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Abstract
Mechanistic models are built using knowledge as the primary information source, 
with well-established biological and physical laws determining the causal rela-
tionships within the model. Once the causal structure of the model is determined, 
parameters must be defined in order to accurately reproduce relevant data. Deter-
mining parameters and their values is particularly challenging in the case of mod-
els of pathophysiology, for which data for calibration is sparse. Multiple data 
sources might be required, and data may not be in a uniform or desirable format. 
We describe a calibration strategy to address the challenges of scarcity and hetero-
geneity of calibration data. Our strategy focuses on parameters whose initial values 
cannot be easily derived from the literature, and our goal is to determine the values 
of these parameters via calibration with constraints set by relevant data. When com-
bined with a covariance matrix adaptation evolution strategy (CMA-ES), this step-
by-step approach can be applied to a wide range of biological models. We describe 
a stepwise, integrative and iterative approach to multiscale mechanistic model cali-
bration, and provide an example of calibrating a pathophysiological lung adenocar-
cinoma model. Using the approach described here we illustrate the successful cal-
ibration of a complex knowledge-based mechanistic model using only the limited 
heterogeneous datasets publicly available in the literature.
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1  Introduction

Multiscale mechanistic modeling is an approach that bridges physiology and patho-
physiology across multiple spatial scales and physical processes (Eissing 2011; 
Buil-Bruna et al. 2015; Musante et al. 2016; Boissel et al. 2015) and is also called 
knowledge-based modeling. Knowledge-based models (KBMs) capture the com-
plexity of biological functions in one or several subparts of a mechanistic model, 
using a broad range of knowledge (see Box 1) extracted from data.

KBMs rely on mathematical equations composed of parameters to mechanisti-
cally represent biological phenomena through the changes over time of biological 
variables (Box  1). Many of these variables can be measured experimentally (e.g. 
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evolution of glucose concentration in the plasma), while others are difficult to quan-
tify in an experimental settings (e.g. concentration of intracellular ATP in a specific 
cell) (Brown et al. 2018). To confidently draw conclusions from modeling analysis, 
the measurable variables of the model must reproduce what is observed in exper-
imental settings, and the knowledge used to link measurable and non-measurable 
variables must be consistent with the scientific consensus. While the latter is ensured 
if the model is well constructed, the former can only be achieved by defining and 
adjusting parameter values that enable model measurable variables to reproduce the 
desired behavior, that is to say what is observed in experimental settings. Two meth-
ods are commonly used to find the parameter values (Box 1): parameterization and 
calibration (Box 2).

The term parameterization can be applied to describe human curation used to 
search the scientific literature and to select representative parameter values. In con-
trast, calibration is an automatic numerical procedure, in which a priori unknown 
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and estimated parameter values are concomitantly refined to reproduce the desired 
model’s behavior, usually via an iterative process. Calibration constrains the 
dynamic behavior of the model (e.g. during simulation) by finding a set of param-
eter values that allows the model to represent biological behaviors consistent with 
the literature. On one hand, parameterization allows for an objective assignment 
of a parameter value avoiding overfitting of a dataset, while one step calibration 
could bring new information to fix parameters with no reported value. On the other 
hand while parameterization can be appropriate for models with a small number 
of parameters, calibration allows one to address models featuring a large number 
of parameters, that may have strong interactions (Box  2). Multiscale mechanistic 
KBMs are generally part of this second category of models and thus are subject to 
calibration (Box 3).

The objective of KBM calibration is to find the set of parameter values that allow 
the model variables to reproduce the desired biological behavior, that is to say a 
set of qualitative and quantitative knowledge and data extracted from the literature. 
However, knowledge and data found in literature are scarce, therefore the aim of this 
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article is to establish a calibration strategy for existing non-calibrated computational 
models, using publicly available heterogeneous data to accurately estimate model 
parameters’ values or distributions. Heterogeneity in this context includes several 
aspects of the data, including both the different scales of the data (some obtained 
in vitro, some in animal model, some in humans), different types of outputs (dis-
tinct variables measures) and whether the measurements are qualitative or quanti-
tative. During the calibration process, the model architecture itself is assumed to 
remain static (i.e. no refactoring of the model, such as adding, removing or replacing 
a biological phenomenon is allowed to occur), and only the parameter values are 
changed.

In this paper, we present a calibration methodology where the benefits of hetero-
geneous types of data are leveraged through (1) data assessment, (2) assurance of 
satisfying adequacy between model and observed data, (3) definition of the aim of 
each calibration step, (4) automatic optimization of parameters, and (5) integration 
of all calibration steps. The resulting calibration protocol addresses (1) data with dif-
ferent degrees of precision, from individual measurements to general knowledge, (2) 
data with different provenance (in vitro or in vivo and from several species), (3) data 
with different granularity (individual record or population-based), and (4) calibra-
tion at different levels, i.e. calibration of all measurable variables, regardless of their 
granularity.

This general calibration strategy is then applied to a multiscale mechanistic 
model of lung adenocarcinoma (LUAD). This study focuses only on the calibration 
application and will not address how model predictivity can be assessed on external 
data for a validation purpose.

2 � Methods

2.1 � Mechanistic Modeling

Mechanistic models are based on knowledge retrieved from literature, and represent, 
notably through model parameters values, well-described biological relationships 
between all model variables, the so-called biological phenomena (Box 1). The val-
ues of the model parameters therefore need to be correctly estimated for the model 
to reproduce the biology. The initial parameter identification provides plausibility of 
value ranges for parameters and should as much as possible be assessed on physio-
logical knowledge. Initial values can be generated or inferred using known relation-
ships or by hypotheses (e.g. via analogy or scaling). Parameters have been classified 
in distinct categories in literature based on the way their initial value is estimated 
(Yugi 2013). Here we propose a classification in two classes according to whether 
the parameter value is set through parameterization or calibration.

In this article, we will focus parameters that require calibration to estimate their 
values to reproduce desired biological behaviors. Finding the data required to rep-
resent such expected biological behaviors requires a thorough review of the scien-
tific literature. This step is nevertheless needed to obtain qualitative and quantitative 
knowledge and data that can be used to constrain the model behavior. A model is 
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said to be calibrated when the computational constraints derived from the review are 
achieved.

The information found in literature usually follows one of these three formats: 
text descriptions, numerical values, or graphical values. All three can be converted 
into computational constraints. This step is crucial, as the predictive power of a 
mechanistic model depends on the quality and consistency of the computational 
constraints on which the model is evaluated. The exercise is also critical in ensuring 
that models fulfill biological constraints that are meaningful to the future application 
of the model.

Prior to the calibration per se, it is key to identify which parameters to calibrate, 
trying to reduce their number at most to ease the upcoming calibration, as well real-
istic ranges for their values. This can sometimes be done during literature search 
by defining extreme values the parameter cannot take. Most often this can be done 
using sensitivity analysis methods, many of which can be applied in multiscale mod-
els (Renardy et al. 2019). Here, we use regular factorial designs to perform a multi-
variate sensitivity analysis (Monod et al. 2012; Bidot et al. 2018). Briefly, it allowed 
us to explore large ranges of parameter values, discard those that led to either 
numerical error or aberrant model behavior (defined based on literature review) and 
thus define the parameter space to explore.

2.2 � Integration of Heterogeneous Data with a Step‑by‑Step Calibration

The adequacy between the model variables and the relevant biological entities is 
a matter of ensuring that the model operates within the computational constraints 
and reproduces the expected behaviors. Depending on the level of knowledge avail-
able on some phenomena, distinct scales or levels of details (e.g. molecular or cellu-
lar) may coexist in a single model, notably in multiscale models. Multiscale models 
describe a complex process across multiple scales of time and space, and account for 
how quantities transform as we move from one scale to another (Bhattacharya and 
Viceconti 2017; Horstemeyer 2009).

The knowledge and data used to define the computational constraints are hetero-
geneous and can have different levels of granularity. To overcome this discrepancy, 
it is then relevant to approach the calibration of a model as a list of successive steps, 
each step having as its objective a specific model variable behavior matching one 
or more specific computational constraints. Since calibration steps are executed 
sequentially, the first calibration steps are prerequisites for the following steps. The 
order of the calibration steps is therefore important and the first steps should focus 
on reproducing the computational constraints related to:

•	 biological phenomena that are well-detailed in the literature, in order to intro-
duce as few uncertainty as possible in the first calibration steps (as they would 
have repercussions on the following steps)

•	 biological phenomena represented with the lowest level of granularity to ensure 
that the most detailed variables, and often the most sensitive to parameter value 
changes, have a consistent behavior in the model



1 3

Integration of Heterogeneous Biological Data in Multiscale… Page 7 of 24  19

•	 biological phenomena that are less connected to the others, such as a subpart of 
the model that is less connected to the others to ensure that a calibration solution 
within the parameter space can more easily be found (compared to the explora-
tion of a wide parameter space with deeply interconnected models). In this con-
text, connection refers to the number of inputs/outputs between the models: the 
less inputs from other models a given model needs to run, the less connected it is 
considered

Most often, at each step one calibrates subparts of the model (also called submod-
els). Later steps combine these submodels to calibrate larger and larger models.

Each of the calibration steps reduces the remaining space of the parameters to be 
estimated. A calibration step starts with a number of parameters for which we have 
large uncertainty (a wide range of possible values). The calibration then either sets 
a definite value for that parameter (reducing the number of unknowns in the con-
secutive calibration steps) or it reduces the possible range of values for a parameter, 
limiting the plausible parameter space. Some computational constraints may influ-
ence multiple calibration steps, as each new step in the calibration should ensure 
that the results from the previous steps are still relevant; i.e. the constraints used 
at one step should still be verified in subsequent steps. Overall, the feasibility of a 
model calibration depends on the amount and quality of the experimental data used 
to define the computational constraints. An illustration of such a calibration strategy 
is provided in Fig. 1.

At the end of a calibration step, the model parameter values should ensure that the 
model reproduces the biological behavior defined by the computational constraints.

Fig. 1   Illustration of the stepwise calibration process of a model with knowledge and data as input. We 
propose an iterative calibration process where the size of the plausible parameter space decreases at each 
step, and the effect of the computational constraints applied to the model on the efficiency of the calibra-
tion process increases
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At the end of the calibration process the model should be able to reproduce the 
pathophysiology of interest, in the desired context of use, represented by the whole 
set of computational constraints (Morrison et al. 2019).

2.3 � Computational Implementation of Calibration

2.3.1 � Overview of Existing Methods

Calibration, or parameter estimation, consists in solving the inverse problem of 
finding parameters values such that the model matches the available experimental 
data (Moles et al. 2003). Most calibration methods are variations of either a Bayes-
ian inference or a maximum likelihood problem (Klipp et al. 2016). The principle 
of Bayesian inference is to estimate the probability distribution of the parameters 
(the posterior distribution) given the probability of observing the available data (the 
likelihood) while taking into account prior belief (the prior distribution) regarding 
the parameters distributions (Liepe et  al. 2013). Bayesian inference is particularly 
suited to problems involving scarce, missing or noisy data however estimating the 
posterior distribution is often analytically intractable, therefore sampling methods 
such as Monte-Carlo Markov Chains (Rosenthal 1995) can be used. Even then, 
the computational cost can remain prohibitive in high-dimensional cases which is 
why methods such as Approximate Bayesian Computation (Barber et al. 2015; Toni 
et al. 2009) or Sequential Monte Carlo (Liu and Chen 1998) have been developed 
to provide less costly likelihood approximations. Maximum likelihood methods 
aim at estimating the parameters that maximize the goodness of fit of a model, i.e. 
minimize the discrepancy between model outputs and experimental data. They usu-
ally amount to maximizing a non-linear objective function for which there exists 
many algorithms that can be divided in two classes: deterministic and stochastic. 
Deterministic methods can involve the gradient (Galtier and Wainrib 2013) of the 
objective function which makes them more likely to converge to local maxima. They 
can also be “gradient-free” such as the DIRECT Jones et al. (2001) and Nelder and 
Mead (1965) methods for instance. Stochastic methods generally tend to be more 
robust with respect to local maxima while being relatively easier to implement when 
they treat the objective function to maximize as a black box. Some examples are 
simulated annealing (Kirkpatrick et al. 1983), the SAEM algorithm (Delyon et al. 
1999), which is particularly suited to non-linear mixed effects models and evolu-
tionary methods which have the advantage of being easily parallelizable (Back et al. 
1997).

2.3.2 � Implementation of Calibration with CMA‑ES

CMA-ES, which stands for Covariance Matrix Adaptation Evolution Strategy 
(Hansen et al. 2003; Jdrzejewski-Szmek et al. 2018; Tomasoni et al. 2021) is a mem-
ber of the aforementioned evolutionary methods which has shown to be efficient for 
a wide variety of applications (Ryan et al. 2007).
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Akin to most evolutionary methods, CMA-ES proceeds iteratively, each iteration 
corresponding to a generation of p individuals, each individual being a vector of the 
parameter values to optimize. For a given generation, the objective function is evalu-
ated for each individual, a subset of individuals exhibiting the best objective values 
is kept (it is the “survival of the fittest” principle which gave evolutionary methods 
their name) and is used through reproduction to generate the next generation. In the 
CMA-ES algorithm, the individuals of a generation are obtained by sampling from 
a multivariate normal distribution and the reproduction step consists in using the fit-
test individuals to update the covariance matrix and mean of said distribution. The 
hyperparameters of the algorithm are p, the number of individuals per iteration, the 
initial covariance matrix and mean and the stopping criterion.

In the context of this article, the goal of calibration is to obtain parameter values 
such that the computational model satisfies some biological constraints. As shown in 
Fig. 2, constraints can be of two kinds: a knowledge source (e.g. a quantity of inter-
est is above a given threshold) with an associated binary score that takes value 0 or 
1 or a data source (e.g. a measure of how close an output variable dynamics is with 
respect to experimental data) with a score which continually varies in [0, 1]. The 
motivation for representing constraints with such scores is to have quantities of com-
parable orders of magnitude such that they can seamlessly be combined by weight-
ing their sum into a single objective function which itself varies in [0, 1]. Rescaling 
the scores and objectives in [0, 1] also allows for easy interpretation of the result.

Each computational constraint is weighted to reflect a user-defined importance 
compared to the others. For a given virtual patient, the objective function f(� ) to 
maximize is the weighted sum of all its scores and reads:

Fig. 2   Translation of biological constraints into computational constraints. A Computational constraint 
based on knowledge, B Computational constraint based on experimental data. Reference (Freyer 1988)
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where y(�) is the simulation output, sk the k th sub-score and �k its associated weight.
The objective function f(� ) is maximized using the CMA-ES algorithm. The pop-

ulation size hyperparameter p is chosen using the rule recommended by the Python 
library implementing CMA-ES (Hansen et al. 2019):

where d is the number of parameters to calibrate
The initial mean of the multivariate normal distribution corresponds to the indi-

vidual initial guess of the parameters which are user-defined. The initial covariance 
matrix is a diagonal matrix where the square root of the k-th diagonal coefficient 
(which corresponds to a standard deviation) is chosen such that it equals half of the 
k-th parameter search interval width.

The stopping criterion is whatever is satisfied first among the following two:

•	 the objective function reaches a user-defined threshold (typically close to 1)
•	 the objective function stagnates over multiple iterations (Hansen and Kern 2004)

Calibration is deemed satisfactory when the model outputs accurately reproduce the 
biological behavior depicted by the computational constraints (Allen et al. 2016).

2.3.3 � Illustration with a Synthetic Example

In this section we propose to illustrate the calibration methodology presented in the 
above with a toy example consisting of a cost function:

where

and

f is a simple example of objective function combining one binary and one con-
tinuous score with equal weights. u is a rescaling function such that g(x1, x2) takes 
values in [0, 1]. g(x1, x2) has a known global maximum of 1, reached twice in 
(x1, x2) = (±0.0898,∓0.7126) and four local maxima.

The proposed calibration procedure is applied to this toy example with initial 
guess (x1, x2) = (−2, 1) , initial standard deviations �1 = �2 = 0.5 and population size 
p = 20.

(1)f (�) =

∑

k �ksk(y(�))
∑

k �k

(2)p = 4 + 3 ∗ log d

(3)f (x1, x2) =
1

2
g(x1, x2) +

1

2
h(x1, x2)

(4)g(x1, x2) = u(−(4 − 2.1x2
1
+ x4

1
∕3)x2 − x1x2 + (4 − 4x2

2
)x2)

(5)h(x1, x2) = 1 if x2 ≤ x1 0 otherwise
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Figure 3 illustrates how the calibration problem is solved using CMA-ES. The 
samples converge towards the global maximum which corresponds to one of the 
global maxima of g(x1,x 2) where h(x1, x2) = 1.

Figure 4 shows the evolution of the objective function values associated with 
the CMA-ES samples throughout iterations.

2.4 � Parameter Identifiability

The present paper does not deal with parameter identifiability. The aim is not to 
find a unique solution to the calibration problem but rather find one set of param-
eters among several which are assumed all likely to give a good fit. It can even be 
argued that even if the estimation process is not able to tightly constrain any of 
the parameter values, the model can still be able to yield significant quantitative 
predictions (Brown and Sethna 2003). The interested reader is referred to Duch-
esne et al. (2019), Miao et al. (2011) and Pant and Lombardi (2015) for studies 
regarding parameter identifiability in dynamical systems.

Fig. 3   Illustration of the convergence of CMA-ES on a toy calibration example. Contours correspond to 
the continuous score g(x1, x2) and the dashed area materializes where the binary score h(x1, x2) equals 
zero. The red dots show the CMA-ES samples at different iterations
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3 � Application Example

3.1 � Context: Mechanistic Model of Lung Adenocarcinoma Under Gefitinib 
Treatment

Non-small-cell lung cancer (NSCLC) is the most common type of lung cancer 
accounting for 80–90% of all lung cancers, and about 40% of all lung cancers are 
adenocarcinomas (LUAD)(ESMO 2019). These tumors start in mucus-producing 
cells that line the airways. The studied model, referred to as the in silico EGFR+ 
(Epidermal Growth Factor Receptor) Lung Adenocarcinoma (ISELA) model, relies 
on a mechanistic representation of tumor evolution, from specific mutations to tumor 
size evolution. It additionally includes tumor shrinkage in response to administra-
tion of the first generation epidermal growth factor receptor tyrosine kinase inhibitor 
gefitinib (Lynch et al. 2004; Paez et al. 2004). We calibrated the ISELA model in 
order to predict tumor size evolution.

We describe here the two-step calibration that we applied to the ISELA model in 
order to ensure the model was reproducing the EGFR+ LUAD cell growth observed 
experimentally and described in literature.

Fig. 4   Evolution of the objective function with CMA-ES iterations. For each iteration, the CMA-ES 
algorithm draws and evaluates the score (or objective value) of several sets of parameter values, sampled 
around the best set of parameter values from the previous iteration. The worst and best samples for each 
iteration are plotted to illustrate that a CMA-ES finds in few iterations regions with high objective values 
and b the drawn samples converge to the neighborhood of the global maximum
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3.2 � Calibration Protocol

3.2.1 � Parameterization of Parameters

Within the ISELA model, the effect of mutations on the EGFR pathway was 
retrieved from the scientific literature and implemented as such, using parameter-
ization. Here we present a compiled information on the main mutations that were 
parametrized prior to the calibration process:

•	 Kirsten rat sarcoma viral oncogene homolog gene (KRAS) mutation, which 
decreases by 97-99% (rounded to 98%) the hydrolysis of guanosine triphosphate 
once KRAS is activated, keeping it under its active form (Hunter et al. 2015)

•	 EGFR, exon 19 deletion, which has 3 distinct effects: it leads to the consti-
tutive activation of EGFR (Harrison et  al. 2020), it alters EGFR affinity for 
adenosine triphosphate from approximately 5.0μ M to 129μ M (Carey et  al. 
2006), and it modifies the affinity of EGFR to gefitinib changing the inhibition 
constant from approximately 16.4 nM to an estimated 0.833 nM based on an 
IC 50 of 6nM (Yasuda et al. 2013), making it sensitive to gefitinib treatment 
(Lynch et al. 2004)

•	 Phosphatidylinositol-4,5-Bisphosphate 3-Kinase Catalytic Subunit Alpha gene 
(PIK3CA) mutation, leading to an estimated 2.7 fold increase of PI3K com-
plex activity (Yamamoto et  al. 2008) conferring a resistance to gefitinib (Re 
et al. 2019)

3.2.2 � Assessing the Calibration Data for the ISELA Model

We reviewed the scientific literature to retrieve the relevant experiments and bio-
logical phenomena related to the tumor growth in EGFR+ LUAD patients and 
their TTP. Five biological phenomena were identified as relevant to represent 
them in the context of development of the ISELA model: 

1.	 tumor cell proliferation
2.	 tumor cell death
3.	 neoangiogenesis
4.	 effect of the immune system on the tumor
5.	 treatment

Together, these phenomena are represented with 14 parameters (see Supplemen-
tary Table S1), for which we aimed to find a single value corresponding to a mean 
behavior within the population.

A structured review of the relevant papers, given the context of use of the 
ISELA model, was performed. Table 1 lists the papers that were used for the cali-
bration of tumor growth. These tumor growth-related experimental data can be 
divided in two categories: 
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1.	 In vitro tumor growth data (Jagiella et al. 2016). In this experimental context, 
only tumor cell proliferation and death can be followed. The main assumption is 
that the tumor can be represented as a spherical shape and grows proportionally 
(Lewin et al. 2018). The two remaining biological processes related to tumor 
growth, namely neoangiogenesis and the effect of the immune system on the 
tumor, are assumed not to operate in such an in vitro context and are thus set to 
null in the simulation.

2.	 In vivo tumor xenograft mouse model growth data (Kang et al. 2018). In this 
experimental context, tumor cell proliferation and death can be followed, as well 
as neoangiogenesis. Immunocompromised mice were ectopically xenografted 
with patient-derived NSCLC tumors. We selected data for such patient-derived 
tumors, one carrying EGFR exon 19 deletion mutation only, thus sensitive to 
gefitinib, one having both the exon 19 EGFR deletion and a mutation in PIK3CA 
(a subunit of PI3K complex, activating the PI3K/AKT pathway), thus resistant to 
gefitinib. Tumor size was measured once or twice per week using a vernier caliper. 
The effect of the immune system on the tumor is limited (due to immunosuppres-
sion), but not null. For the data we focus on mice treated with gefitinib at 25mg/
kg or injected with 5 mM citrate buffer as a placebo, by oral gavage.

The experimental data used here present the following advantages:

•	 They are based on cells extracted from EGFR+ LUAD human tumors.
•	 Tumor growth is followed either without any treatment with gefitinib which 

matches the context of use of the ISELA model.
•	 The type of EGFR+ mutation of the tumor is specified.

3.2.3 � Ensuring that the Model Adequately Represents Data

Numbers of living, proliferative and dead cells are internal variables of the 
ISELA model. From these internal variables, the tumor volume and tumor radius 
are direct outputs of the model:

Table 1   References used for the calibration of tumor growth, focusing on implemented constraints on 
tumor size. § rim size = distance between tumor core and tumor surface

Author (year) Study type Biological processes

(Jagiella et al. 2016) In vitro & ex vivo Tumor spheroid growth curves, Fraction of proliferative cells 
at maximal radius

(Ekert et al. 2014) Ex vivo Evolution of the proportion of proliferative cells within the 
tumor

(Freyer 1988) In vitro Estimation of the viable rim size§ of the tumor
(Kang et al. 2018) In vitro Tumor volume evaluation
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and

with nbpc the number of proliferating cells, nbqc the number of quiescent cells, nbnc 
the number of necrotic cells, cancercd the density of cancer cells. For the sake of 
simplicity, cancercd is assumed to be constant within the tumor and over time and 
equals 2.8e8 cells/cm3 (Grassberger et al. 2019). Furthermore, tumors are assumed 
to be perfectly spherical. This hypothesis seems reasonable since the majority of 
tumors are spherical and approximately 20% are considered non-spherical (James 
et al. 1999). However, these assumptions may have an impact on the range of param-
eter values.

Consequently, under the two aforementioned assumptions, there is a direct match 
between the nature of the data reported in the selected papers, and the nature of the 
model outputs.

3.2.4 � Definition of the Objective of the Calibration Steps

As mentioned previously, the goal of the calibration for the ISELA model was to 
reproduce the EGFR+ LUAD cell growth described in literature and observed 
experimentally.

The experimental data found in literature to characterize EGFR+ LUAD tumor 
growth are either obtained from in vitro spheroids, or from xenografted mice, report-
ing either tumor radius or tumor volume. We therefore decided to split the ISELA 
calibration into two sequential steps:

•	 Step 1: Reproduce the tumor radius evolution and the proportion of viable cells 
of in vitro spheroids. Step 1 addresses in vitro scale; it focuses on tumor growth 
in the absence of extracellular signals related to neoangiogenesis, immune sys-
tem or treatment

•	 Step 2: Reproduce the tumor volume evolution of human EGFR+ LUAD tumor 
cells transplanted into immunocompromised mice. Step 2 addresses in  vivo 
scale; it focuses on tumor growth in the presence of neoangiogenesis, immune 
system or treatment

While step 1 calibration is performed in  vitro, step 2 is performed in mice. As a 
consequence calibration steps have different grain and scope. Another known con-
sequence is that some of the reactions are expected to happen qualitatively at a 
different rate, for instance, doubling time of tumor cells are expected to be faster 
in  vitro, than in mice, itself faster than in human ((Shimkin and Polissar 1955), 
(Merk et al. 2009), (Arai et al. 1994), (Freyer 1988)). We therefore calculated part 
of this experimental variability using allometry theory. Allometry describes how 

tumorvolume =
(nbpc + nbqc + nbnc)

cancercd

tumorradius =

(

tumorvolume × 3

4�

)
1

3
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the characteristics of living creatures such as morphological and physiological traits 
change with their size. Kleiber’s law states that the metabolic rate scales to the 3

4
 

power of the animal’s mass for a wide range of species. Scaling laws are since then 
most often described with power law relationships Z = a ×Mb with Z the studied 
characteristic, M the organism mass, and a and b parameters called allometric coef-
ficient and allometric exponent respectively (Pérez-García et al. 2020; Smil 2000), 
with the assumption that the allometric assumption relies on the physical dimension 
of the parameter ((Morgado et al. 1990), (Dawson 2014), (West et al. 1997)). Allo-
metric scaling thus provides a way to link parameters of individuals even when they 
are of different species. We decided to consider allometry in our model since this 
framework allows us to compare species on the basis of their body weight. For each 
parameter concerned by allometry, we calibrated the allometric coefficient a for a 
specific weight and this enabled us to deduce, using the power law relationships, 
the value of this parameter for different weight, having the allometric exponent b 
determined by the parameter physical unit. This allows one to maximize the use of 
the information obtained on one species on the other with the aim to have the model 
faithfully reproducing both, instead of doing independent calibration of the param-
eters in both species. In this study we used a reference body weight of 2.63g for 
in vitro experiments (West 2002) and 23g for a mouse weight (Vellers et al. 2017).

3.2.5 � Automation of Parameter Value Optimisation

Optimization of parameter values was performed automatically using the CMA-ES 
algorithm as described in the methods section.

3.3 � Results

3.3.1 � Step 1: Reproduction of Tumor Growth (in vitro Spheroid Data)

The evolution of tumor radius prior and after calibration was compared to the exper-
imental data used for calibration (see Fig. 5). Figure 5 aims to provide a view on 
how the calibration outputs are at the same time:

•	 based on literature data knowledge, through the prior parameterization of the 
model, and could be able to provide acceptable results based on these considera-
tions only

•	 improved by the model calibration process we developed here

The experimental data showed an increase of tumor radius of approximately 12.5μ
m/day over the first 20 days, to reach 400μ m, which then started to plateau. Pre-cal-
ibration of the model showed an increase of approximately 8 μm/day. After calibra-
tion, as described in the calibration protocol section, the model showed an increase 
of approximately 12.5μm/day and the tumor radius stayed approximately within two 
standard deviations of the experimental data.
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Overall, the calibration showed good agreement with experimental data post 
calibration, reproducing the expected growth of in  vitro KRAS-mutated sphe-
roids, at least for the first 30 days of the experiment.

3.3.2 � Step 2: Reproduction of Tumor Growth (in vivo Xenograft Growth Data)

Evolution of tumor volume prior and after calibration was compared to the 
experimental data used for calibration for each of the four scenarios: EGFR 
mutation with or without gefitinib, EGFR and PIK3CA mutation with or without 
gefitinib (see Fig.  6). In EGFR tumors, treated with placebo, the experimental 
data showed an increase of tumor volume of approximately 20mm3/day over the 
first 20 days (Fig. 6A). Under gefitinib in tumors with EGFR mutation only, vol-
ume decreased in size of roughly 16mm3/day over the first 10 days, before pla-
teauing (Fig. 6B). In tumors with both EGFR and PIK3CA mutations, treatment 
with gefitinib showed no effect compared to placebo with tumor volume increas-
ing roughly by 7.5mm3/day over the first 20 days (Fig. 6C and D).

Overall, this calibration step successfully reproduced the growth of two xeno-
grafted tumors carrying EGFR exon 19 deletion, and one having in addition a 
mutation in PIK3CA, as reported in Kang et  al. (2018). The simulation could 
reproduce not only tumor evolution with placebo but also the differential effect 
of gefitinib depending on the tumor genotype.

The calibration thus succeeded in allowing the model to faithfully reproduce 
observed experimental data and fulfill the associated computational constraints. 
The changes in parameter values are detailed in the supplementary material.

Fig. 5   Efficacy of calibration of 
tumor radius on in vitro sphe-
roids carrying KRAS mutation. 
Experimental data are shown 
in gray (error bars represent 2 
standard deviations, experimen-
tal data are reported by Jagiella 
et al. (2016), simulated data 
prior to calibration in light blue 
and simulated data after calibra-
tion in dark blue
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4 � Discussion

In mechanistic modeling, calibration is often seen as taking the risk of having a 
compensation of the model error by errors on the parameter values. We present here 
a calibration procedure improving model adequacy to both the knowledge and data 
extracted from literature. A perspective about knowledge-based models emphasizes 
the need to formalize model development and verification aspects and highlights 
optimal structural granularity and parameter estimation as critical aspects (Ribba 
et al. 2017). Calibration could also be necessary to estimate parameters value which 
can hardly be experimentally measured (e.g. R0 used in epidemiology (Delamater 
et  al. 2019)). Calibration methodology, however, is often insufficiently discussed. 

Fig. 6   Efficacy of calibration of tumor volume with xenograft data. On each plot, the experimental 
data are shown in gray (Error bars on experimental data correspond to 2 standard deviations of the data 
reported in Kang et al. (2018)), simulated data prior to calibration in light blue and simulated data after 
calibration in dark blue. The type of mutations carried by the tumor is indicated on top of each plot. 
(Color figure online)
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If calibration is described, no standardized or generalized method is employed. Fre-
quently, identifying the appropriate data set for calibration is a major challenge. 
Only a few papers could be identified with a detailed description of the calibration 
process. For instance, calibration was performed in a mathematical model of blood 
eosinophil dynamics against in vitro and in vivo data (Karelina et al. 2016). Willis 
et al. (2021) have used parameter regression methods to calibrate an SIRD model for 
COVID-19. For a mechanistic model of oral poliovirus-related vaccine virus trans-
mission risk, optimal model parameters were identified with Latin hypercube sam-
pling and a pseudo-likelihood function to minimize the discrepancy between simu-
lated and observed data (Famulare et al. 2021).

The methodology we presented here could maximize the use of heterogeneous 
data (in terms of scale, nature of measurement, qualitative or quantitative nature), 
to calibrate multiscale mechanistic model to better represent expected biological 
behavior observed at distinct scales.

From a theoretical perspective, the main limitations of such an approach are the 
availability of relevant knowledge and consistent data to efficiently constrain the 
model. In particular, when the biological constraints from literature are in disagree-
ment, it may indicate that the respective phenomena are not sufficiently character-
ized in the literature. A documented removal of constraints or changes in the model 
structure may be viable options. Also, some phenomena may not be sufficiently 
documented in the literature, leading to a lack of computational constraints. In such 
a case, drawing some documented simplifying assumptions, or exploring alterna-
tive explanatory hypotheses, may be critical in model development and calibration. 
More generally, developing a more systematic way of dealing with incompatible 
constraints is an interesting avenue for future works.

The calibration strategy proposed in this paper can be compared to the use of 
machine learning (ML) in model development. ML model development is more 
standardized and includes training, testing and validation of a model. A training 
dataset is used initially to fit the model parameters. The model is then optimized on 
a training dataset with methods such as gradient descent to adjust model parameters. 
The fitted model is finally validated with a validation dataset where the model’s pre-
dictions are compared with the responses for the observations. In ML, similar to 
mechanistic modeling, lack of data is often the main limitation (Roh et al. 2021). 
Especially in healthcare, data-driven ML is limited due to bias and data access due 
to privacy concerns, data silos and heterogeneous data formats (Rieke et al. 2020).

From a technical perspective, there are two additional aspects that need to be 
considered for mechanistic modeling: the computational cost and the global con-
vergence verification of the process. Calibration of many parameters requires sig-
nificant computational power and a significant amount of available data. There-
fore, prior to the calibration presented here, a parsimonious approach to model 
building with reducing the number parameters to calibrate (e.g. through simpli-
fying assumptions, or sensitivity analysis to identify parameters affecting the 
outcome(s) of interest the most) is a key step. More fundamentally, the problem 
of parameter identifiability has been left unaddressed as well as the uncertainty 
quantification of the parameters after calibration. Both aspects will be the focus 
of future work. Also, a thorough exploration of calibration algorithm settings is 
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necessary to ensure that the calibration converges to a unique set of values and 
that this convergence corresponds to a global maximum of the cost-function. Oth-
erwise, if left unverified, the process may not have converged at all, or will have 
converged to a local maximum, leading to a suboptimal performance.

The stepwise process as presented here allows the calibration of increasingly 
larger models, starting from a relatively basic one to a more complex one. Those 
calibration protocols lead to the production of independent reusable subparts of 
models as well as complex models as a whole. These models can be reused in 
other contexts as a starting point to build calibrated mechanistic models adapta-
ble to the available data and questions of interest. The method naturally produces 
calibrated portions of larger models, and these submodels can be used in other 
contexts.

We have applied this calibration strategy to a mechanistic multiscale KBM 
of lung adenocarcinoma harboring specific EGFR mutations, and focused on 
the calibration of tumor growth parameters based on in  vitro experiments and 
xenografted mice. This led to the successful calibration of the model with these 
experimental settings as the calibrated model showed an adequate fit with the 
experimental data (see Figs.  5 and 6 ). The model is currently under further 
development, in order to be able to represent measurements observed in humans. 
The ISELA model will likely require additional calibration steps focusing on spe-
cific parameters, e.g. to represent the human immune system. This would also 
imply calibrating not just the average behavior amongst the population, but also 
the inter-patient variability, to generate a Virtual Population matching the char-
acteristics of a real population. To formally assess the performance of the model 
and its results’ generalizability, and after the calibration process, validation of the 
model will be performed with data that were neither used for building the model 
nor calibration, e.g. real world data or clinical trial data.

After the calibration process and an additional validation procedure on an 
independent dataset, an additional application of a mechanistic model would be 
the generation of independent virtual populations to answer clinical questions in 
silico.
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