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Abstract

Humans and chimpanzees both exhibit a diverse set of tool use skills which suggests selection for 

tool manufacture and use occurred in the common ancestors of the two species. Our group has 

previously reported phenotypic and genetic associations between tool use skill and gray matter 

covariation, as quantified by source-based morphometry (SBM), in chimpanzees. As a follow up 

study, here we evaluated repeatability in heritability in SBM components and their phenotypic 

association with tool use skill in two genetically independent chimpanzee cohorts. Within the 

two independent cohorts of chimpanzees, we identified 8 and 16 SBM components, respectively. 

Significant heritability was evident for multiple SBM components within both cohorts. Further, 

phenotypic associations between tool use performance and the SBM components were largely 

consistent between the two cohorts; the most consistent finding being an association between tool 

use performance and an SBM component including the posterior superior temporal sulcus (STS) 

and superior temporal gyrus (STG), and the interior and superior parietal regions (p < 0.05). 

These findings indicate that the STS, STG, and parietal cortices are phenotypically and genetically 

implicated in chimpanzee tool use abilities.
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1. Introduction

Besides having an unusually large brain, humans have evolved modifications to the anatomy 

of specific brain regions and networks of connectivity that reflect our unique technological 

and cognitive specializations. Specifically, a number of brain regions within the frontal 

and parietal cortex, have been implicated in the planning and execution of complex praxic 

functions, particularly as it relates to the manufacture and use of tools (Johnson-Frey, 2004; 

Lewis, 2006; Vaesen, 2012). Though humans exhibit a wide range of complex tool making 

and use skills, the capacity to manufacture and use tools is a shared behavioral trait between 

humans and a number of other species (Boysen et al., 1999; Candland, 1987; Fragaszy 

et al., 2004; Mendes et al., 2007; Moura and Lee, 2004; Phillips, 1998; Shumaker et al., 

2011; Van Schaik et al., 2003; Visalberghi, 1990). For instance, among nonhuman primates, 

chimpanzees exhibit an assorted set of tool use skills in nature that reflect behavioral 

adaptations to ecological variation in available food resources. As a consequence, there is 

a diverse set of different types of tool use observed within and between different groups 

or communities of chimpanzees, such as termite fishing, ant dipping, algae dipping, nut 

cracking, wade dipping, pestle pounding, use of spears, and others (Boesch and Boesch, 

1990; Boesch et al., 2017; Pruetz and Bertolani, 2007; Sanz and Morgan, 2007; Whiten 

et al., 2001; Whiten et al., 1999). These observations suggest there was strong selection 

for increasing tool manufacture and use skills in the common ancestor of humans and 

chimpanzees prior to their divergence ~ 6 million years ago which may have coincided with 

region specific changes in brain structure and organization, such as lateralization in structure 

and function (Bradshaw and Rogers, 1993; Gibson and Ingold, 1993; Van Schaik et al., 

1999).

Though tool use is well documented in chimpanzees and other primate species, the genetic 

and neural foundation of tool use in nonhumans remains a topic of significant theoretical 

and empirical interest (Hecht et al., 2013; Peeters et al., 2009). Of specific interest to this 

study is the recent report by Hopkins et al. (2019) who examined gray matter covariation 

in chimpanzee brains using source-based morphometry (SBM). As described in Mulholland 

et al. (2020), SBM is a multivariate approach that utilizes information about relationships 

among voxels and then groups those carrying similar information across the brain. The 

resulting components represent similar covariation networks between subjects. The SBM 

produces a weighted score at the individual level that reflects each subject’s relative 

contribution to the creation of each spatial component. Hopkins et al. (2019) identified 

24 gray matter components in a sample of 226 chimpanzees, and further found that (1) there 

was significant heritability for 18 of the 24 SBM components, and (2) measures of tool use 

skill in the chimpanzees were both phenotypically and genetically associated with two of 

the components, suggesting a shared neuroanatomical and genetic mechanism underlying 

their expression. However, as noted by Hopkins et al. (2019), one limitation in the study 

was that, within the chimpanzee sample, there were two cohorts of apes that (1) differed 

in sample size (77 versus 139 subjects) and (2) were scanned on magnets with different 

field strengths (1.5 Tesla versus 3 Tesla). Scanner magnet strength, as well as the types of 

post image processing of the scans, can influence segmentation of gray and white matter, 

which may influence the identification of brain regions that contribute to the creation of 
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each component, as well as create potential artifacts in some components (i.e., were found 

on brain edges, or overlapped into regions not containing gray matter; see components 20, 

22–24 in Hopkins et al. 2019 for examples). Since the 2015 NIH moratorium on biomedical 

research in chimpanzees, no new MRI data have been collected from the chimpanzees. 

However, we can utilize this important archival resource to test new hypotheses or address 

limitations of previous research.

The aims of the current study were two-fold and designed to address some of the previous 

limitations of the Hopkins et al. (2019) report. First, studies have shown that the inclusion 

and order of various preprocessing methods, such as brain extraction, bias correction, and 

denoising, can affect subsequent brain segmentation and analyses. For example, in studies of 

humans, brain extraction and bias correction resulted in more accurate warping of native 

space scans to template brains during voxel-based morphometry (Acosta-Cabronero et 

al., 2008). In addition, segmentation of gray and white matter was more accurate after a 

non-local means filter removed Rician noise (Eskildsen et al., 2011). For these reasons, 

we updated the preprocessing methods employed with the chimpanzee sMRI scans and 

provided details on these new post-image processing methods. Then we reexamined and 

described gray matter covariation in the chimpanzee brain using SBM and reported the 

heritability for each gray matter component within the entire sample. In addition, we 

tested for phenotypic correlations between tool use performance and the SBM components 

identified in the analysis after controlling for sex, age and scanner magnet.

Second, we evaluated the repeatability of the phenotypic association between tool use skill 

and the SBM gray matter components. Repeatability in findings in the behavioral, brain, and 

genomic sciences has become a topic of increasing interest (Baker, 2016a, 2016b; Lazic, 

2010; McArthur, 2019) and here we took advantage of two population of apes to address 

this important issue. Specifically, as noted above, there were two distinct populations of 

chimpanzees in the Hopkins et al. (2019) report that (1) differed in sample size (77 versus 

139 subjects) and (2) were scanned on magnets with different field strengths (1.5 Tesla 

versus 3 Tesla). Importantly, these two cohorts were also genetically isolated from each 

other. That is to say, the creation of these two cohorts of captive chimpanzees breeding 

populations were derived from different founder animals with no interbreeding taking place 

between the facilities that managed these apes. Thus, the two chimpanzee cohorts are 

genetically isolated from each other and, as we have argued before (Hopkins, Mareno 

and Schapiro, 2019; Hopkins et al., 2022), this offered a unique opportunity to evaluate 

repeatability in the phenotypic association between tool use skill and brain regions identified 

in the SBM components computed from within each cohort. To evaluate repeatability, 

separate SBM analyses were performed on the two chimpanzee cohorts. Because both 

the scanner magnet and the sample sizes differed between the two chimpanzee cohorts, 

we fully expected to find differences in the number of SBM components within each 

cohort. However, of specific interest was whether tool use performance measures were 

significantly associated with the weighted SBM scores derived for the SBM components 

within each cohort and, critically, if there was any overlap in the SBM components that 

were phenotypically associated with tool use skill between the two cohorts. Evidence of 

associations between tool use skill and brain regions that were common between SBM 
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components from the two cohorts would be evidence of independent replication in brain-

behavior associations.

2. Materials and methods

2.1. Subjects

The subjects included 216 captive chimpanzees (132 females and 84 males) from the 

National Center for Chimpanzee Care (NCCC) at The University of Texas MD Anderson 

Cancer Center (n = 139) or the Yerkes National Primate Research Center (YNPRC; n 
= 77). All subjects were housed in indoor/outdoor enclosures, with 24 h access to both 

areas, except during cleaning. All enclosures included climbing structures, bedding, and 

daily environmental enrichment. Carestaff fed the chimpanzees a diet of commercial 

primate chow and fresh produce twice per day and provided them with several daily 

foraging opportunities and ad libitum access to water. All procedures performed with the 

chimpanzees were approved by the local Institutional Animal Care and Use Committees and 

followed all recommendations by the Institute of Medicine and NIH policy for the ethical 

treatment of chimpanzees in research.

2.2. Image acquisition

The in vivo magnetic resonance imaging (MRI) scans were previously obtained between 

1996 and 2015 (ages 8–53; M = 26.90 SD = 10.66), and collection of the scans was 

coordinated with the chimpanzees’ annual physical examination to minimize the number 

of anesthesia events experienced by the apes. All MRI scans were acquired following 

YNPRC and NCCC standard procedures designed to minimize stress [as previously reported 

in Hopkins and Avants (2013), Hopkins et al. (2019), Mulholland et al. (2020)]. The 

animals were initially sedated with ketamine (10 mg/kg) or telazol (3–5 mg/kg), and then 

subsequently anaesthetized with propofol (40–60 mg/(kg/h)). Next, we transported each 

subject to the MRI scanning facility and placed them in a supine position in the scanner 

with their head in a human-head coil. Upon completion of the MRI, we singly housed 

each chimpanzee briefly (2–24 h), to permit close monitoring and safe recovery from the 

anesthesia, prior to returning them to their social group. The MRI data that support the 

findings of this study are available from the National Chimpanzee Brain Resource at https://

www.chimpanzeebrain.org.

Seventy-seven chimpanzees (all from YNPRC) were scanned using a 3.0 Tesla scanner 

(Siemens Trio, Siemens Medical Solutions USA, Inc., Malvern, Pennsylvania, USA). T1-

weighted images were collected using a three-dimensional gradient echo sequence (pulse 

repetition = 2300 ms, echo time = 4.4 ms, number of signals averaged = 3, matrix size = 

320 × 320, with 0.6 × 0.6 × 0.6 resolution). The remaining 139 chimpanzees (from NCCC) 

were scanned using a 1.5T G.E. echo-speed Horizon LX MR scanner (GE Medical Systems, 

Milwaukee, Wisconsin, USA). T1-weighted images were collected in the transverse plane 

using a gradient echo protocol (pulse repetition = 19.0 ms, echo time = 8.5 ms, number of 

signals averaged = 8, matrix size = 256 × 256, with 0.7 × 0.7 × 1.2 resolution).
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2.3. Post-image processing

Following acquisition, we processed all MRI data using an Apple iMac computer. The 

procedures, detailed below, were completed twice: once for the images acquired from 

the 1.5T scanner and again for those acquired from the 3.0T scanner. For each set 

of scans, following acquisition, we imported the raw DICOM files into 3D Slicer 4 

(www.3Dslicer.org) and converted each into NifTI format (Fedorov et al., 2012; Kikinis 

et al., 2014) for use with the various programs used during post-image processing. See Table 

1 for a summary of the updated preprocessing methods.

2.3.1. Skull stripping—First, we extracted the brain from the NifTI images using the 

Brain Extraction Tool (BET) function in the FMRIB Software Library (FSL; Oxford, UK). 

To ensure the entire skull was removed from the image without removing any portion of 

the brain, the fractional intensity thresholds for each subject ranged between 0.35 and 0.80 

(Jenkinson et al., 2005; Smith, 2002). The resulting brain-extracted images for each subject 

were saved as a compressed NiFTI file.

2.3.2. Bias correction—The skull stripped NifTI images were subsequently imported 

into 3D Slicer for N4ITK bias correction (Boyes et al., 2008; Tustison et al., 2010; Tustison 

and Gee, 2009; Tustison et al., 2010, 2014). This automated process uses a variation 

of the nonparametric non-uniform normalization approach to correct for illumination non-

uniformity in the image data, which can confound image analyses (Tustison et al., 2010). We 

used a spline distance of 50, a bias field of 0.15, and convergent threshold of 0.001 for all 

images. As before, the resulting bias-corrected images for each subject were saved as NiFTI 

files.

2.3.3. Denoising—Following bias correction, we denoised each image to improve image 

quality and performance of subsequent analyses. We used the MRI Denoising Package for 

MATLAB (R2015b; Mathworks, Natick, Massachusetts, USA) to denoise each scan using 

an optimized nonlocal means denoising filter (ONLM, Coupé et al. 2008). This program 

estimates the noise in the MRI data using the noise from the background. The resulting 

NiFTI files were saved for further processing.

2.3.4. Resampling and alignment—Following denoising, the scans were resampled at 

0.625 mm isotropic voxels when imported into ANALYZE 11.0 (AnalyzeDirect, Overland 

Park, Kansas, USA). Then we manually aligned each scan on the Anterior Commissure-

Posterior Commissure (AC-PC) axis and saved each in radiological space. To do so, we 

used a capsule placed during the imaging process as a directional marker for the left and 

right hemisphere. Finally, we used FSL to perform a 12-parameter affine linear registration 

(FLIRT, Jenkinson et al., 2002; Jenkinson and Smith, 2001) of the AC-PC aligned scan to a 

chimpanzee template brain (Hopkins and Avants, 2013).

2.3.5. FSL-VBM pipeline—Next, we ran each AC-PC aligned and affine registered 

brain scan through the FSL-VBM pipeline (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLVBM). 

This process included (1) segmentation of each scan into gray and white matter, (2) linear 

registration of each scan to a standard chimpanzee template (Hopkins and Avants, 2013), 
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(3) creation of a study-specific gray matter template (Andersson et al., 2007; Douaud et al., 

2007; Smith et al., 2004), (4) non-linear registration of each subject’s gray matter image to 

the study-specific template, (5) modulation of the gray matter volume by use of a Jacobian 

warp to correct for local expansion or contraction of gray matter within each voxel, and (6) 

smoothing with an isotropic Gaussian kernel with a sigma of 2 mm.

2.3.6. Linear registration—Finally, each resulting image was reregistered to the 

chimpanzee template brain (Hopkins and Avants, 2013) using a 6-parameter rigid body 

linear registration in FSL (FLIRT, Hopkins and Avants, 2013; Jenkinson et al., 2002; 

Jenkinson and Smith, 2001), ensuring that the 1.5T and 3T scans had the same orientation 

and voxel dimensions. We used these scans in the subsequent source-based morphometry 

analysis.

2.4. Tool use performance assessment

Tool use performance was quantified in 202 chimpanzees in 2015 using a device that was 

designed to simulate termite fishing in wild chimpanzees. Details of the testing method 

have been described in detail elsewhere (Hopkins et al., 2019, 2015). Briefly, a PVC pipe 

was attached to the subject’s home cage that was blocked at one end and had a small 

opening on the opposite end. Food with an adhesive quality was placed inside the PVC 

pipe and in order to obtain the food, the chimpanzee had to insert a small lollipop stick 

into the hole, then extract the stick and consume the food that adhered to the stick. The 

latency to successfully insert the stick was recorded on 50 responses for each chimpanzee 

(measured from the time the subject initiated an attempt to insert the tool with one hand 

and ended when the chimpanzee successfully inserted and removed the tool; Hopkins et al. 

2019, 2015). The average latency of the 50 responses served as the outcome measure of 

interest. Because the two chimpanzee cohorts had different experiences with this tool use 

device, within the NCCC and YNPRC cohorts, the average latency scores were converted 

to standardized z-scores and we removed five chimpanzees from all subsequent analyses 

that were identified as outliers within each cohort (those with z-scores > 3.0). This included 

three individuals within the NCCC and two in the YNPRC cohort, thereby reducing the 

sample to 195 chimpanzees for all further analyses. The remaining 197 chimpanzees were 

between 5–50 years of age (Mean = 24.80, SD = 10.39) when tool use data performance 

was collected. The majority of the tool use data were obtained within 2 to 4 years of the 

acquisition of their MRI scans.

2.5. Statistical analyses: source-based morphometry

We ran three source-based morphometry analyses using the Group ICA of fMRI Toolbox 

(GIFT; http://icatb.sourceforge.net) in MATLAB R2015b. See Xu et al. (2009) and Gupta 

et al. (2019) for detailed descriptions of the computational methods used to develop the 

SBM analysis and its applications. For the first SBM (reported previously in Hopkins et 

al., 2020), we imported the smoothed, registered gray matter volumes for each subject 

(N = 216) and allowed the software to estimate the number of components based on 

the independent component analysis using a neural network algorithm. After estimation, 

the program calculates the parameters and creates a 4D volume containing each of the 

independent components. At the individual level, SBM produces a weighted score that 
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reflects each subject’s relative contribution to the creation of each spatial component. To 

examine the brain regions contributing to each component, we registered the component 

maps (scaled to standard deviation units and z-scores) to the standard chimpanzee template 

brain and set the z-score threshold at |z| ≥ 3.00 as has been used in previous studies 

in humans and chimpanzees (see Hara et al. 2012, Hopkins et al. 2019, Rogers et al. 

2010, Xu et al. 2009). All voxels reaching this threshold were considered significant. The 

volume of each resulting brain region was then measured using the region-of-interest tool 

in ANALYZE 11.0. We then repeated the SBM analysis described above separately for 

each colony (NCCC n = 139; YNPRC n = 77). We then visually inspected the resulting 

colony specific SBM components for overlap in brain regions. If any components appeared 

to overlap between the two colonies, we performed a conjunction analysis. To determine 

the degree of similarity, we binarized and thresholded the component from each colony > 

3.0, then added the binary volumes together to determine the regions that were overlapping 

between these two components.

2.6. Heritability, and phenotypic and genetic association between tool use skill and SBM 
components

We used the SOLAR (Sequential Oligogenic Linkage Analysis Routines) software package 

in two different ways. First, to estimate the heritability of brain components identified in 

the SBM analysis. Second, to assess genetic associations between tool use skill and SBM 

components. SOLAR takes into account the entire chimpanzee pedigree for these analyses; 

specifically, the identification codes of offspring, dam/mother and sire/father (when known) 

dating as far back as possible into the inception of each chimpanzee colony were entered 

into a file as well as their sex and rearing history. These data were then imported into 

SOLAR to create the pedigree structure. The pedigree structure of the entire chimpanzee 

sample has been published elsewhere (Hopkins et al., 2015) with some animals being fourth 

generation related to each other.

Prior to testing heritability, the phenotype values were normalized (due to high kurtosis) 

using an inverse normal transformation function within SOLAR. Covariates included age, 

sex, and scanner magnet. We used a polygenic model that estimated the influence of additive 

genetic variation (based on the pedigree) and the covariates, calculated heritability and its 

associated p-value, as well as the proportion of variance accounted for by the final covariates 

included in the model (see Almasy and Blangero 1998 for details about the theoretical 

background and calculations behind SOLAR). The significance level for the heritability of 

each SBM component was set at p ≤ 0.05. As we have previously reported, tool use skill 

is significantly heritable in chimpanzees (Hopkins et al., 2019; Hopkins et al., 2015) and 

is phenotypically and genetically associated with variation in gray matter variation in the 

STS (Hopkins et al., 2019). To evaluate whether these results would replicate using the 

new preprocessing steps, we initially calculated partial correlation coefficients between the 

tool use skill measure and the weighted scores for each of the 19 combined sample SBM 

components, while statistically controlling for relatedness, scanner, sex, and age. SOLAR 

was then used to test for genetic associations between tool use skill and the related SBM 

components identified above. We also tested for phenotypic associations between tool use 

skill and the separate SBM components derived for the NCCC and YNPRC cohorts. As 
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before, we performed partial correlation coefficients between the tool use skill measure and 

the weighted scores for each SBM component within the NCCC and YNPRC cohorts. Sex 

and age were statistically controlled for in these analyses.

3. Results

3.1. Combined sample: source-based morphometry

The SBM analysis identified 19 independent components (groups of gray matter voxels that 

are highly correlated with each other across subjects), and calculated an individual weighted 

score reflecting each subject’s contribution to each component. Provided in Table 2 is a 

full anatomical description of each component and their respective volumes. The largest 

regions in each component are as follows: 1. Supramarginal gyrus, 2. middle and superior 

temporal cortex, 3. temporal pole, amygdala and fusiform, 4. cerebellar cortex, 5. superior 

parietal cortex, 6. precuneus and superior parietal cortex, 7. rostral middle frontal cortex, 

8. superior parietal cortex and paracentral, 9. lingual cortex, pericalcarine, and cuneus, 10. 

medial orbital frontal cortex, rostral anterior cingulate and the accumbens area, 11. rostral 

and caudal middle frontal cortex, 12. cerebellar cortex, 13. lateral occipital cortex and 

inferior parietal, 14. anterior superior, middle, and inferior temporal cortices, 15. cerebellar 

cortex, 16. cerebellar cortex, 17. precuneus, inferior parietal and lateral occipital cortex, 

18. accumbens area, caudate, putamen, and pallidum, and 19. superior frontal cortex and 

anterior cingulate cortex. Supplementary materials include 3D renderings displaying the 

positive and negatively weighted regions of each component.

3.2. Combined sample: heritability

We used quantitative genetic methods to determine the degree of heritability in the weighted 

scores for the components identified in the SBM analysis. We found that 15 of the 19 

SBM components were significantly heritable at the p ≤ 0.05 level. The covariates (sex, 

age at MRI, and scanner magnet) explained, on average, 30% of the variability in weighted 

SBM component scores. The heritability (h2) ranged from 0.18 to 0.87, with the highest 

heritability revealed for component 1 (h2 = 0.87, p ≤ 0.001), followed by component 2 (h2 

= 0.62, p ≤ 0.001), and the lowest heritability revealed for component 12 (h2 = 0.18, p = 

0.10) (see Table 3 and Fig. 1a). Significant covariate effects of scanner magnet were found 

for 16 of the 19 components, which was not surprising as the scanner magnet influences 

gray and white matter contrast. Age accounted for a significant proportion of variance in 12 

components, while sex accounted for a significant proportion of variance in 7 components. 

Table 3 shows the heritability estimates and contributions of each covariate for each of the 

19 SBM components. Shown in Fig. 1b and c are the heritability values for each SBM 

component within the NCCC and YNPRC cohorts. For the NCCC chimpanzees, 16 of 

the 19 SBM components derived from the combined sample were significantly heritable. 

By contrast, only 8 of the 19 SBM components derived from the combined sample were 

significantly heritable in the YNPRC cohort. Seven of the 19 SBM components were 

significant in both cohorts, including components 1, 2, 4, 10, 11, and 18.
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3.3. Combined sample: phenotypic and genetic association between tool use skill and 
SBM components

We initially performed partial correlation coefficients between the tool use performance 

data and the individual weighted scores for the 19 SBM components, while statistically 

controlling for relatedness, scanner, sex and age. Tool use performance was negatively 

associated with components 1 (partial r = −0.217, p = 0.003) and 14 (partialr = −0.180, 

p = 0.011) and positively associated with components 9 (partial r = 0.145, p = 0.045), 12 

(partial r = 0.160, p = 0.025) and 13 (partial r = 0.198, p < 0.004). Finally, using SOLAR, 

we tested for genetic associations between tool use skill and components 1, 9, 12, 13 and 

14. Significant genetic associations were only found between tool use skill and component 

1 (rho G = −0.546, se = 0.236, p = 0.044), while none of the remaining components were 

significant.

3.4. SBM analyses within the NCCC and YNPRC cohorts

The SBM analyses revealed 8 and 16 components for the NCCC and YNPRC cohorts, 

respectively (see Supplemental Materials). Regarding phenotypic associations between tool 

use performance and the SBM components within the YNPRC cohort, significant negative 

associations were found between the performance measures and components 1 (partial r = 

−.277, p = .026) and 15 (partial r = −.251, p = .043) (see Fig. 2 a and b). The brain region 

comprising YNPRC component 1 was bilateral posterior STS region, while component 15 

consisted of the middle and superior frontal gyrus (bilateral) (see Fig. 2 a and b). Within 

the NCCC, tool use performance was negatively associated with component 7 (partial r = 

−.213, p = .017) and positively associated with components 3 (partial r = +.224, p = .012) 

and 4 (partial r = +.285, p = .001 (see Fig. 3 a to c). Within the NCCC, brain regions 

comprising component 7 included bilateral STS and middle temporal gyrus. Brain regions 

within components 3 and 4 included inferior occipital lobe (bilateral) and lateral cerebellum 

(bilateral) (see Fig. 3a to c).

Of the SBM components associated with tool use performance within each cohort, 

component 1 within the YNPRC and component 7 within the NCCC showed considerable 

overlap in the brain regions comprising them (see supplementary materials). To determine 

the degree of similarity, we therefore performed a conjunction analysis by binarizing 

and thresholding components 1 (YNPRC) and 7 (NCCC) at > 3.0, then added the 

binary volumes together to evaluate the regions that were overlapping between these two 

components. As can be seen in Fig. 4, the posterior STS and superior temporal gyrus (STG) 

were the overlapping regions between these two components. We also performed a partial 

correlation coefficient between the standardized tool use performance measures within the 

YNPRC and NCCC colonies and the weighted scores for component 1 (YNPRC) and 

component 7 (NCCC) while controlling for age, sex and relatedness and found a significant 

negative association (partial r = −.193, p = .007). Thus, not surprising, chimpanzees that 

performed more poorly on the tool use task contributed less to the weighted scores for 

components 1 and 7, which both were comprised of the STS and STG regions.
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3.5. Post hoc analyses of the STS

As a means of offering a more direct interpretation of the results reported here, we 

performed two additional post-hoc analyses. First, for the STS/STG regions defined within 

the conjunction analysis (see Fig. 4), we created an object map and applied it to each 

chimpanzee’s smoothed modulated gray matter volumes on which the SBM analysis was 

performed. The modulated GM volume value reflect the amount of gray matter found within 

each voxel after application of the Jacobian warp. This generated an average amount of gray 

matter per voxel for the STS/STG regions for each subject. We then correlated these values 

with the tool use performance data for the entire sample and within each cohort. Average 

gray matter volume per voxel was negatively associated with tool use skill performance for 

the entire sample (partial r = −.191, p = .007) as well as within the NCCC (partial r = −.222, 

p = .011) and YNPRC (partial r = −.295, p = .016) cohorts separately.

As a follow-up to the SBM analysis, we used the software program BrainVisa to extract 

the STS and quantified the depth of the fold at 100 equally space locations along the 

anterior-posterior plane in the same sample of chimpanzees (see Fig. 5) (see Hopkins et 

al., 2022 for description). The more posterior regions of the STS partially overlap with the 

SBM regions most strongly associated with tool use skill in both cohorts (the combined 

C1_C7 components from the conjunction analysis). Therefore, we quantified the depth 

of the STS along the anterior-posterior plane and correlated these data with the tool use 

latency measures for the overall sample. To minimize the number of correlations, we 

reduced the number of fold measures along the anterior-posterior plane from 100 to 20 

by averaging every 5 depth values (STS1 to STS 20). Significant negative associations were 

found between tool use performance and STS regions 7 to 17; thus, chimpanzees with 

longer latencies had more shallow STS depth measures (see Fig. 6). We also examined the 

phenotypic and genetic correlation between the average depth measures for STS regions 7 to 

17 with the SBM component 1 weighted scores for the overall sample while controlling for 

scanner magnet, sex and age (see Table 3). Phenotypically, the mean STS depth for regions 

7 to 17 were significantly positively correlated with the C1_C7 weighted score (partial r = 

.416, p < .001). Moreover, there was a significant genetic correlation (RhoG) between the 

mean depth of STS regions 7 to 17 with the C1_C7 SBM weighted score (Rho G = .684, 

se = .118, p = .00007). Indeed, there were significant phenotypic and genetic correlations 

between the C1_C7 weighted SBM scores and the STS depth measures for STS regions 7 to 

17 (see Table 4).

4. Discussion

There were four main findings in the current study. First, using the updated post-image 

processing methods, we identified 19 gray matter SBM components in a combined 

sample of 216 chimpanzees. Second, all the SBM components were significantly heritable, 

indicating that genetic factors influence chimpanzee brain gray matter covariation. Third, for 

the combined sample, we found that chimpanzee performance on a tool use task designed 

to simulate termite fishing was associated with weighted scores of 5 SBM components. 

When separate SBM analyses were performed on the two chimpanzee cohorts, significant 

phenotypic associations were found between tool use performance and two components 
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within the YNPRC and three components within the NCCC cohort. The most consistent 

finding between the two cohorts was a negative association between tool use performance 

and a component that was comprised of the STS, STG, and the inferior and superior parietal 

cortical regions.

After refining the post-image processing methods, we identified 19 gray matter SBM 

components in chimpanzees. This is fewer than the 24 components previously identified 

using different, and simpler, post-image processing methods (Hopkins et al., 2019). Since 

most of the subjects participated in both studies, the difference in the number of components 

can likely be attributed to the post-image processing methods themselves, rather than 

the sample(s) per se. We not only changed the order of procedures (see Table 1 for 

comparison) but processed the 1.5T and 3T scans separately to account for differences 

in acquisition. In addition, we included both bias correction and denoising procedures that 

correct for illumination non-uniformity and intensity bias from Rician noise, respectively. 

Utilizing these correction procedures can improve the image quality, as well as subsequent 

segmentation, cortical surface extraction, and analyses (e.g., Acosta-Cabronero et al., 2008; 

Eskildsen et al., 2011; Gaser and Coupé, 2010; Sonderer and Chen, 2018). For example, 

none of the 18 components identified in the current study were suggestive of significant 

registration or segmentation artifacts (i.e., brain edges, or regions not containing gray 

matter), as have been reported in SBM studies of human brains (e.g., Caprihan et al., 2011; 

Premi et al., 2017; Xu et al., 2009) and in the previous study with chimpanzees (Hopkins 

et al., 2019). Therefore, it is likely that the 19 components identified in the current study 

are more robust, as these preprocessing steps reduced noise and illumination non-uniformity 

compared to the previous study. These data can now be used to more accurately examine 

neuroanatomical correlates of behavioral and cognitive phenotypes in these chimpanzees. 

For example, we have found that three of these components (7, 10, and 18 containing 

regions within the ventral pathway of the visual processing stream and reward circuit) are 

associated with mutual eye gaze behavior in chimpanzees (Hopkins et al., 2020).

Next, we found moderate to strong heritability in all 19 SBM components, indicating there 

are genetic factors influencing individual differences in gray matter covariation. This is 

supported by previous reports of genetic influences on cortical organization (e.g., surface 

area, sulci dimensions, gray matter volume, gyrification, etc.) in both human and nonhuman 

primates (Fears et al., 2009; Gomez-Robles et al., 2015; Hopkins et al., 2019; Kochunov 

et al., 2010; Rogers et al., 2007, 2010). When we evaluated repeatability in heritability in 

SBM components that were derived from either the entire sample or from separate colonies, 

the chimpanzees showed considerable consistency. The NCCC chimpanzees showed robust 

heritability in the SBM components that were derived from the combined sample or within 

the 8 components that were identified when their sMRI scans were processed alone. By 

contrast, the YNPRC chimpanzees showed less consistent heritability across components 

derived from both the combined and separate SBM analyses. The discrepancy in the 

magnitude of heritability evident between the two cohorts is potentially attributable to at 

least four possible factors. First, the YNPRC sample was smaller than the NCCC cohort 

and therefore may have had less power to detect reliable and potentially small heritability 

estimates in this cohort. Second, there was a larger proportion of nursery-reared compared 

to mother-reared chimpanzees within the YNPRC than NCCC cohort. Previous studies in 
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chimpanzees have shown that early rearing experiences can have a significant impact on 

gray matter covariation and other measures of brain organization (Bennett et al., 2021; 

Bogart et al., 2014). Thus, the NCCC sample consisted of chimpanzees that had a more 

homogenous rearing history compared to the YNPRC apes, which may have reduced the 

amount of error variance in the heritability statistical models. Third, differences in within 

colony relatedness could also be a factor; the YNPRC chimpanzees were more closely 

related to each other than the chimpanzees within the NCCC colony. Lastly, we cannot 

rule out that heritability in the chimpanzees is only moderately repeatable in the context of 

structural gray matter covariation when compared to findings that have focused on specific 

regions-of-interest when quantifying surface area or other measures of cortical structure 

(Gomez-Robles et al., 2015; Hopkins et al., 2015).

In addition, we found that four of the SBM components were related to tool use 

performance. Tool use performance was negatively correlated with two components 

consisting of the middle temporal cortex, inferior and superior parietal cortex, hippocampus, 

basal forebrain, middle and superior frontal cortex, amygdala, caudal anterior cingulate, 

and cerebellar cortex. Tool use performance was positively correlated with two components 

consisting of lingual cortex, isthmus of the cingulate, lateral occipital cortex, pericalcarine, 

posterior cingulate, and cerebellar cortex. In a previous study using different preprocessing 

methods (Hopkins et al., 2019), we found that the superior temporal sulcus, superior parietal 

cortex, cuneus, and primary visual cortex were phenotypically and genetically associated 

with tool use skill, and that these associations were all negative (those with slower latency 

scores contributed less to the creation of these components). These very same brain regions 

were identified in the current analysis and both phenotypically and genetically correlated 

with tool use performance. This suggests that, despite the differences in preprocessing steps, 

similar covarying brain regions emerged that were phenotypically and genetically associated 

with tool use skill.

As noted above, the most consistent brain regions related to tool use performance were the 

posterior STS, and inferior and superior partial cortex. These same brain regions (along with 

others) have been strongly implicated in the manufacture and use of tools in human subjects 

(Johnson-Frey, 2004; Lewis, 2006). From an evolutionary perspective, some have suggested 

that the function and connectivity of the inferior and superior parietal areas are unique to 

humans as it relates to the execution and observation of tool use actions (Cheng et al., 2021; 

Hecht et al., 2013; Peeters et al., 2009). Evidence of the functional role of the inferior and 

superior parietal regions in tool use remains unknown; however, there is at least one report 

showing that training macaques to use a tool resulted in increased gray matter volume in 

the ventral lateral and inferior parietal cortex (Quallo et al., 2009). Our findings suggest that 

the posterior STS, including the inferior and superior parietal cortex, played a role in tool 

use learning and performance in the common ancestor of humans and chimpanzees, prior to 

their split ~ 6 million years ago. In light of the fact that tool use is widespread among captive 

and wild chimpanzee populations (Shumaker et al., 2011; Whiten et al., 2001; Whiten et 

al., 1999), our results on heritability in tool use performance and their genetic association 

with gray matter covariation in the parietal cortex further suggest that there may be common 

genes that underlie tool using abilities in humans and chimpanzees.
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There are some limitations to this study. As noted above, there are many different forms of 

tool use in chimpanzees. In this study, we quantified performance (latency) on a task that 

was designed to simulate termite fishing or ant dipping. Though this task has a significant 

visualmotor demand, it is unclear whether other types of tool use, particularly with different 

sensory and motor demands, would be associated with the parietal-frontal regions identified 

in this study. Additionally, as has been discussed in previous studies, it can be difficult 

to interpret the biological significance of SBM findings because the results do not reflect 

volumetric dimension of gray or white matter but rather the covariation of voxels within 

the components derived from independent components analysis. As a means of offering a 

more direct interpretation of the results reported here, we performed two additional post-hoc 

analyses.

First, we determined the average amount of gray matter per voxel within the STS/STG 

region for each subject and found that these values were negatively associated with tool 

use skill performance for the entire sample (and within the NCCC and YNPRC separately). 

Second, we quantified the depth of the STS along the anterior-posterior plane and correlated 

these data with the tool use latency measures for the overall sample, and found that 

chimpanzees with longer latencies had more shallow STS depth measures. In addition, 

we found that the mean STS depth for regions 7 to 17 were positively correlated with the 

SBM C1_C7 weighted score and that there was a significant genetic correlation (RhoG) 

between these two measures. In short, chimpanzees that contributed more to the creation 

of the C1_C7 component had deeper folds (more gyrification) in the middle and posterior 

regions of the STS and common genetic factors may underlie their phenotypic association.

In summary, using more refined preprocessing methods, we found 19 gray matter 

covariation components, 5 fewer than previously reported (Hopkins et al., 2019), but 

with what appears to be improved registration and less potential artifact. Consistent with 

previous findings, we found that tool use performance was associated with gray matter 

covariation in several regions but, particularly within the posterior superior temporal gyrus/

sulcus and inferior and superior parietal cortex. The phenotypic association between tool 

use performance and gray matter covariation in the posterior STG/STS and the inferior 

and superior parietal cortex were consistent between two genetically independent cohorts of 

chimpanzees based on combined or separate SBM analysis of the sMRI scans. The findings 

indicate that the STG/STS and parietal cortex is phenotypically and genetically implicated in 

chimpanzee tool using abilities and was likely the case prior to the split from the common 

ancestor with humans. Future studies should focus on identifying differences and similarities 

in specific genes related to the motor and cognitive functions that underlie tool manufacture 

and use in primates, including humans.
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Fig. 1. 
Heritability (+/− s.e.) values for the 19 SBM components for the combined, NCCC and 

YNPRC cohorts.
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Fig. 2. 
3-D lateral and superior renderings of gray matter covariation brain regions in components 

1 (upper panel) and 15 (lower panel) that were associated with tool use performance in 

the YNPRC cohort. Far right image within each panel shows scatterplot of the association 

between tool use performance and the weighted component scores.
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Fig. 3. 
3-D lateral and superior renderings of gray matter covariation brain regions in components 

7 (upper panel), 12 (middle panel) and 13 (lower panel) that were associated with tool use 

performance in the NCCC cohort. Far right image within each panel shows scatterplot of the 

association between tool use performance and the weighted component scores.
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Fig. 4. 
3-D rendering of regions that were overlapping between YPRC Component 1 and NCCC 

Component 7 in the conjunction analysis. Far right image shows scatterplot of the 

association between tool use performance and the weighted component scores.
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Fig. 5. 
(Left panel) 3-D rendering of chimpanzee brain using BrainVisa with the STS labeled. In 

red, is the main section of the STS that was parameterized for these analyses. The portion 

of the posterior STS that bifurcated (in yellow) was excluded from the parametrization 

analysis. (Right panel)
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Fig. 6. 
Upper panel is display of extracted STS. Lower panel shows the partial correlation 

coefficients between tool use performance and the depth of the STS fold in the 20 STS 

regions. Dashed regions are significant at p < .05.
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Table 3.

The heritability value (h2) ± standard error (p-value) for the combined 19 source-based morphometry 

components.

Component h2 ± se p Covariates Variance Explained

1 0.868 ± 0.118 0.000000001 All 0.254

2 0.615 ± 0.159 0.00003 Scanner, Age 0.323

3 0.231 ± 0.171 0.072 Scanner, Age 0.189

4 0.486 ± 0.152 0.0003 All 0.206

5 0.529 ± 0.127 0.000007 Sex 0.029

6 0.212 ± 0.162 0.081 Sex, Age 0.056

7 0.379 ± 0.133 0.0004 None 0.000

8 0.364 ± 0.121 0.0001 Scanner, Age 0.432

9 0.249 ± 0.169 0.054 Sex, Scanner 0.463

10 0.307 ± 0.133 0.005 Scanner, Age 0.339

11 0.495 ± 0.134 0.00006 Scanner, Age 0.354

12 0.177 ± 0.151 0.1 Scanner 0.256

13 0.571 ± 0.144 0.000008 All 0.348

14 0.578 ± 0.152 0.0001 Scanner, Age 0.483

15 0.384 ± 0.143 0.001 Scanner, Age 0.454

16 0.516 ± 0.189 0.003 Scanner 0.432

17 0.473 ± 0.149 0.0004 Scanner, Sex 0.291

18 0.488 ± 0.152 0.0005 Scanner 0.439

19 0.458 ± 0.186 0.004 Scanner, Age 0.045

Significant heritability values at the p < 0.05 level are indicated with bold text. Significant covariates at the p < 0.10 level are listed, along with 
the proportion of the variance explained by the covariates [Note: All indicates that all three covariates, including sex, age, and scanner, were 
significant].
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Table 4:

Phenotypic and genetic correlations between the STS depth measures and the combined SBM C1_C7 

weighted scores.

H2 Phenotypic RhoG se p

STS1 −0.029

STS2 +0.045

STS3 +0.100 −.129 .369 .7156

STS4 +0.119 .164 .285 .5903

STS5 +0.109 .273 .254 .3313

STS6 +0.117 .308 .194 .1578

STS7 +0.156 .389 .165 .0447

STS8 +0.239 .524 .145 .0053

STS9 +0.268 .558 .147 .0035

STS10 +0.298 .575 .144 .0025

STS11 +0.356 .643 .131 .0005

STS12 +0.389 .700 .134 .0005

STS13 +0.387 .678 .128 .0002

STS14 +0.413 .625 .127 .0001

STS15 +0.398 .655 .147 .0003

STS16 +0.409 .783 .178 .0002

STS17 +0.434 .783 .146 .00006

STS18 +0.342 .725 .273 .002

STS19 +0.277

STS20 +0.171 .867 .838 .0662

STS7to17 +0.416 .684 .118 .00007

Significant correlations are indicated with bold text.
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