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ABSTRACT

Background: The latent reservoir of Human Immunodificiency Virus-1 (HIV-1) has been a 
major barrier to the complete eradication of HIV-1 and the development of HIV therapy. Long-
term non-progressors (LTNPs) are a rare group of patients with HIV-1 who can spontaneously 
control HIV-1 replication without antiretroviral therapy. Transcriptome analysis is necessary 
to predict the pathways involved in the natural control of HIV-1, elucidate the mechanisms 
involved in LTNPs, and find biomarkers for HIV-1 reservoir therapy.
Materials and Methods: In this study, we obtained peripheral blood mononuclear cells from 
two LTNP subjects at multiple time points and performed RNA-sequencing analyses.
Results: We found that LTNPs and normal subjects had different transcriptome profiles. 
Functional annotation analysis identified that differentially expressed genes in LTNPs 
were enriched in several biological pathways such as cell cycle-related pathways and the 
transforming growth factor-beta signaling pathway. However, genes that were downregulated 
in LTNPs were associated with immune responses such as the interferon response and IL2-
STAT5 signaling. Protein-protein interaction network analysis showed that CD8A, KLRD1, 
ASGR1, and MLKL, whose gene expression was upregulated in LTNPs, directly interacted 
with HIV-1 proteins. The network analysis also found that viral proteins potentially regulated 
host genes that were associated with immune system processes, metabolic processes, and 
gene expression regulation.
Conclusion: Our longitudinal transcriptome analysis of the LTNPs identified multiple 
previously undescribed pathways and genes that may be useful in the discovery of novel 
therapeutic targets and biomarkers.
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INTRODUCTION

Approximately, 2 million people are infected with Human Immunodeficiency Virus-1 
(HIV-1) every year, and about 1.1 million people die from HIV-related diseases. HIV-1 
usually infects CD4+ T cell and activates viral replication, leading to cell death and loss 
of immunocompetence [1]. Recently, various HIV treatments, such as antiretroviral 
therapy (ART), have been developed and utilized for the treatment of HIV and acquired 
immunodeficiency syndrome (AIDS) [2]. ART regulates viral replication by targeting certain 
steps in the HIV-1 life cycle, allowing ART-treated patients to maintain low levels of HIV RNA 
in the plasma. However, ART is still limited because of its inability to completely eradicate 
HIV-1. This is because resting memory CD4+ T cells that contain HIV-1 are still present in 
resting states [3]. The HIV-1 provirus does not replicate in the resting state, but the host 
still maintains low levels of viral load after ART. The cells in resting states that harbor HIV-1 
virus are called the HIV-1 latent reservoir. The latent reservoir remains in the human body 
for a long time, and it can transition into the active state when the host cell conditions are 
appropriate for replication [4].

AIDS, which is defined as having CD4+ T cell counts less than 200 cells/μL after HIV 
infection, takes about 10 years to progress. Rarely, there are patients who can naturally 
control the progression of HIV infection. This group of patients is called long-term non-
progressors (LTNPs). LTNPs have been reported to maintain normal counts of CD4+ T cells 
and have no clinical symptoms for at least 7 years even without the use of ART [5]. Similar 
to these LTNPs, a group of about 1% of patients with HIV known as elite control (EC) can 
maintain extremely low viral loads and CD4+ T cells >500 cells/μL for several years without 
any treatment [6]. Both these groups can spontaneously control disease progression and are 
considered to be important functional cure models for the development of HIV therapy.

Transcriptome analysis is necessary to predict the pathways involved in the natural control of 
HIV-1 and to elucidate the mechanisms utilized by LTNPs in the development of a functional 
treatment. RNA-sequencing (RNA-seq) is broadly used to identify transcriptional differences 
between conditions to discover biomarkers and ultimately elucidate the underlying mechanisms 
of diseases. Through RNA-seq and data analysis, we can find differentially expressed genes 
(DEGs) that give clues in the identification of LTNP-specific biological mechanisms.

Recent studies have contributed to the development of HIV-1 reservoir therapy via the 
identification of candidate genes and biomarkers involved in the functional cure of HIV-1 
through analysis of the transcriptomes of LTNPs. A previous study performed RNA-seq on 
the peripheral blood mononuclear cells (PBMCs) of seven infected individuals with general 
disease progression, before and after ART, as well as 16 LTNPs [7]. The researchers identified 
20 interferon-related antiviral signaling genes that could be used as markers of disease 
progression. It was also confirmed that levels of NFAT1/Elk-1 transcriptional factor-mediated 
genes and cell membrane proteins related to calcium signaling were elevated in LTNPs. 
Ding et al. identified mechanisms in LTNPs by integrating and analyzing microarray-based 
transcriptome data sets consisting of data on CD4+ T cells, CD8+ T cells, whole blood, etc. 
of 74 people, including 32 elite controllers [8]. The results showed that CMPK1, CBX7, EIF3L, 
EIF4A, and ZNF395 had high correlations with control of HIV-1 progression. In addition, the 
reduction of ribosome components and inhibition of translational genes were found to be 
associated with AIDS progression.

490https://icjournal.org https://doi.org/10.3947/ic.2021.0031

Transcriptome analysis in HIV-1 LTNP

https://orcid.org/0000-0002-8006-8704
https://orcid.org/0000-0002-8006-8704
https://orcid.org/0000-0002-5696-0567
https://orcid.org/0000-0002-5696-0567
https://orcid.org/0000-0002-8188-9731
https://orcid.org/0000-0002-8188-9731
https://orcid.org/0000-0001-9246-0159
https://orcid.org/0000-0001-9246-0159
https://orcid.org/0000-0003-0424-8911
https://orcid.org/0000-0003-0424-8911
https://orcid.org/0000-0002-6128-7995
https://orcid.org/0000-0002-6128-7995
https://orcid.org/0000-0002-5728-912X
https://orcid.org/0000-0002-5728-912X


Additionally, several transcriptome analyses have been performed to elucidate the 
mechanisms found in LTNPs and find markers related to the functional cure of HIV [6, 7, 
9]. However, because there were few similarities between the previously mentioned studies 
and the samples were heterogeneous, the mechanisms and markers involved in LTNPs have 
not been clearly identified. It appears that this limitation is due to the use of variable patient 
datasets in which longitudinal analyses have not been performed. Furthermore, microarray 
analysis has low specificity and sensitivity in the identification of DEGs in LTNPs.

In this study, we performed RNA-seq analysis on samples of two LTNP subjects obtained at 
different time points as well as two healthy PBMC samples. By comparing the transcriptome 
profiles of the LTNPs with those of the healthy samples, we identified DEGs and elucidated the 
biological processes involved in LTNPs. Moreover, we found genes that interacted with HIV-1 
proteins and their biological functions. Our study provides knowledge on common pathways 
among LTNPs and insight on the spontaneous control of HIV-1 replication by host cells.

MATERIALS AND METHODS

1. Patients and samples
Two patients who were infected with HIV-1 and showed characteristics of LTNPs for over 10 
years were included in this study. The sampling was performed as described in a previous report 
[10]. Eleven and six PBMC samples were obtained from patient ID 92-23 and patient ID 91-20, 
respectively (Supplementary Fig. 1). Control PBMCs (no HIV) were purchased from STEMCELL 
(Vancouver, Canada). This study was approved by the Institutional Review Board of the Asan 
Medical Center (No. 2019-0888) and Korea Disease Control and Prevention Agency (No. 2019-
07-06-P-A).

2. RNA isolation
Total RNA was obtained using TRIzol reagent (Invitrogen, Carlsbad, CA, USA), according 
to the manufacturer's instructions. The quality of the RNA was assessed using Agilent 
2100 bioanalyzer with the RNA 6000 Pico Chip (Agilent Technologies, Amstelveen, The 
Netherlands). The quantity of RNA was calculated using an ND-1000 Spectrophotometer 
(Thermo Fisher Scientific, Waltham, MA, USA).

3. Library preparation and sequencing
The library was prepared using a QuantSeq 3' mRNA-Seq Library Prep Kit (Lexogen, Inc., 
Vienna, Austria) for the control and test RNAs. Illumina-compatible sequences containing oligo-
dT primers were hybridized with the prepared RNAs. Then, reverse transcription was performed. 
Random primers were containing Illumina-compatible linker sequences were initiated second 
strand synthesis after degradation of the RNA templates. All reaction components were 
eliminated using magnetic beads, and the double-stranded library was purified. Complete 
adapter sequences were added to the amplified library for cluster generation.

The finished library was isolated from the PCR components. NextSeq500 was performed 
high-throughput sequencing via single-end 75 sequencing (Illumina, San Diego, CA, USA).

4. RNA-sequencing data analysis
Trim Galore is a wrapper tool of Cutadapt and FastQC. It was used to trim the adapters and 
check the quality of the raw sequence data [11]. The first 13 bp of the Illumina standard 
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adapter was trimmed (using default options). A custom reference genome was generated 
by combining the Genome Reference Consortium Human build 38 (GRCh38/hg38) and the 
HIV-1 genome (MN043583) before aligning the reads to the genome. The trimmed reads 
were then aligned to the custom reference genome using the alignment software STAR [12]. 
To increase the mapping rate, limits on the mapped lengths were removed by changing the 
settings of STAR (--outFilterScoreMinOverLread 0, --outFilterMatchNminOverLread 0).

5. Principal component analysis
Before performing principal component analysis (PCA), variance stabilization was 
conducted via regularized-logarithm transformation provided by the DESeq2 package in the 
R software [13]. The similarities were calculated by considering the stabilized count tables 
of each sample. Each dot represented a sample, and distances between the dots indicated 
similarities. Shorter distances between two dots indicated that the two samples had similar 
gene expression profiles. PCA plots were generated in three types according to the following 
sample information: group information, CD4+ T cell counts, and HIV-1 detection scores. 
HIV-1 detection scores were calculated according to the presence or absence of HIV-1 proteins 
in each sample. The average values were calculated for each sample by assigning scores of 
1 if the HIV-1 protein was present, 0.5 if there was partial presence, and 0 if the protein was 
absent. The heatmap was generated by selecting the top genes found by sorting the genes 
in descending order according to counts in the variance stabilized count tables. The top 500 
genes were selected for clustering in the LTNP and healthy groups, and the top 350 genes 
were selected for clustering the 91-20-LTNP and 91-20-ART.

6. Identification of differentially expressed genes
To quantify the read fragments mapped to the protein-coding genes of the custom genome, 
featureCounts was used and the count matrix was generated [14]. To increase the percentage of 
assigned fragments, we changed the settings of STAR (-fraction TRUE). Using the count matrix, 
the DEGs of each group were identified using the DESeq2 R/Bioconductor packages [13]. Genes 
with P-values <0.05 were selected as DEGs. EnhancedVolcano package in R software was used 
to visualize the upregulated and downregulated genes of specific groups [15].

7. Gene set enrichment analysis and functional annotation analysis
Gene set enrichment analysis (GSEA) was performed to identify the statistically significant 
gene sets in the LTNP group [16]. The normalized count table made with DESeq2 was used 
for the analysis [13]. Hallmark gene sets from Molecular Signatures Database (MSigDB) were 
used [17]. Only gene sets containing 10 to 500 genes with false discovery rates (FDRs) <0.25 
were selected. The functions of the DEGs were annotated using the database for annotation, 
visualization, and integrated discovery (DAVID) and Gene Ontology (GO) [18]. Biological 
processes (BP) were included in the GO. The enrichment of the BPs was ranked according to 
the sets of DEGs. Categories with more than 10 gene counts were selected, and bar plots were 
drawn. The minimum P-value for the significant BP category was 0.05. To draw the bar plot, 
the –log10 (P-value) of each BP was calculated.

8.  Construction of the protein-protein interaction network and Gene 
Ontology analysis

Protein-protein interaction (PPI) network analysis and visualization of the interactions were 
performed using Cytoscape [19]. The DEGs of the LTNP group and HIV-1 proteins were used 
to analyze the functional network. An interaction score of 0.4 between the human genes 
and HIV-1 proteins was selected. Interaction groups were divided according to the distances 
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from the HIV-1 nodes. Search tool for recurring instances of neighbouring genes (STRING) 
enrichment was used to determine the enrichments of the GO terms of each group [20]. 
Terms with more than 10 genes and FDRs <0.25 were selected.

RESULTS

1.  Global transcriptome analysis of the LTNP, ART-treated, and healthy 
control samples

The PBMC samples from the two LTNP subjects collected at different time points and from 
the healthy subjects were analyzed in this study. The PBMC samples from the LTNP patients 
were collected at about 1-year intervals over 10 years. All patients' characteristics are shown 
in Supplementary Table 1. Subject 92-23 was classified as LTNP, with low levels of viral load 
and numbers of CD4+ T cells within the normal range (>500 cells/μL) for 10 years without 
any treatment. We used 10 PBMC samples from 92-23-LTNP. The other subject, 91-20, was 
diagnosed in 1991. Subject 91-20 divided into two groups, 91-20-LTNP and 91-20-ART. 91-20-
LTNP maintained LTNP characteristics for 15 years but experienced a decrease in the number 
of CD4+ T cells due to virus reactivation typical progression. The numbers of CD4+ T cells of 
91-20 decreased to ≤500 cells/μL since 2006, and ART treatment was initiated starting August 
2007 (91-20-ART). 10 PBMC samples from 91-20-LTNP and 4 PBMC samples from 91-20-
ART were used in this analysis. There was a year where HIV viral load information was not 
collected from both patients. Hence, we calculated HIV-1 detection scores using HIV-1 gag, 
pol, vif, env, and nef detection information from each patient's PBMC samples. The detailed 
calculation method can be found in the Materials and Methods section. A total of 26 samples 
(2 controls, 10 samples from 92-23-LTNP, 10 samples from 91-20-LTNP and 4 samples from 
91-20-ART) were subjected to RNA sequencing.

PCA was performed to visualize the similarities between the LTNP and healthy control groups 
(Fig. 1). The PCA results showed that the 92-23-LTNP samples involved in the LTNP group 
were clustered with the control group because of the higher number of CD4+ T cells (Fig. 1A). 
However, the HIV-1 detection scores did not significantly affect the clustering patterns between 
the samples. On the other hand, the 91-20-LTNP and 91-20-ART samples were separated on 
the PCA plot, which was attributed to the CD4+ T cell counts rather than the HIV-1 detection 
scores (Fig. 1B). According to the hierarchical clustering, the LTNP samples were clustered 
together, and samples tended to be clustered according to CD4+ T cell counts (Fig. 1C). While 
the hierarchical clustering results showed that the 91-20-LTNP samples tended to be clustered 
together, the two 91-20-ART samples that were collected 2–3 years after ART treatment 
(ID_1091-2010 and ID_1191-204) were found to be clustered with the LTNP samples (Fig. 1D).

2. Biological processes associated with LTNPs
We performed GSEA to identify LTNP-specific BPs by comparing the gene expression of 
the LTNP (92-23-LTNP and 91-20-LTNP) groups with that of the control groups [16]. A 
normalized count table was used to compare features between the LTNP and control groups. 
We used 50 specific, well-defined gene sets provided by MSigDB for the GSEA [17]. The 
results of the analysis from comparing the LTNP and control groups identified that mitotic 
spindle (198 genes), G2M checkpoint (199 genes), E2F target (199 genes), and transforming 
growth factor (TGF)-beta signaling (199 genes) were significantly enriched in the LTNP 
samples (Fig. 2A). In contrast, the gene sets highly enriched in the control groups were 
interferon alpha response (97 genes), IL-2 STAT5 signaling (86 genes), IL-6 JAK STAT3 
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signaling (87 genes), and interferon gamma response (200 genes) (Fig. 2B). We selected 
core enrichment genes from each gene set and visualized their expression across the samples 
with a heatmap (Fig. 2C, 2D and Supplementary Fig. 2). The heatmaps clearly showed the 
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Figure 1. Global transcriptome analysis of LTNP, ART-treated, and healthy control samples. 
(A) Principal component analysis plots of the LTNP and healthy (control) RNA-sequencing data (n = 20). Each dot indicates an individual sample. The distance 
between two dots represents the similarities between the samples. In the left, the characteristics of the samples are indicated by colors. Both of middle and 
right, the characteristics of the samples are indicated by shapes. In the middle, blue indicates the counts of CD4+ T cells. On the right, red indicates HIV-1 
detection scores. (B) Principal component analysis plots of the 91-20-LTNP samples and 91-20-ART samples (n = 14). (C) The top 500 genes were used for 
the hierarchical clustering of the 92-23-LTNP and 91-20-LTNP and control samples. The dendrogram at the top of the graph shows the similarities between 
the samples. The color of the heatmap represents the intensities of gene expression. Red indicates strong gene expression, and blue indicates weak gene 
expression. (D) The top 350 genes were used for the hierarchical clustering of the 91-20-LTNP and 91-20-ART samples. 
LTNP, long-term non-progressor; ART, Antiretroviral therapy; HIV, human immunodeficiency virus; PCA, principal component analysis.



differential expression patterns of the genes that were associated with those biological 
functions between the LTNP and control samples. These data suggest that cell cycle-related 
genes and TGF-beta signaling genes were upregulated, whereas immune response genes 
were downregulated in the LTNP samples.

3. Functional annotation analysis of LTNP-specific DEGs
DEGs were determined by comparing three groups using DESeq2 to identify genes significantly 
expressed in the LTNP group [13]. As described in the Materials and Methods, the genes were 
filtered using the cutoff values, P-value <0.05 and |logFC| >1. Upregulated and downregulated 
genes are indicated by red dots on the volcano plots (Fig. 3A). We focused on the upregulated 
genes of the LTNP group to identify LTNP-specific genes. Comparison analysis identified 946, 
1116, and 906 upregulated genes between 92-23-LTNP vs. control, 91-20-LTNP vs. control, and 
91-20-LTNP vs 91-20-LTNP, respectively. We identified 263 genes by overlapping the DEGs of 
91-20-LTNP with the control and 91-20-LTNP (Supplementary Table 2). Functional annotation 
analysis was performed with DAVID using the DEGs [18]. The analysis showed that the 
DEGs of LTNPs were enriched in variable BPs (Fig. 3C). Among the several BPs, the top 
seven categories are shown in the plots. The DEGs of 92-23-LTNP were enriched in “DNA 
repair” (GO:0006281, 20 DEGs), “regulation of cell cycle” (GO:005172, 13 DEGs), and 
“transcription, DNA-templated” (GO:0006351, 89 DEGs). Additionally, the DEGs of 91-20-
LTNP were enriched in “DNA repair” (GO:0006281, 23 DEGs), “cell division” (GO:0051301, 
27 DEGs), “transcription, DNA-templated” (GO:0006351, 105 DEGs), and “TGF-beta 
receptor signaling pathway” (GO:0007179, 10 DEGs) upon comparison with that of the 
control group. These functional annotation results indicated that the LTNP DEGs were 
related to regulation of the cell cycle, transcription, and TGF-beta signaling. Moreover, the 
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LTNP, long-term non-progressor; GSEA, gene set enrichment analysis; DEGs, differentially expressed genes; ES, enrichment scores; NES, normalized enrichment 
scores; FDR, false discovery rates; TGF, transforming growth factor.



DEGs of 91-20-LTNP enriched in “cellular response to TGF-beta stimulus” (GO:0071560, 6 
DEGs), “protein phosphorylation” (GO:0006468, 21 DEGs), and “Wnt signaling pathway” 
(GO:0016055, 11 DEGs) upon comparison with that of the 91-20-ART. This result showed that 
TGF-beta signaling-related genes were significantly enriched in 91-20-LTNP. Moreover, we 
proposed 6 genes, including EFCAB7, IRS1, KCNA1, KCNA2, KCNJ2 and SGCB as a candidate 
to diagnose LTNP in HIV-1 from experimental results. (Supplementary Table 2). A total of 
263 LTNP-specific DEGs were used to select the candidate genes. After uploading the LTNP-
specific DEGs to Ensembl BioMart, we filtered only the gene corresponding to gene ontology 
accession “plasma membrane protein complex” (GO:0098797) [21]. Since these candidate 
genes encode membrane protein and logFC is greater than 2, they can be utilized as potential 
diagnosis markers for LTNP.
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4.  Protein-protein interaction network analysis reveals the involvement of 
host cellular pathways in regulating viral processes in LTNPs

PPI analysis was performed using Cytoscape to analyze the interaction network between the 
human and HIV-1 proteins [19]. The LTNP DEGs were matched with human proteins based 
on the STRING database and subsequently used for the analysis [20]. A total of 946 and 1,116 
DEGs corresponding to 92-23-LTNP and 91-20-LTNP, respectively, were used to create the 
PPI network, in which 476 genes were found to be common in both patients. The STRING 
database matched 73 LTNP DEGs to protein information. According to the PPI network, five 
human proteins (CD8A, MLKL, KLRD1, ASGR1, and CSMD1) directly interacted with the HIV-
1 proteins, and four of them (CD8A, MLKL, KLRD1, and ASGR1) corresponded to common 
DEGs between the two patients (Fig. 4A). In addition, most of the other proteins closely 
interacted with the HIV-1 proteins (TBX21, FCGR2B, CX3CR1, SERPINB8, and MICA), which 
corresponded to the common LTNP DEGs. A total of 86 nodes were divided into two groups 
according to their interaction strengths with the HIV-1 proteins. Excluding the HIV-1 protein 
nodes, group 1 contained 18 nodes and group 2 contained 55 nodes (Fig 4A). We identified 
the enriched BPs in each group using STRING enrichment [20]. Group 1 was mostly enriched 
in the regulation of immune system processes and response (9 nodes). In addition, the 
proteins closely interacting with HIV-1 proteins were also enriched in lymphocyte-mediated 
immunity (4 nodes). The group 2 nodes were mostly enriched in metabolic processes (44 
nodes). Especially, 25 nodes with high interaction strengths in group 2 were enriched in the 
regulation of gene expression. We selected genes from the group 1 and 2 nodes and visualized 
their expression across the LTNP and control samples using a heatmap (Fig. 4B and 4C). 
The heatmaps show clear changes in expression of the genes that have direct or indirect 
interactions with HIV-1 proteins in the LTNP samples, compared with that of the control 
samples. These results showed that the LTNP DEGs interacting with the HIV-1 proteins were 
involved in metabolic pathways, transcription regulation, and immune responses.

DISCUSSION

LTNPs exhibit rare phenotypes of HIV-1 infectious populations with long disease 
progressions. LTNPs can naturally control viremia, a function that researchers have been 
studying through the gene expression profiles of LTNPs to find specific gene expression 
patterns that may aid in the development of functional treatments. As there are few studies 
focusing on common transcription programs or markers, comprehensive research needed 
to be performed to elucidate the regulatory mechanisms found in LTNPs. In this study, we 
analyzed samples from several time points to obtain several rare LTNP patient samples and 
performed transcriptomic analysis related to longitudinal LTNPs (Supplementary Fig. 1). 
We identified functional gene groups and signaling pathways by obtaining and analyzing the 
RNA-sequencing data of the LTNPs to discover candidates for the development of treatments 
and identification of biomarkers.

A previous study showed that genes related to the interphase of the mitotic cell cycle and 
the Ran in mitotic spindle were upregulated in latent cells, in which HIV-1 does not actively 
replicate [22]. This result suggests that infected cells can control disease progression by 
regulating the cell cycle and transcription. Consistent with previous studies, our functional 
annotation analysis revealed that the LTNP DEGs were enriched in the gene sets of the 
mitotic spindle, G2/M checkpoint, E2F target, and TGF-beta signaling pathway.
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Both GSEA and DAVID results showed that the TGF-beta signaling genes were highly 
expressed in the LTNP group. TGF-beta is known as an anti-inflammatory and anti-
immunogenic cytokine that is involved in various pathways related to T cell status regulation. 
According to our results, the alpha-(1,6)-fucosyltransferase 8 (FUT8) gene was upregulated 
in the LTNP group. This gene encodes FUT8, a protein that stimulates TGF-beta binding 
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and facilitates downstream TGF-beta signaling [23]. Our PPI analysis results identified that 
FUT8 interacts with TGF-beta receptor 2 (TGFBR2). High expression of TGF-beta have been 
observed in HIV-infected cells, in which TGF-beta inhibits HIV-1 expression and replication 
by inhibiting the HIV reverse transcriptase [24]. In addition, TGF-beta 1 promotes HIV-1 
latency by promoting the expression of BLIMP-1, a transcription inhibitor [25]. Furthermore, 
TGF-beta regulates not only transcription but also cell cycle progression. In normal cells, 
the STAT3 and STAT5 transcription factors are activated by IL-2 to induce the cell cycle 
progression of T cells [26]. It modulates the IL-2-mediated pathway and inhibits T cell 
proliferation by blocking the G1/S phase transition. Through GSEA, we found that IL-2-
STAT5 signaling-related genes were downregulated in the LTNP group compared with that 
of the control group. Moreover, upregulation of TGF-beta induced the anti-immunogenic 
response and decreased the cytotoxicity of CD8+ T cells [27]. Indeed, dysfunctional CD8+ T 
cell cannot kill infected CD4+ T cells, allowing LTNPs to maintain normal ranges of CD4+ T 
cell counts unless there are detectable viral loads. Thus, TGF-beta signaling contributes to 
the maintenance of LTNP characteristics by regulating transcription, cell cycle progression, 
and immunogenic function in HIV-1-infected T cells.

PPI analysis showed the interactions between HIV-1 proteins and upregulated genes 
identified in the LTNP samples. Through analysis of the expression profiles, we found that 
the cyclin K gene (CCNK) was upregulated in the LTNP samples. CCNK is a transcriptional 
regulator that interacts with Nef (viral protein) and inhibits the replication and transcription 
of HIV-1, thereby interfering with HIV-1 pathogenesis [28]. The elongation factor b (P-TEFb) 
is a novel cellular complex involved in viral gene replication and transcription that includes 
the CDK9-Cyclin T1 (CCNT1) complex [29]. To allow the expression of viral genes, CDK9 
and cyclin T1 form a complex. However, when Nef is present, CCNK interacts with Nef 
and forms a complex with CDK9 instead of CCNT1, inhibiting HIV-1 gene expression and 
replication. Additionally, the HIV-1 Tat protein enhances HIV-1 transcription by recruiting 
protein kinases like P-TEFb and activating RNA polymerase II [30]. From our data, we 
found that the Cyclin T2 (CCNT2) gene was upregulated in the LTNP samples. The CCNT2-
CDK9 complex is a subunit of P-TEFb and a negative regulator of Tat protein-mediated 
elongation [31]. Moreover, CCNT2 interacts with the general transcription factor IIH Subunit 
1 (GTF2H1), a cell growth suppressor, allowing for disruption of Tat-driven elongation [32, 
33]. Consequently, several genes encoding negative regulators of HIV-1 replication and 
transcription were also upregulated in the LTNP samples. High expression of HIV-1 protein-
mediated negative regulators causes HIV-1 to be dysfunctional in the host cells and allows for 
maintenance of low levels of viral load.

Our data showed that the T-box transcription factor (TBX21) gene was upregulated in the 
LTNP samples. Network analysis showed that the TBX21 protein interacted with FCGR2B, 
CX3CR1, and SERPIN8.

The gene TBX21 encodes the protein TBX21, also known as T-bet, which is a protein related 
to the TH1-type immune response [34]. HIV-1-infected CD4+ T cells use the T-bet dependent 
pathway. The extracellular Tat protein interacts with other cellular factors to induce the T-bet 
dependent pathway. T-bet regulates the expression of TH1 cytokines like IFN-γ. After HIV-1 
infection, IFN-γ inhibits Tat protein interaction and promotes HIV-1 latency by impeding 
HIV-1 replication in TH1 cells. Our results suggest that infected CD4+ T cells sustain latency 
in LTNPs by actively controlling HIV-1 replication through immune responses under the 
environment containing Tat protein.
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We performed transcriptome analysis using RNA-sequencing. DEGs of LTNP samples 
were classified into several BPs. Our results suggest that LTNPs spontaneously regulate the 
replication and transcription of HIV-1 through the TGF-beta signaling pathway. Interestingly, 
HIV-1 proteins like Nef or Tat are also involved in the regulation of HIV-1 replication in 
infected cells by interacting with human proteins. However, this study has some limitations 
such as the small number of samples used for transcriptome analysis. In addition, although 
variable cell types are involved in HIV-1 disease progression and latency, we only used bulk 
RNA-sequencing data, which can only provide the average gene expression of heterogeneous 
cell types in PBMCs. Therefore, for further study, single cell RNA-sequencing can be utilized 
to identify the common cell types found in LTNPs and cell type-specific DEGs in LTNPs.
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