of exposure β was set at 
-0.4 (i.e., odds ratio [OR] = 0.67) as in Setoguchi et al. 
(Scenario E) [19]. This was repeated until 1000 datas-
ets were generated. To avoid situations in which there 
would be no cases after matching, we ensured that there 
were at least 40 positive outcome events as in Setogu-
chi et al. [19].

Simulated dataset 2: 2000 patients × 100 variables
An extended dataset with additional vari-
ables, including colliders and noise was simu-
lated. Supplementary Data A Figure 2 describes how 
the variables in this dataset are related and generated. 
Among the additional variables, binary variables 
were x

11
, x
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, x

16
, x

17
, x

51
–x

100
, while continuous vari-

ables were x
12

, x
14

, x
15

, x
18

–x
50

. Colliders were x
19

–x
22

. 
Continuous noise variables x

23
–x

50
 were randomly 

generated from a uniform distribution between 0 and 
1, while binary noise variables were randomly gen-
erated from a Bernoulli distribution (i.e., equivalent 
to a coin toss). Then, exposure and outcome statuses 
were generated by using logistic regression models 
(Supplementary Data A Equations 4 & 5, respectively). 
Beta coefficient of exposure β was set to +0.4 (i.e., OR 
= 1.5). As before, we generated 1000 such datasets, 
each with at least 80 positive outcome events.

Dataset 3: 5757 patients × 447 variables
This dataset consists of a real-world cohort of patients 
with peripheral arterial disease inclusive of 232 cilostazol-
users and 5525 nonusers. Their 20 cardiovascular out-
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Table 1. Description of the 18 confounder control methods being compared.

Confounder control method Variable selection method Matching method Evaluation method

Baseline 

Random matching – Random Logistic regression

ExpertPS_match Expert selection By closest PS Conditional logistic regression

ExpertPS_adjust Expert selection – Logistic regression

PS methods

hdPS_match Above minimum prevalence and 
ranked by univariate association 
with outcome

By closest PS Conditional logistic regression

hdPS_adjust As for hdPS – Logistic regression

lassoPS_match Lasso regularization By closest PS Conditional logistic regression

lassoPS_adjust Lasso regularization – Logistic regression

rfPS_match Multiple random subspaces By closest PS Conditional logistic regression

rfPS_adjust Multiple random subspaces – Logistic regression

lassoMV Lasso regularization – Lasso logistic regression

Euclidean – By closest distance Conditional logistic regression

Jaccard – By closest distance Conditional logistic regression

Dice – By closest distance Conditional logistic regression

Cosine – By closest distance Conditional logistic regression

Pearson – By closest distance Conditional logistic regression

Spearman – By closest distance Conditional logistic regression

Ensemble

Bootstrap – Random Logistic regression

Jackknife – Random Logistic regression

comes after adjustment using expert selection (expertPS) 
matching have been published [34]. We reproduced the 
results from expertPS and compared them against other 
confounder control methods. Variables included demo-
graphic factors and concepts identified from clinical text 
using a validated text-processing pipeline [35,36] based 
on the Unified Medical Language System [37] biomedi-
cal controlled vocabularies. We distinguished concepts 
before and after index time (i.e., first mention of cilo-
stazol). Rare pre-exposure concepts present in less than 
10% of the cohort were eliminated, resulting in a total of 
447 baseline variables. These concepts were numerically 
represented as binary variables where presence of the 
concept is denoted as 1 and 0 otherwise. Because age and 
gender were known confounders, they were forced into 
the PS or outcomes models where possible (i.e., hdPS, 
lassoPS, lassoMV, see the ‘Algorithms’ section).

Algorithms
We compared a total of 18 algorithms which can be 
grouped into: first, PS methods; second, DA method; 
third, similarity matching methods and fourth, ensem-
ble resampling methods (Table 1). PS methods require 

that PS be computed prior to fitting an outcome model. 
In contrast, DA methods fit an outcome model taking 
into account the large number of variables using high-
dimensional ML approaches. Similarity matching meth-
ods require that interpatient similarities be computed for 
selecting matched controls prior to fitting the outcome 
model. Lastly, controls could also be matched randomly 
multiple times by ensemble re sampling approaches.

PS methods
The four PS methods varied in the way confounder 
variables were selected: expertPS, filtering by some 
criteria (high-dimensional PS, hdPS [17]) and auto-
matic variable selection built into the ML algorithm 
(e.g., lasso [38] regression, random forest [RF] [39]). 
Baseline variables for the calculation of the PS should 
be selected depending on their position in the causal 
pathway, which is rarely fully known in practice. 
Therefore, expert knowledge for formulating a causal 
model such that IV and colliders are appropriately 
identified and excluded can be critical.

In expertPS [16], variables were selected based on 
prior knowledge. In the simulated datasets, the PS 



182 J. Comp. Eff. Res. (2016) 5(2) future science group

Research Article    Low, Gallego & Shah

were generated from known relationships, in other 
words, known confounders, colliders and IV (see 
Supplementary Data A Equation 2 for dataset 1 and 
Supplementary Data A Equation 4 for dataset 2). 
However, in line with best practices for formulat-
ing expertPS, IV and colliders, where known, were 
excluded [30,32]. In the real-world dataset, expert-based 
PS came from a previous analysis [34]. PS was gener-
ated from a logistic regression model of the selected 
variables. Note that expertPS, being a reference for 
comparison, is grouped under the baseline reference 
group.

In hdPS (Pharmacoepidemiology Toolbox version 
2.15), baseline variables above a minimum prevalence 
(5% patients) and ranked by univariate association 
with the outcome were selected and then fitted to a 
logistic model for PS estimation [17]. Because hdPS 
was designed for categorical variables, only categorical 
variables were considered for automatic selection. To 
handle the continuous variables, we adopted an inclu-
sive approach to include them in the PS model as long 
as they correlated with the outcome even if marginally 
(|r| > 0.05) [33]. This helped to exclude possible IV that 
were correlated with only exposure. Automatically 
selected variables and continuous variables selected by 
the above correlation filter were then entered into a 
logistic regression model ca lculating PS.

In addition, we computed PS using ML algorithms 
with automatic variable selection, namely lasso logistic 
regression [38] and RF [39] (R packages glmnet [40] and 
randomForest [41], respectively). Lasso logistic regres-
sion is a penalized form of logistic regression where a 
penalty factor shrinks low-weight variables toward zero 
such that these variables are essentially eliminated from 
the model, providing built-in variable selection [38]. The 
penalty factor was tuned by fivefold cross-validation 
using the ‘one-standard-error’ rule [40].

Here, RF was an ensemble model that aggregated 
predictions from 100 decision trees, each of which 
predicted a PS [20,42] from a bootstrap sample [39] of 
randomly selected variables [43]. Variables highly con-
tributory to the RF model have highly positive impor-
tance scores [39]. We used the default parameters in the 
randomForest package [41] except that the number of 
trees was set to 100 and the minimum node size was 
set to 5% of the sample size [44].

After estimating the PS, the second stage of the 
analysis used the PS either by covariate adjustment or 
matching. In covariate adjustment, the PS was included 
as a covariate in the final logistic regression relating 
exposure to outcome. In matching, each subject in the 
minor class (i.e., the smaller of the treated or untreated 
classes) was matched to one in the major class (i.e., the 
larger of the two treatment classes) with the most simi-

lar PS value within a caliper threshold. Unmatched 
subjects whose nearest neighbor exceeded the caliper 
were discarded. We used 1:1 greedy matching with-
out replacement, transformed PS to its logit form and 
set the caliper to 0.2 standard deviation of logit(PS) as 
recommended [45,46]. Finally, the matched samples, no 
longer independent observations after matching, were 
analyzed by conditional logistic regression.

DA method
Instead of calculating a PS for confounder adjustment, 
(e.g., lassoPS), lasso multivariate logistic regression [38] 
(lassoMV) captures the relationship between outcome 
and exposure while directly adjusting for many variables 
automatically adjusted by shrinkage, by passing the need 
to calculate a PS. Its 95% CI is generated by bootstrap-
ping [47] 100 times and taking the 2.5th and 97.5th 
p ercentiles as CI limits and the mean as the e stimate 
value.

Similarity matching methods
Similarity methods match patients by closeness as defined 
by a distance function. In this study, patient similarity 
was determined by six widely used distance or similar-
ity indices: Euclidean distance, Jaccard, Dice, cosine 
similarities, Pearson and Spearman rank correlations. To 
avoid distant matches, we set the caliper for a minimum 
of 0.1 similarity (or mean distance + 3 standard devia-
tions if Euclidean distance). The matched pairs, no lon-
ger independent observations after matching, were then 
analyzed by conditional logistic regression.

Ensemble resampling methods
Instead of a single model, multiple logistic models from 
multiple resamples were pooled such that the effect 
size is estimated from the average of the multiple beta 
coefficients. We performed multiple 1:1 resampling 
with replacement (bootstrap) or without replacement 
(jackknife) for 100 times. Each sample was analyzed 
by a logistic regression model creating an ensemble of 
100 models.

Baseline references
Additionally, we provided several baseline references 
for comparison: first, expertPS (see ‘PS methods’ sec-
tion, above) and second, random matching (without 
replacement) where each subject in the minor class was 
randomly matched 1:1 to a subject in the major class 
and then analyzed by logistic regression.

Assessment metrics
All methods were assessed on: difference in base-
line variables before and after matching (standard-
ized mean difference (SMD) [48] and p-value), bias 
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(i.e., estimated OR – true OR), standard error (SE) 
of estimated effect β and computing time (Table 1). 
Additionally, PS methods were qualitatively assessed 
by the overlap of their PS distributions before and after 
matching; methods with automatic variable selection 
(hdPS, lassoPS, rfPS and lassoMV) were assessed for 
correct selection of baseline variables.

Results
We present results on the efficacy of 18 methods of auto-
mated confounder control including: first, propensity 
score methods; second, direct adjustment; third, patient 
similarity methods and fourth, ensemble resampling on 
two simulated and one real-world EHR dataset.

Simulated datasets 1 & 2
Performance summary
Tables 2 & 3 show the performance of the 18 methods 
on the two simulated datasets. The means and stan-
dard deviations (in parentheses) from 1000 simulations 
are reported. Random matching produced a small bias 
(0.09–0.12) compared to the crude bias of 0.41 to 0.44 
without any adjustment. ExpertPS in which PS was 
used as a covariate for adjustment had the least bias 
(0.07), while expertPS used for matching instead of 
covariate adjustment had a relatively large bias (0.25–
0.26). ExpertPS’s relatively poor performance was due 
to a poor linear fit in modeling PS when the generative 
model contained quadratic terms and two-way inter-
actions (Supplementary Data A Equations 2 & 4). The 
reported times for expertPS refer to the computing 
times of the logistic models and did not include time 
for expert consultation, which was not necessary as the 
causal structure was known for the simulated datasets.

All PS methods had similar performance, although 
hdPS stood for its low bias (0.09–0.13), low SE 
(0.20–0.32), large sample size (1626–1748) and rea-
sonably fast computing time (1.1–5.1 s). When PS was 
used for covariate adjustment instead of matching, 
all the PS methods (expertPS, hdPS, lassoPS, rfPS) 
c onsistently resulted in smaller biases.

The performance of similarity methods did not vary 
much (with biases between 0.11 and 0.21), although Jac-
card, Dice and cosine similarities were slow (8.4–12.4 s) 
as they were implemented off-the-shelf and had not 
been optimized for speed.

Ensemble resampling methods had small biases 
(0.09–0.11) but were the slowest due to resampling 
100 times. Bootstrapping suffered from a larger loss of 
subjects (1553–1643), which is a known drawback of 
sampling with replacement [49].

Overall, top performers were hdPS, lassoMV DA 
and ensemble resampling which were consistently clos-
est to the true OR (bias = 0.09–0.12) with the narrow-

est CI (SE = 0.20–0.34) and the least loss of subjects 
(n = 1553–1998). All methods generated 95% CI that 
always contained the true OR.

Balance of baseline variables
Baseline variables were considered balanced between 
the exposed and matched controls groups, if they had 
high p-values (i.e., low -log

10
 p-values) and low absolute 

SMD (Figure 1A, B, D & E). As expected, PS methods 
balanced the baseline variables well unlike the other 
methods. An exception was hdPS whose p-values and 
SMD indicated that the baseline variables were almost 
similar before and after matching. Note that IV x

7
 was 

left out by expertPS and hdPS by design; hence, x
7
 was 

not balanced after matching.
Balance of baseline variables between exposed and 

matched controls in simulated datasets 1 and 2 for 
dataset 2.

Variables selection by automated methods
Recall that in the theoretical models for dataset 1, 
variables x

1
–x

7
 (Supplementary Data A Equation 2), 

and in dataset 2, variables x
1
–x

7
, x

11
, x

12
, x

13
 and x

14
 

(Supplementary Data A Equation 4) were used to calcu-
late the PS. Of the PS methods with automatic variable 
selection (i.e., hdPS, lassoPS and rfPS), lassoPS and 
rfPS selected the correct variables most of the times 
(Figure 1C & F). Although lassoPS correctly left out the 
binary noise variables x

51
–x

100
, it occasionally picked up 

continuous noise variables x
23

–x
50

. rfPS often selected 
additional variables (e.g., x

9
, x

19
–x

22
), especially those 

strongly correlated with important variables – a known 
artifact of RF [50].

hdPS was the least selective, frequently selecting 
noise variables x

51
–x

100
 (Figure 1F). Because hdPS could 

automatically select only categorical variables, continu-
ous variables were separately handled by a correlation 
filter that we introduced (|r| > 0.05, see ‘Methods’ sec-
tion). Our correlation filter had correctly excluded the 
continuous noise variables x

23
–x

50
, IV x

7
 and colliders 

x
19

–x
22

 (Figure 1C & F).
lassoMV was the most selective, selecting fewer vari-

ables than expected but often correctly excluding noise 
variables x

23
–x

100
 (Figure 1C & F).

Comparison of PS distributions
After matching, the PS distributions of controls 
compared well with those of the exposed group 
(Supplementary Data B).

Dataset 3: cilostazol users versus nonusers
We applied all 19 methods to a real-world dataset where 
cilostazol users were followed for increased odds of 
developing 20 major adverse cardiovascular (MACE) 
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Table 2. Performance in means (standard deviations) of the 18 confounder control methods in 
simulated dataset 1.

Confounder control 
method

Estimated OR Standard error Bias Sample size used Computing time

Baseline True OR ≈ 0.70     

Random matching 0.74 (0.23) 0.31 (0.02) 0.12 (0.09) 1863 (44) 0.2 (0.05)

ExpertPS_match 0.65 (0.30) 0.45 (0.10) 0.26 (0.23) 1333 (48) 0.9 (0.2)†

ExpertPS_adjust 0.67 (0.22) 0.33 (0.02) 0.07 (0.05) 2000 (0) 0.9 (0.2)†

PS methods 

hdPS_match 0.70 (0.24) 0.32 (0.03) 0.13 (0.10) 1748 (104) 1.1 (0.4)

hdPS_adjust 0.69 (0.21) 0.30 (0.02) 0.09 (0.07) 2000 (0) 1.1 (0.4)

lassoPS_match 0.67 (0.26) 0.39 (0.04) 0.20 (0.16) 1199 (47) 1.0 (0.3)

lassoPS_adjust 0.66 (0.22) 0.34 (0.02) 0.12 (0.09) 2000 (0) 1.0 (0.3)

rfPS_match 0.68 (0.26) 0.39 (0.04) 0.19 (0.15) 1237 (44) 0.7 (0.3)

rfPS_adjust 0.66 (0.22) 0.34 (0.02) 0.11 (0.08) 2000 (0) 0.7 (0.3)

Direct adjustment

lassoMV 0.72 (0.23) 0.30 (0.04) 0.10 (0.08) 2000 (0) 1.1 (0.3)

Similarity methods

Euclidean 0.70 (0.26) 0.37 (0.04) 0.17 (0.14) 1336 (31) 0.2 (0.07)

Jaccard 0.66 (0.22) 0.34 (0.02) 0.11 (0.08) 1361 (32) 10.4 (1.3)

Dice 0.75 (0.29) 0.37 (0.04) 0.20 (0.15) 1361 (32) 8.4 (0.9)

Cosine 0.74 (0.28) 0.37 (0.04) 0.19 (0.15) 1359 (32) 8.5 (0.8)

Pearson 0.75 (0.28) 0.37 (0.03) 0.20 (0.15) 1340 (40) 1.2 (0.2)

Spearman 0.76 (0.30) 0.37 (0.04) 0.21 (0.17) 1316 (40) 1.3 (0.2)

Ensemble

Bootstrap 0.73 (0.23) 0.31 (0.02) 0.11 (0.08) 1863 (44) 18.2 (1.37)

Jackknife 0.75 (0.23) 0.34 (0.02) 0.11 (0.08) 1553 (26) 16.1 (1.6)
†The reported times for expertPS refer to the computing times of the logistic models and did not include time for expert consultation, which 
was not necessary as the causal structure was known for the simulated datasets. 
OR: Odds ratio.

and major adverse limb events (MALE) compared with 
nonusers [34]. The PS methods except hdPS balanced 
the baseline variables relatively well (Figure 2A & B). 
All PS methods produced comparable PS distributions 
after matching (Figure 2C).

Balance of baseline variables between exposed and 
matched controls in dataset 3.

For the 20 outcomes followed, the OR and their 95% 
CI (Supplementary Data D) are available as individual 
forest plots (Supplementary Data C) as well as summa-
rized into a bubble plot (Figure 3), where each bubble is 
colored by their estimated effect size (i.e., β = ln[OR]) 
and sized by their CI. Pronounced outcomes with large 
effect sizes and narrow CI (e.g., MALE and revascu-
larization, shown as intensely colored small bubbles), 
were less affected by the choice of method, retaining 
the same color and size. In contrast, ambiguous out-
comes with small effect sizes and wide CI (e.g., sudden 

cardiac death, ventricular fibrillation, shown as faintly 
colored large bubbles), had different effects (i.e., col-
ors) depending on the method used. Compared with 
the results obtained by conventional expertPS used in 
the previous study [34] (first row) or unadjusted OR 
(second row), hdPS, Pearson, lassoMV and ensemble 
sampling (bootstrap and jackknife) produced similar 
results (i.e., bubbles were colored and sized similarly). 
lassoPS and rfPS had the worst performance with 
highly negative beta coefficients when positive values 
were expected (Figure 3; Supplementary Data C & D). 
One possible explanation may be the misestimated PS 
used for covariate adjustment or matching.

Discussion
In this study, we demonstrated that several high-dimen-
sional methods provide comparable alternatives to the 
current standard, expertPS, for confounder adjust-
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Table 3. Performance in means (standard deviations) of the 18 confounder control methods in 
simulated dataset 2.

Confounder 
control method

Estimated OR Standard error Bias Sample size 
used

Computing time

Baseline True OR ≈ 1.63     

Random 
matching

1.55 (0.33) 0.20 (0.01) 0.09 (0.07) 1998 (7) 0.2 (0.07)

ExpertPS_match 1.76 (2.01) 0.38 (0.11) 0.25 (0.25) 1231 (47) 1.7 (0.4)†

ExpertPS_adjust 1.48 (0.36) 0.23 (0.01) 0.07 (0.05) 2000 (0) 1.7 (0.4)†

PS methods 

hdPS_match 1.39 (0.32) 0.22 (0.01) 0.13 (0.10) 1626 (108) 5.1 (1.0)

hdPS_adjust 1.38 (0.28) 0.20 (0.01) 0.11 (0.08) 2000 (0) 5.1 (1.0)

lassoPS_match 1.41 (0.40) 0.27 (0.02) 0.16 (0.12) 1117 (46) 2.2 (0.5)

lassoPS_adjust 1.39 (0.33) 0.23 (0.01) 0.12 (0.09) 2000 (0) 2.2 (0.5)

rfPS_match 1.39 (0.36) 0.25 (0.02) 0.15 (0.12) 1256 (47 2.4 (0.5)

rfPS_adjust 1.38 (0.31) 0.22 (0.01) 0.12 (0.08) 2000 (0) 2.4 (0.5)

Direct adjustment

lassoMV 1.54 (0.33) 0.19 (0.02) 0.08 (0.06) 2000 (0) 5.6 (0.9)

Similarity methods

Euclidean 1.47 (0.39) 0.25 (0.02) 0.15 (0.11) 1328 (22) 0.4 (0.09)

Jaccard 1.56 (0.36) 0.22 (0.01) 0.12 (0.09) 1604 (18) 12.4 (2.2)

Dice 1.56 (0.37) 0.22 (0.01) 0.12 (0.09) 1604 (17) 10.2 (1.7)

Cosine 1.55 (0.39) 0.22 (0.01) 0.12 (0.09) 1606 (18) 10.3 (1.8)

Pearson 1.56 (0.38) 0.23 (0.01) 0.12 (0.09) 1582 (20) 1.6 (0.3)

Spearman 1.56 (0.39) 0.23 (0.01) 0.12 (0.09) 1555 (21) 1.9 (0.3)

Ensemble

Bootstrap 1.57 (0.34) 0.23 (0.01) 0.09 (0.07) 1643 (10) 19.9 (2.6)

Jackknife 1.55 (0.33) 0.20 (0.01) 0.09 (0.07) 1998 (7) 22.9 (2.8)
†The reported times for expertPS refer to the computing times of the logistic models and did not include time for expert consultation, which 
was not necessary as the causal structure was known for the simulated datasets.
OR: Odds ratio.

ment. In particular, lassoMV DA and ensemble models 
based on multiple random resampling can adjust for 
large number of confounders without the use of PS and 
in some instances, even outperform expertPS, which 
sometimes assumes an overly simplistic linear model.

lassoPS estimated highly negative effect sizes, under-
scoring a known PS limitation that a misspecified PS 
may introduce bias particularly when IV and collid-
ers are present [21,32,51,52]. Moreover, a misspecified PS 
model can also reduce sample size due to poor match-
ing and further reduce efficiency [53]. Standard errors 
from PS matching also tended to be larger than those 
from PS adjustment, possibly due to the reduced sample 
size. If use of PS-based methods is desired, then fully 
automating PS calculation without expert involvement 
remains a challenge. There have been recent develop-
ments that generate covariate-balancing PS [21,54] auto-

matically. Another solution may be an interactive inter-
face that allows expert assessment and input of baseline 
variables for real-time s ensitivity analysis and iterative 
c orrections. 

Similarity methods provided middling perfor-
mance. One key drawback of using similarity is its 
poor performance in high-dimensional space. As the 
number of dimensions increases, subjects become 
increasingly equidistant and thus, similarity meth-
ods become increasingly indiscriminant at selecting 
closest neighbors [55]. Variable selection and caliper 
tuning may optimize the performance of similarity 
methods. In using unweighted similarity metrics, a 
downside is each variable having equal contribution 
to similarity instead of having more important vari-
ables weigh more in favor of less important ones. More 
sophisticated distance metrics including weighted 
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Figure 1. Balance of baseline variables between exposed and matched controls in simulated datasets 1 and 2. Heatmaps showing 
the balance of baseline variables between exposed and matched controls groups in terms of (A) -log 10 p-values and (B) standardized 
mean difference in dataset 1. Lighter cells indicate smaller values while darker cells indicate bigger values. (C) Heatmap showing 
fraction of times the variables were considered for confounder control method in dataset 1. Darker cells show variables that were 
selected more frequently. Heatmaps (D–F) show the respective equivalent of heatmaps (A–C)
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Figure 2. Balance of baseline variables between exposed and matched controls in dataset 3. Heatmaps showing the balance 
of baseline variables between exposed and matched controls groups in terms of (A) -log 10 p-values and (B) standardized mean 
difference in dataset 3. Lighter cells indicate smaller values while darker cells indicate bigger values. (C) PS distributions of exposed 
(red) and control (black) groups before and after matching by PS methods in dataset 3.
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distances learned from the data may perform better, 
especially when the number of variables is large [18]. 
Thus, lassoMV may be an overall good alternative. 
By adopting a linear model framework and allowing 
for DA, lassoMV is highly amenable to interpretation 

and is already widely used in genetic e pidemiology for 
h andling millions of genetic va riables [56,57].

Ensemble methods may be less interpretable due to 
bundling of multiple models and are computationally 
intensive (less so with parallel computing). Variables 
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Figure 2. Bubble plot of estimated effect size β (bubble color) and their 95% CI (bubble size) across 14 methods (rows) and 20 
outcomes (columns) in dataset 3. Small intensely colored bubbles indicate significant effects with narrow 95% CI. Because PS methods 
used both covariate adjustment and matching, results from covariate adjustment are overlaid on the results from matching (See 
Supplementary Data C for related forest plots and Supplementary Data D for numerical values).
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are ‘weighted’ depending on how frequently they are 
selected in each model making up the ensemble. Ran-
dom resampling procedures fared well despite not 
balancing the confounders. This may occur because 
multiple random sampling mimics a Monte Carlo 
process in which multiple estimates from multiple 
random samples are aggregated such that the aggre-
gated value approximates the true parameter of inter-
est [58]. An alternate explanation is that the aggregate 
of multiple models may also be viewed as an ensem-
ble model in which errors from multiple constituent 
models are eventually averaged out [59–61] such that 
the overall variance of the ensemble model decreases 
as the number of constituent models increases [60]. In 
other words, the Monte Carlo process or ensemble 
model may be viewed as a meta-analysis of mul-
tiple studies where one may arrive at an accurate 
estimate of effect size given a large number of stud-

ies. We name such approaches as aggregate of ran-
dom matched samples (ARMS). While ARMS is a 
promising choice in this study, additional research 
(e.g., parameter tuning) to optimize performance 
and increase our u nderstanding of its strengths and 
weaknesses is necessary.

Among the base cases, random matching performed 
as well as expertPS (covariate adjustment). While this 
result may appear surprising, we note that expertPS 
has been shown to approximate random match-
ing [28]. Although our expertPS model could have been 
improved by accommodating the nonlinear variables 
given the known nonlinear causal structure, we wanted 
to emulate the common practice of assuming a linear 
PS model when the causal structure is unknown, simi-
lar to the previous comparison study [19]. Consequently, 
the relatively large bias associated with expertPS in 
both simulated datasets demonstrates the limitations 
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of expertPS even when the causal structure and true 
effect sizes are known. In light of calls to reconsider 
and objectively assess PS [28], we also explore methods 
al ternate to PS in this study.

There are several study limitations that warrant future 
research. First, this study’s scope is limited to cohort 
studies because case–control studies will require dif-
ferent handling [62]. Second, we assumed strong ignor-
ability, a condition for PS to have unbiased estimates 
whereby the expected error due to unmeasured con-
founding is zero [63]. However, given the presence of 
unmeasured confounders especially in real-world data-
sets, such an assumption may not always be valid. One 
solution may be to detect and assess unmeasured con-
founding using maximal ancestral graphs and sensitivity 
analysis [31,64]. Third, we re-used a previously simulated 
dataset [19–21], which had only ten variables. However, we 
included a second simulated dataset with 100 variables 
to assess performance of methods in the presence of a 
large number of variables. Fourth, both simulated data-
sets used nonlinear and nonadditive generative models. 
Additional settings with other data-generating models 
will need to be investigated. Fifth, we only studied two 
ways of using PS (matching and covariate adjustment) 
and did not investigate other approaches such as Inverse 
Probability of Treatment Weight estimators [29,65], which 
would be a fruitful area of further study.

Conclusion & future perspective
To leverage the scale and richness of EHR for clini-
cal decisions, particularly in emergencies and in the 
absence of evidence from randomized control trials, 
timely and accurate synthesis of evidence through 
automated methods is necessary. Toward that vision, 
advances have been made with automatic cohort selec-
tion via electronic phenotyping [13], natural language 
processing [66,67], patient similarity [8] and automatic 
confounder control by PS methods [17,19–22,24–27]. This 
study supplements automation efforts by demonstrat-
ing that there exist automated alternatives to expert-
based PS, including non-PS-based methods, for con-
founder control. Actual choice may depend on user 
preference for interpretable linear models (e.g., las-
soMV DA) or ‘meta-analysis’ of multiple models of 
matched samples used in ensemble resampling.

We emphasize that our end goal is not to auto-
mate clinical decisions but to facilitate the process 
of extracting personalized evidence-based decisions 
from locally relevant and readily available EHR. 
a valuable alternative when evidence is lacking or 
inaccessible from established sources. The success of 
real-time EHR-based evidence for clinical decision 
support will depend on additional factors such as 
usability, transparency, interpretability and interac-

tivity. Thus, we envision a transparent and interactive 
system that will allow real-time sensitivity analysis 
and iterative corrections for the user to assess the 
quality and generalizability of the evidence. The need 
for an expert review, even if subjective at times, can-
not be overstated and it is possible that in the future, 
we may have ‘epidemiology consultations’ analogous 
to s pecialty  consultations today.

By demonstrating, there exist automated confounder 
control methods for binary and continuous variables, 
our study is generalizable to many datasets including 
structured codes and unstructured text in EHR and 
other health databases. Extraction of features from 
clinical text – though challenging, and not widespread 
yet – is likely to unlock massive amounts of clinical 
information in the near future. As we expect more 
data to become available especially with advances in 
information retrieval, automated confounder control 
methods will be critical to faster and smarter clinical 
decision support.
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