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Abstract

Objectives

Two independent studies were conducted to examine the effects of 28 d of beta-alanine

supplementation at 6.4 g d-1 on brain homocarnosine/carnosine signal in omnivores and

vegetarians (Study 1) and on cognitive function before and after exercise in trained cyclists

(Study 2).

Methods

In Study 1, seven healthy vegetarians (3 women and 4 men) and seven age- and sex-

matched omnivores undertook a brain 1H-MRS exam at baseline and after beta-alanine

supplementation. In study 2, nineteen trained male cyclists completed four 20-Km cycling

time trials (two pre supplementation and two post supplementation), with a battery of cogni-

tive function tests (Stroop test, Sternberg paradigm, Rapid Visual Information Processing

task) being performed before and after exercise on each occasion.

Results

In Study 1, there were no within-group effects of beta-alanine supplementation on brain

homocarnosine/carnosine signal in either vegetarians (p = 0.99) or omnivores (p = 0.27);

nor was there any effect when data from both groups were pooled (p = 0.19). Similarly,

there was no group by time interaction for brain homocarnosine/carnosine signal (p = 0.27).

In study 2, exercise improved cognitive function across all tests (P<0.05), although there

was no effect (P>0.05) of beta-alanine supplementation on response times or accuracy for

the Stroop test, Sternberg paradigm or RVIP task at rest or after exercise.
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Conclusion

28 d of beta-alanine supplementation at 6.4g d-1 appeared not to influence brain homocar-

nosine/carnosine signal in either omnivores or vegetarians; nor did it influence cognitive

function before or after exercise in trained cyclists.

Introduction
Carnosine is a dipeptide of the amino acids beta-alanine and L-histidine, which is synthesised
endogenously. Synthesis appears limited by the availability of beta-alanine, which itself is
synthesised within the body or obtained from the diet. The main dietary sources of beta-
alanine are meat and fish containing carnosine and its methylated derivatives. Daily ingestion
of carnosine and related peptides in current human diets ranges from<50 to>4000mg for
those consuming vegetarian and very high meat-content diets [1]. It is known that most of the
carnosine ingested in the diet is cleaved to its constituent amino acids in the enterocytes due to
the presence of carnosinase in the jejunum [2]. In humans, any carnosine that makes it intact
into the bloodstream is likely to be acted upon by carnosinase in plasma. This enzyme pos-
sesses a high activity and, as a consequence, circulating concentrations of carnosine in humans
are remarkably low [3].

Carnosine is abundant in skeletal muscle [3] and, as a consequence of the pKa of the imidaz-
ole ring (value 6.83), participates in intracellular acid-base regulation during exercise [3]. Be-
sides skeletal muscle, carnosine has been suggested to be metabolically relevant to others
tissues, such as the brain and heart, where again it may act as a proton buffer. Other suggested
roles of carnosine include acting as a membrane stabilizer, anti-oxidant, anti-glycating and
anti-convulsant agent [4, 5].

The rate of carnosine synthesis in human skeletal muscle is limited by the availability of
beta-alanine as a result of the low affinity of both the transporter and carnosine synthase for
this, relative to the concentration of beta-alanine in plasma [3, 6]. It is likely that this holds true
for other tissues where carnosine is synthesised in situ. Fasting plasma beta-alanine concentra-
tions are very low; therefore the availability of beta-alanine is limiting to carnosine synthesis.
However, beta-alanine ingested from food (usually less than 600mg per meal in the modern
diet) results in a transient postprandial increase in the plasma beta-alanine concentration,
which may exceed the Km of the transporter [3]. Accordingly, beta-alanine supplementation
has been consistently shown to increase intracellular carnosine biosynthesis [3, 7]. However,
these studies have focused on skeletal muscle synthesis and there is little information regarding
the carnosine responses to beta-alanine supplementation in other tissues where it may be rele-
vant, such as brain.

In muscle, carnosine synthesis is dependent upon the uptake of beta-alanine and L-
histidine, as muscle cells cannot transport the intact dipeptide [8, 9]. In brain, carnosine trans-
port into neuronal cells is possible via the specific transporter PepT2 [10, 11], although this is
likely to be limited by the very low concentration of carnosine in blood. Likewise, beta-alanine
transport into brain also appears to be possible via the beta-amino acid transporter [12], but
again may be limited by the low concentrations of beta-alanine in the circulation [3]. In mam-
mals, carnosine has been detected in different brain areas, where it may act as a neurotransmit-
ter [13, 14]. In contrast, the only study assessing carnosine in human brain showed that little, if
any, carnosine was present [15]. Despite this, human brain expresses an enzyme capable of
synthesising both carnosine and homocarnosine [15] and is able to synthesise carnosine 3–5
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times faster than homocarnosine [15]. Furthermore, the synthesis rate was dependent upon the
availability of beta-alanine [15], suggesting that this might be the rate-limiting factor for carno-
sine synthesis even in the human brain. Given the very low circulating levels of beta-alanine, it
is reasonable to assume that increased beta-alanine availability with supplementation could
lead to increased levels of carnosine in the human brain. This is strengthened by experimental
evidence demonstrating that beta-alanine supplementation significantly increases carnosine
content in different brain areas in rats [14]. Similarly, it also seems reasonable to assume that
diets low in beta-alanine, such as vegetarian diets, may lead to diminished brain carnosine.

There is increasing evidence to support potential therapeutic roles of carnosine [16]. It has
been suggested that increased levels of carnosine or related dipeptides in brain may be of thera-
peutic relevance, particularly in conditions exacerbated by oxidative stress, including neurode-
generative diseases such as Alzheimer’s, Parkinson’s, epilepsy, and brain injury [17]. Recent
studies have demonstrated that carnosine exerted a protective effect on the brain membrane in
an experimental model of global ischemia [18] and ischemic brain injury [19]. Using a trans-
genic murine model, Herculano et al., [20] showed that oral carnosine supplementation was ef-
fective in preventing cognitive decline in Alzheimer disease, which could be attributed to the
carnosine´s ability to inhibit beta-amyloid polymerisation and the citotoxic effects of beta-
amyloid [21]. The antiglycating activity of carnosine may also be involved in the protection
against Alzheimer disease [17]. In Parkinson patients, Boldyrev et al., [22] suggested that adju-
vant treatment with dietary carnosine supplementation (1.5g�d-1) could ameliorate neurologi-
cal symptoms (as assessed by the Unified Parkinson’s Disease Rating Scale), which was
paralleled by a decrease in protein carbonyls in blood. Similarly, Fodovora et al., [23] showed
that patients with chronic encephalopathy presented an improvement in cognitive aspects of
information processing after 21 days of carnosine supplementation. In addition, it has been
suggested that carnosine may ameliorate mental fatigue, memory, attention and motor speed
in mentally stressful conditions [24, 25].

Moderate intensity exercise has been shown to have positive effects on cognitive function
[26]. On the other hand, physically stressful conditions, such as fatiguing exercise, have been
shown to have a detrimental effect on cognitive function [27, 28]. This has led to the speculation
that increasing brain carnosine content could improve cognitive function, particularly in stress-
ful conditions, such as following fatiguing exercise. Based on evidence supporting the role of
beta-alanine supplementation in increasing brain carnosine in rodents, we also speculated that
beta-alanine supplementation in humans could lead to increased brain carnosine, as inferred by
the imidazole ring signal. In line with this, increased brain carnosine, achieved via beta-alanine
supplementation, resulted in improved performance in behavioural tests in rats [14]. In hu-
mans, Gross et al., [29] reported that 5 weeks of beta-alanine supplementation at 3.2g�d-1 en-
hanced motivation and perceived state during high-intensity exercise. In contrast, a recent study
did not show any positive effect of beta-alanine supplementation on a cognitive test in fatigued
elite soldiers [28], although improved marksmanship following beta-alanine supplementation
was shown. Notably, brain carnosine was not assessed in either of these human studies.

As beta-alanine can be rapidly transported into the brain [12] and accumulates in neuronal
cells in a variety of mammals, including humans [30], and given that beta-alanine supplemen-
tation can increase carnosine in the cerebral cortex and hypothalamus in rats [14], we hypothe-
sised that beta-alanine supplementation could increase brain carnosine, improving cognitive
function in healthy humans following high-intensity exercise. To gather further knowledge on
the role of dietary carnosine and beta-alanine intake on brain carnosine, including the re-
sponses to dietary supplementation, we also compared omnivores vs. vegetarians before and
after beta-alanine supplementation. Carnosine may be measured in tissues by proton magnetic
resonance spectroscopy (1H-MRS) along with free histidine and other compounds where
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histidine is in a nuclear magnetic resonance visible form. In muscle, signal output is assumed
to be primarily due to carnosine. In brain, however, homocarnosine is thought to be the major
contributor to the signal output, although, being a dipeptide of gamma-aminobutyric acid and
histidine, homocarnosine is unlikely to change in response to beta-alanine supplementation.
We proposed, therefore, to determine if the histidine imidazole ring detected by 1H-MRS
(thereafter called homocarnosine/carnosine signal, given the theoretical contribution of both
dipeptides to this spectrum) was changed when participants were supplemented with beta-
alanine (Study 1, performed at the University of Sao Paulo, Brazil). In a separate study (Study
2, performed at Nottingham Trent University, UK), we investigated the effects of beta-alanine
on cognitive function in trained cyclists before and after a 20km cycling time-trial.

Methods

Ethical approval
All experimental procedures described in both studies were approved by their respective local
ethics committees (Ethics Committee from School of Medicine of University of Sao Paulo and
Nottingham Trent University Ethical Advisory Committee), and were in accordance with the
Helsinki Declaration of 1975, as revised in 1983.

General Design and Supplementation Protocol
Prior to participation, all participants were fully informed of the risks and discomforts associat-
ed with the studies and all individuals provided written informed consent. The methods and re-
sults of each study are described separately to enhance clarity.

In both studies, the participants ingested two slow release tablets (CarnoSynSR, Compound
Solutions Inc., Vista, Calif., USA) each containing 800mg of beta-alanine (total dose per serv-
ing was 1.6g) four times per day, separated by 3–4 hour intervals, for a total daily dose of 6.4g.
Beta-alanine tablets were tested by the manufacturer prior to release for the study and con-
formed to the label claim for beta-alanine content. All supplements were independently tested
by HFL Sports Science (Fordham, Newmarket, UK) prior to use to ensure no contamination
with steroids or stimulants according to ISO 17025 accredited tests.

Study 1
Experimental Design and Participants. In an open label study, participants undertook

brain 1H-MRS exams at baseline and after 4 weeks of beta-alanine supplementation. Seven
healthy vegetarians (3 women and 4 men who had been on a vegetarian diet for at least 4
months) and 7 age- and sex-matched omnivores (3 women and 4 men) volunteered to partici-
pate. There were no significant differences in the demographic characteristics between vegetar-
ians and omnivores (p> 0.05) (Table 1). The individuals who volunteered for participation

Table 1. Participants demographic characteristics and dietary beta-alanine intake—Study 1.

Variable Vegetarian (n = 7) Omnivores (n = 7) P

Age (y) 27.33(4.18) 32.14(11.52) 0.333

BMI (Kg/m2) 24.74(2.52) 23.54(2.75) 0.426

Schooling (y) 16.33(2.42) 16.86(5.27) 0.819

Dietary beta-alanine (mg/d) 0 490.47(119.53) 0.001

Data are mean ± (1SD). No significant differences between vegetarians and omnivores were noted.

doi:10.1371/journal.pone.0123857.t001
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were self-identified as lacto-ovo-vegetarians (n = 6), vegans (n = 1) or omnivores (n = 7), ac-
cording to well-accepted criteria [31]. Afterwards, a systematic dietary intake analysis was per-
formed by means of three 24-h food recalls undertaken on separate days (two weekdays and
one weekend day) using a visual aid photo album of real foods, which ensured that the vegetar-
ians´ diet was free of meat, including from fish. The participants verbally agreed to maintain
similar dietary intake for the duration of the study. The compliance to beta-alanine supplemen-
tation was determined to be 100% according to the bottles that were returned to the research
staff.

Magnetic Resonance Spectroscopy. In vivo 1H-MRS of the posterior cingulate cortex
(refer to ref. number [32] for details on voxel location) was acquired on a whole body 3.0T
MRI scanner (Achieva Intera, Philips, Best, The Netherlands) using an eight-channel head coil.
We chose to measure cingulate cortex due to its involvement in relevant cognitive function,
such as processing, learning, and memory [33]. The spectroscopy sequence was a single voxel
STEAM (voxel size 3x3x3cm3) with TE/TR = 10/1839 ms, spectral bandwidth of 2000Hz, 2048
sample points and 160 averages. The central frequency for acquisition was set to 8ppm. Metab-
olite quantification was performed on the Philips workstation using the Extended MR work-
space interface. Before Fourier Transformation time domain signal was multiplied by a -1.5 Hz
exponential function and followed by a 3Hz Gaussian filter. After residual water subtraction,
an automatic zero and first order phasing procedure was applied. For quantification of the
homocarnosine/carnosine signal (i.e., the signal corresponding to the histidine imidazole ring)
we chose to quantify the peak at 7.05 ppm [34], since the other peak related to homocarnosine/
carnosine at 8.02 ppm is very close to the much larger peak of the N-acetylaspartate amide
group resonating at 7.9ppm. Metabolite concentrations were expressed relative to the creatine
signal in the same spectrum without performing any correction for different relaxation proper-
ties of the metabolites. Water FWHM (frequency width at half maximum) values were 12±2
Hz on average (range from 10 to 18Hz). Quantification of homocarnosine/carnosine and crea-
tine was obtained by numerical integration of the spectrum in the region of 6.9–7.1ppm and
2.8–3.1 ppm, respectively. The coefficient of variation of this measure was< 12% and the
mean signal-to-noise ratio was 5.8. Fig 1 illustrates a representative 1H-MRS spectrum of an
omnivore and a vegetarian subject before and after beta-alanine supplementation.

Statistical Methods. The effect of beta-alanine supplementation on the brain homocarno-
sine/carnosine signal signal in vegetarians and omnivores was assessed by a mixed model anal-
ysis (group x time interaction) using the SAS software (version 8.2; SAS Institute Inc., Cary,
NC). The same statistical approach was used to assess any possible differences in the dietary in-
take of beta-alanine between vegetarians and omnivores across time. Data are reported as
mean ± (1SD) and 95% interval confidence, unless otherwise stated. Statistical significance was
accepted at p< 0.05.

Study 2
Experimental Design and Participants. This was a randomised, double blind, placebo-

controlled, parallel design experiment involving a familiarisation trial, two pre-supplementa-
tion trials and two post supplementation trials, all of which followed an identical protocol
(S1 CONSORT Checklist).

Twenty-six UK category 1 male cyclists volunteered to participate in the study and were
randomly assigned to either a placebo (P; maltodextrin) or a beta-alanine (BA) supplementa-
tion group using the ABBA method described by Altman [35]. However, seven participants
(4 from P and 3 from BA) withdrew from the study following completion of the baseline trials
citing various reasons not associated with the study (Fig 2). As such, nineteen participants
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completed all trials; participant characteristics are presented in Table 2. Beta-alanine and place-
bo tablets were identical in appearance and were contained in identical white unlabelled pots.
Identifying numbers were provided on each pot and an experimenter noted these before re-
moving them from the pots and providing them to participants. The code was held by an ex-
perimenter not directly involved with data collection and this code was only broken after the
completion of data collection. Supplementation logs were provided to each participant to ascer-
tain compliance with the supplementation protocol. On average, compliance was 92% with
beta-alanine and 89% with placebo.

Participants verbally confirmed prior to each laboratory visit that their health status had not
changed and that they had not taken any supplement in the 3 months prior to the study and
had not taken beta-alanine for at least 6 months prior to the study due to the long washout pe-
riod for muscle carnosine. Participants verbally agreed to maintain similar levels of physical ac-
tivity and dietary intake for the duration of the study during familiarisation and compliance
with this request was verbally confirmed with participants prior to each testing session. Fur-
thermore, dietary intake was assessed via a food record for 24 hours prior to the first

Fig 1. 1H-MRS spectrum of an omnivore and a vegetarian subject before and after beta-alanine supplementation. Abbreviation:
CS = homocarnosine/carnosine signal.

doi:10.1371/journal.pone.0123857.g001
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experimental trial, which was then repeated prior to each trial. None of the cyclists were vege-
tarian and so would have ingested small amounts of dietary beta-alanine from the hydrolysis of
carnosine and methyl derivatives of this in meat. This would typically be expected to vary daily
between 50 to 500mg.

Testing Protocol. During preliminary testing, height (Seca, UK) and body mass (Seca,
UK) were recorded before participants completed a full habituation test with the 20-Km cy-
cling time-trial as described below. Each of the experimental trials were completed at least 4 h
postprandial and participants had not completed vigorous exercise in the 24 h prior to each
trial. Upon arrival to the laboratory, participants completed the cognitive function testing bat-
tery on a laptop in isolation in a private room while wearing noise cancelling ear defenders in
order to reduce distraction.

Fig 2. Flow diagram from study 2.

doi:10.1371/journal.pone.0123857.g002

Table 2. Participants demographic characteristics—Study 2.

Variable Beta-alanine supplemented Placebo supplemented P

Age (y) 37(8) 32(6) 0.211

Height (m) 1.82(0.06) 1.81(0.04) 0.902

Mass (kg) 78.7(8.8) 80.4(8.3) 0.671

Data are mean ± (1SD). No significant differences between groups were noted.

doi:10.1371/journal.pone.0123857.t002
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After completing the pre-exercise cognitive function tests, the participants completed a self-
paced 5-minute warm up followed by a 20-Km time trial; the methodological details of this as-
pect of the study (including test-retest reliability), and its performance data are presented else-
where [36]. Upon completion of the 20-Km time trial, participants moved as quickly as
possible back in to the isolation room to complete the battery of cognitive function tests for a
second time. The average time taken from finishing the exercise test to starting the cognitive
function tests was 151 ± 99 s.

Cognitive Function Tests. The battery of cognitive function tests was administered to
participants via a laptop computer. The cognitive function tests consisted of the Stroop test,
Sternberg paradigm and Rapid Visual Information Processing (RVIP) task. This testing battery
has been successfully used in a study employing a similar population [27], with the tests dem-
onstrating high test-retest reliability [37]. The tests were administered in the following order:

• Stroop Test: The Stroop test measures the sensitivity to interference and the ability to sup-
press an automated response [38] and is commonly used to assess selective attention. The
Stroop test consists of two levels (baseline and complex) and is described in detail elsewhere
[39]. In short, participants chose the correct response from a target and distractor presented
on the screen, using the arrow keys. On the baseline level the target word matched the stimu-
lus word on the centre of the screen, whereas on the complex level participants had to select
the colour the stimulus word was written in, rather than the word itself. The variables of in-
terest were the response times of the correct responses and the percentage of correct
responses made.

• Sternberg Paradigm: The Sternberg Paradigm [40] is a test of working memory and has three
levels. Each level used a different working memory load; one, three or five items. The full de-
tails of the Sternberg paradigm are provided elsewhere [39]. In short, on each level, partici-
pants had to select whether the stimulus on the screen matched one of the pre-determined
target stimuli (a ‘3’ on the one item level and combinations of three or five letters on the
three and five item levels respectively). The variables of interest were response times of the
correct responses and the percentage of correct responses made.

• Rapid Visual Information Processing Task: The Rapid Visual Information Processing
(RVIP) task is a continuous performance test lasting 5 min, requiring sustained attention
and working memory. The RVIP task is described in detail elsewhere [27], but in short re-
quired participants to monitor a continuous stream of digits (using digits 2–9), presented at a
rate of 100 digits/min (thus each digit was on the screen for 600 ms), to identify target se-
quences of 3 consecutive odd or even numbers (e.g. 3-9-5 or 2-6-4). The variables of interest
were response times of correct responses and the percentage of correct responses made.

Statistical Methods. Data were analysed using SPSS (Version 18, SPSS Inc., Chicago, Il,
USA). For both the pre- and post-supplementation testing points, data from the first of the two
trials were used for familiarisation purposes with the second of the two trials being used for sta-
tistical analysis. To examine the effect of beta-alanine on the potential changes in cognitive
function with exercise we conducted a three-way, supplement (beta-alanine or placebo) by
time (pre and post supplementation) by exercise (pre and post exercise) analysis of variance
(ANOVA), with repeated measures for time and exercise was conducted. To examine the ef-
fects of beta-alanine supplementation on cognitive function at rest, a two-way, supplement
(beta-alanine or placebo) by time (pre and post supplementation) ANOVA, with repeated
measures for time was conducted, using the pre-exercise data only. Finally, to check for differ-
ences between the groups at baseline, independent sample t-tests were conducted. All data are
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reported as mean±(1SD) unless otherwise stated and statistical significance was accepted at
p< 0.05.

Results

Study 1
As expected, beta-alanine intake in vegetarians was zero, whereas omnivores ingested
490.5 ± 119.5 mg/d. The homocarnosine/carnosine signal was comparable between vegetarians
and omnivores (0.0996 ± 0.0134 vs. 0.1072 ± 0.0207 i.u.; p = 0.89) at baseline. In addition, no
within-group effects of beta-alanine supplementation were observed upon the Cs/Cr ratio in
vegetarians (p = 0.99), in omnivores (p = 0.27), or when data from both groups were pooled
(p = 0.19) (Fig 3), suggesting no changes in brain homocarnosine/carnosine signal following
beta-alanine supplementation. Similarly, no group by time interaction was detected (p = 0.27)
(S1 Data).

Study 2
For all cognitive tests the response times were first log transformed to normalise the distribu-
tions, which exhibited the right-hand skew typical of human response times (Table 3). Accord-
ing to task complexity, minimum and maximum response time cut-offs were set to exclude
those responses that can be considered anticipations and delayed responses. As such, minimum
response time cut-offs were set at 100 ms for the Stroop test and Sternberg paradigm and 250
ms for the RVIP task. Maximum response time cut-offs were set at 1300 ms (baseline level)
and 2000 ms (complex level) for the Stroop test, 1200 ms (all levels) for the Sternberg paradigm
and 1500 ms for the RVIP task. Only the response times of correct responses were used for re-
sponse time analyses across all three cognitive tests.

Stroop Test. Response Times: There was no difference in response times on either level of
the Stroop test between the groups prior to supplementation (baseline level, p = 0.916; complex
level: p = 0.829). On both levels of the Stroop test, participants responded quicker post-exercise
when compared to pre-exercise (main effect of exercise: baseline level, 613 ± 28 ms vs. 661 ± 36
ms, p = 0.006; complex level, 825 ± 43 ms vs. 897 ± 53 ms, p< 0.0005). However, supplementa-
tion with beta-alanine did not influence the effects of exercise on response times on either level
of the Stroop test (supplement by time by exercise interaction: baseline level, p = 0.228; com-
plex level, p = 0.451). Furthermore, there was no effect of beta-alanine supplementation on re-
sponse times on either level of the Stroop test at rest (supplement by time interaction: baseline
level, p = 0.929; complex level, p = 0.314).

Accuracy: There was no difference in accuracy on either level of the Stroop test between the
groups prior to supplementation (baseline level, p = 0.151; complex level: p = 0.216). There was
also no change in accuracy following exercise on either level of the Stroop test (main effect of
exercise: baseline level, p = 0.644; complex level, p = 0.329). Supplementation with beta-alanine
did not influence the effects of exercise on accuracy on either level of the Stroop test (supple-
ment by time by exercise interaction: baseline level, p = 0.407; complex level, p = 0.303). There
was also no effect of beta-alanine supplementation on accuracy on either level of the Stroop
test at rest (supplement by time interaction: baseline level, p = 0.972; complex level, p = 0.539).

Sternberg Paradigm. Response Times: There was no difference in response times on any
level of the Sternberg paradigm between the groups prior to supplementation (one letter level,
p = 0.684; three letter level, p = 0.981; five letter level, p = 0.910). On all levels of the Sternberg
paradigm, participants responded quicker post-exercise when compared to pre-exercise (main
effect of exercise: one letter level, 410 ± 16 ms vs. 444 ± 17 ms, p< 0.0005; three letter level,
508 ± 19 ms vs. 531 ± 19 ms, p = 0.008; five letter level, 593 ± 23 ms vs. 633 ± 23 ms,
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p< 0.0005). However, supplementation with beta-alanine did not mediate the effects of exer-
cise on response times on any level of the Sternberg paradigm (supplement by time by exercise
interaction: one letter level, p = 0.642; three letter level, p = 0.177; five letter level, p = 0.805).
Furthermore, there was no effect of beta-alanine supplementation on response times on any
level of the Sternberg paradigm at rest (supplement by time interaction: one letter level,
p = 0.156; three letter level, p = 0.767; five letter level, p = 0.283).

Accuracy: There was no difference in accuracy on any level of the Sternberg paradigm be-
tween the groups prior to supplementation (one letter level, p = 0.523; three letter level,
p = 0.828; five letter level, p = 0.431). There was also no change in accuracy following exercise
on any level of the Sternberg paradigm (main effect of exercise: one letter level, p = 0.758; three

Fig 3. Homocarnosine/carnosine signal in vegetarians and omnivores before and after beta-alanine supplementation. Panel A: Homocarnosine/
carnosine signal in vegetarians versus omnivores. Panel B: Effects of beta-alanine supplementation on brain homocarnosine/carnosine signal in all the
subjects irrespective of their diet. Panel C: Effects of beta-alanine supplementation on homocarnosine/carnosine signal in vegetarians. Panel D: Effects of
beta-alanine supplementation on homocarnosine/carnosine signal in omnivores. Data are expressed as individual data (circles), mean (central line) ± 95%
confidence interval (lower and upper lines). Neither diet nor beta-supplementation significantly affected homocarnosine/carnosine signal.

doi:10.1371/journal.pone.0123857.g003

Beta-Alanine in Brain Homocarnosine/Carnosine Signal and Cognition

PLOS ONE | DOI:10.1371/journal.pone.0123857 April 14, 2015 10 / 16



letter level, p = 0.765; five letter level, p = 0.958). Supplementation with beta-alanine did not in-
fluence the effects of exercise on accuracy on any level of the Sternberg paradigm (supplement
by time by exercise interaction: one letter level, p = 0.720; three letter level, p = 0.463; five letter
level, p = 0.439). There was also no effect of beta-alanine supplementation on response times
on any level of the Sternberg paradigm at rest (supplement by time interaction: one letter level,
p = 0.951; three letter level, p = 0.404; five letter level, p = 0.645).

RVIP Task. Response Times: There was no difference in response times on the RVIP task
between the groups prior to supplementation (p = 0.382). Participants responded quicker post-
exercise when compared to pre-exercise (485 ± 22 ms vs. 523 ± 26 ms respectively, main effect
of exercise: p< 0.0005), but beta-alanine supplementation did not influence the effects of exer-
cise on response times to the RVIP task (supplement by time by exercise interaction,
p = 0.126). There an effect of beta-alanine supplementation on response times to the RVIP task
at rest (supplement by time interaction: p = 0.173).

Accuracy: There was no difference in accuracy on the RVIP task between the groups prior
to supplementation (p = 0.489). Participants achieved a greater percentage of correct responses
post-exercise when compared to pre-exercise (66.7 ± 5.5% vs. 60.3 ± 5.4%, main effect of exer-
cise: p = 0.009). However, supplementation with beta-alanine did not mediate the effects of ex-
ercise on accuracy of the RVIP task (supplement by time by exercise interaction, p = 0.906),
nor was there an effect of beta-alanine supplementation on accuracy on the RVIP task at rest
(supplement by time interaction: p = 0.803).

Discussion
To our knowledge, this is the first study to assess the effect of beta-alanine supplementation on
brain homocarnosine/carnosine signal in humans and the mediating effects of beta-alanine
supplementation on the acute effects of exercise on cognitive function. Our main findings were
that 4 weeks of beta-alanine supplementation did not change the brain homocarnosine/

Table 3. Response times and accuracy across the cognitive function tests.

Response Time (ms) Accuracy (%)

Test Level Supplement Pre-Supplementation Post-Supplementation Pre-Supplementation Post-Supplementation

Pre-
exercise

Post-
exercise

Pre-
exercise

Post-
exercise

Pre-
exercise

Post-
exercise

Pre-
exercise

Post-
exercise

Stroop Baseline Beta-alanine 662 ± 192 637 ± 150 654 ± 157 578 ± 114 97.5 ± 3.5 98.5 ± 3.4 97.0 ± 5.4 97.5 ± 6.3

Placebo 670 ± 142 630 ± 109 660 ± 129 608 ± 113 99.4 ± 1.7 98.3 ± 2.5 98.9 ± 3.3 99.4 ± 1.7

Complex Beta-alanine 922 ± 250 864 ± 205 867 ± 245 776 ± 166 95.8 ± 4.4 95.8 ± 4.4 96.0 ± 3.9 97.5 ± 4.2

Placebo 946 ± 235 871 ± 222 853 ± 208 788 ± 187 98.1 ± 2.4 98.6 ± 1.8 97.2 ± 3.4 96.9 ± 3.9

Sternberg One
letter

Beta-alanine 462 ± 119 426 ± 124 421 ± 59 398 ± 56 97.9 ± 6.3 96.5 ± 6.3 97.2 ± 6.3 97.2 ± 3.3

Placebo 444 ± 40 407 ± 43 448 ± 67 410 ± 55 99.3 ± 2.1 100.0 ± 0.0 98.6 ± 2.8 100.0 ± 0.0

Three
letter

Beta-alanine 539 ± 106 507 ± 102 520 ± 96 509 ± 86 97.9 ± 4.1 96.9 ± 4.7 96.2 ± 2.6 96.9 ± 2.7

Placebo 538 ± 64 524 ± 68 527 ± 70 493 ± 65 98.3 ± 2.3 98.3 ± 2.3 98.3 ± 2.3 97.9 ± 5.2

Five
letter

Beta-alanine 637 ± 130 600 ± 118 614 ± 94 567 ± 92 96.5 ± 5.0 96.2 ± 2.6 96.2 ± 3.4 95.8 ± 3.8

Placebo 631 ± 82 594 ± 102 648 ± 111 611 ± 109 97.9 ± 1.6 99.7 ± 1.0 98.6 ± 2.3 97.6 ± 2.1

RVIP — Beta-alanine 563 ± 160 502 ± 113 514 ± 125 500 ± 127 54.8 ± 24.6 59.7 ± 26.4 58.7 ± 26.1 64.5 ± 26.9

Placebo 509 ± 83 472 ± 63 505 ± 72 466 ± 60 62.3 ± 21.7 69.0 ± 22.9 64.9 ± 24.1 73.1 ± 19.9

All data are mean ± standard deviation.

doi:10.1371/journal.pone.0123857.t003
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carnosine signal in either vegetarian or omnivorous healthy individuals, nor was there any ef-
fect of beta-alanine supplementation on cognitive function in athletes at rest or
following exercise.

Carnosine is metabolically relevant to brain cells, since it acts as a neurotransmitter and en-
dogenous neuroprotective agent [41]. Studies have suggested that an elevation of carnosine lev-
els (or related dipeptides) in brain may improve cognitive function [23], mental fatigue [24]
and memory [25], as well as ameliorate symptoms related to neurodegenerative diseases (e.g.,
Alzheimer’s and Parkinson’s diseases), epilepsy, and brain injury [42].

Beta-alanine supplementation is capable of increasing the carnosine content of skeletal mus-
cle [3] and beta-alanine appears to be rapidly transported in to the brain via the beta-amino
acid transporter [12]. Moreover, beta-alanine supplementation has been shown to significantly
increase carnosine content in different brain areas in rats [14]. Taken together, these findings
led to the hypothesis that beta-alanine supplementation might be capable of increasing brain
carnosine concentrations in humans. It should be noted that there is scant evidence supporting
the presence of carnosine in the human brain. The only study available, which assessed carno-
sine in the brain of human cadavers, revealed little, if any, carnosine in brain regions other
than olfactory bulb [15]. However, the same study showed that in vitro carnosine synthesis in
samples of the human temporal cortex was dependent upon the availability of beta-alanine,
and the enzyme that synthesises both homocarnosine and carnosine in human brain superna-
tants forms carnosine 3–5 times as rapidly as it forms homocarnosine [15]. Collectively, these
data allowed us to speculate that orally ingested beta-alanine availability could be the limiting
factor for carnosine synthesis in brain. In line with this, we also hypothesised that diet could in-
fluence homocarnosine/carnosine signal given that vegetarians (who do not consume beta-ala-
nine in their diet) have lower skeletal muscle carnosine content when compared to omnivores
[43].

The results of the present study (Study 1), however, showed that beta-alanine supplementa-
tion did not alter the homocarnosine/carnosine signal in the brain spectrum, suggesting that
this hypothesis does not hold true. Thus, these data suggest that brain carnosine synthesis does
not rely upon beta-alanine uptake from the bloodstream in humans, contrasting previous in
vitro [44] and animal studies [14].

Despite the growing number of studies suggesting that carnosine and/or beta-alanine sup-
plementation may improve cognitive aspects in a variety of populations [25, 45], we did not ob-
serve any positive effect of beta-alanine supplementation upon cognitive measurements either
at rest or following exercise. In agreement with our results, Hoffman et al. [28] did not observe
any improvement in cognitive function in fatigued soldiers. The possible elevation in brain car-
nosine content via supplementation has been considered the most plausible mechanism to ex-
plain improvements in cognitive function observed in these studies. Our data do not support
this hypothesis, given that the data from Study 2 are in line with the lack of changes in the
homocarnosine/carnosine signal shown in Study 1. It should be noted, that other factors, such
as participant characteristics (e.g., healthy, diseased, athletes, younger, older individuals), the
cognitive tests employed (memory, attention, time-to-reaction, etc), the combination with
other conditions that may affect mental performance (e.g., exercise, neurodegenerative disease,
psychiatric disorders), the type of supplement administered and its different protocols (e.g.,
beta-alanine, carnosine; short- and long-term protocols), could also partially explain the differ-
ences in the outcomes between these investigations.

In order to assess brain carnosine, we used 1H-MRS, a method that has been used to deter-
mine muscle carnosine concentrations by allowing the detection of the signal resulting from
the protons in the histidine imidazole ring [46, 47]. In brain, the same 1H-MRS signal, usually
referred as Cs, is often attributed to homocarnosine (gamma-aminobutyryl-L-histidine) [48], a
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dipeptide analogue to carnosine. This comprises most of the Cs signal [25]. Although there is
experimental data confirming the presence of carnosine in the brain of mammals [49], where it
is thought to play a role in neurotransmission and neuroprotection [18], the signal obtained by
the 1H-MRS technique is the undistinguishable result of both carnosine and homocarnosine.
Therefore, an important limitation of this study is that, due to the influence of homocarnosine
and other possible macromolecules containing histidine upon the signal at 7.05ppm, one
might argue that the brain carnosine must be substantial in order to be detectable. To date,
however, it is unknown whether diet or beta-alanine supplementation can influence brain car-
nosine concentrations in humans. Nonetheless, considering that a ~400 uM increase in brain
histidine was shown to be detectable [50], it is plausible to assume that increases in carnosine
concentration within the micromolar range would be detected by the 1H-MRS method. In
order to further explore these questions, future studies should search for methodological re-
finements to improve both sensitivity and specificity of brain carnosine detection via 1H-MRS,
perhaps by using larger voxel sizes, a higher number of averages (resulting in longer acquisition
times) [50], and special preparation pulses to minimize the contribution of macromolecules to
the homocarnosine/carnosine signal [5].

It is important to also emphasise that our 1H-MRS results are limited to the brain region as-
sessed in this study (i.e., posterior cingulate cortex), which is part of the limbic system and has
been related to emotions as well as cognitive function (e.g., processing, learning, and memory)
[33]. The fact that the posterior cingulate cortex is implicated in cognitive function was the rea-
son for choosing this region to measure in our study. Although cerebral cortex and other brain
areas (e.g., hypothalamus and olfactory bulb) are susceptible to elevations in carnosine follow-
ing beta-alanine supplementation, at least in rodents, we cannot rule out an effect of beta-
alanine supplementation on carnosine in other brain areas that were not assessed in our study.
It seems unlikely, however, that any putative change in carnosine in other areas will result in
beneficial effects on cognition. It is also possible that beta-alanine supplementation can some-
how affect brain metabolism/function by increasing brain beta-alanine content in its free form
rather than as a dipeptide (i.e., carnosine). There is some speculation that beta-alanine may act
as a neurotransmitter in its own right, based on data indicating that this occurs naturally in the
brain, is released by electrical stimulation through a Ca2+ dependent processes, has binding
sites, and inhibits neuronal excitability. Unfortunately, to date, there is no empirical evidence
from humans to prove this assumption.

In conclusion, this study showed no changes on posterior cingulate cortex homocarnosine/
carnosine signal after beta-alanine supplementation in healthy participants, regardless of their
diets. This supports the lack of an effect of beta-alanine supplementation on cognitive function
in trained cyclists before or after exercise. Taken together, these findings do not support the hy-
pothesis that beta-alanine supplementation can promote beneficial effects on cognitive perfor-
mance measured in association with exercise.
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