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Regional 18F-fluoromisonidazole PET images 
generated from multiple advanced MR images 
using neural networks in glioblastoma
Jianhua Qin, MDa,b, Yu Tang, MDb, Bao Wang, MDc,*

Abstract 
Generated 18F-fluoromisonidazole (18F-FMISO) positron emission tomography (PET) images for glioblastoma are highly sought 
after because 18F-FMISO can be radioactive, and the imaging procedure is not easy. This study aimed to explore the feasibility of 
using advanced magnetic resonance (MR) images to generate regional 18F-FMISO PET images and its predictive value for survival.

Twelve kinds of advanced MR images of 28 patients from The Cancer Imaging Archive were processed. Voxel-by-voxel 
correlation analysis between 18F-FMISO images and advanced MR images was performed to select the MR images for generating 
regional 18F-FMISO images. Neural network algorithms provided by the MATLAB toolbox were used to generate regional 18F-FMISO 
images. The mean square error (MSE) was used to evaluate the regression effect. The prognostic value of generated 18F-FMISO 
images was evaluated by the Mantel-Cox test.

A total of 299 831 voxels were extracted from the segmented regions of all patients. Eleven kinds of advanced MR images were 
selected to generate 18F-FMISO images. The best neural network algorithm was Bayesian regularization. The MSEs of the training, 
validation, and testing groups were 2.92E-2, 2.9E-2, and 2.92E-2, respectively. Both the maximum Tissue/Blood ratio (P = .017) 
and hypoxic volume (P = .023) of the generated images were predictive factors of overall survival, but only hypoxic volume (P = 
.029) was a predictive factor of progression-free survival.

Multiple advanced MR images are feasible to generate qualified regional 18F-FMISO PET images using neural networks. The 
generated images also have predictive value in the prognostic evaluation of glioblastoma.

Abbreviations: 18F-FMISO = 18F-fluoromisonidazole, GBM = glioblastoma multiforme, HV = hypoxic volume, MSE = mean 
square error, OS = overall survival, PET = positron emission tomography, PFS = progression-free survival, T/B = tissue-to-blood 
ratio, TBmax = maximum tissue-to-blood ratio.
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1. Introduction

Glioblastoma multiforme (GBM) is the most malignant primary 
tumor of the brain, with a high mortality and poor prognosis.[1] 
Radiation treatment is a common therapy for GBM patients 
after surgical resection. However, many patients did not bene-
fit from the treatment because of radiation resistance of GBM. 
Hypoxia plays a vital role in radiation resistance.[2]

The strategy of radiation therapy could be improved by the 
identification of hypoxic subregions of GBM because a higher 
radiation dose could be delivered to the hypoxic subregions 
to overcome radiation resistance.[3] Noninvasive and reliable 
hypoxic imaging has always been treated as an appropri-
ate approach to evaluate the hypoxic conditions of tumors.[4] 
18F-Fluoromisonidazole (18F-FMISO) is a positron emission 
tomography (PET) imaging agent that selectively binds to 
hypoxic tissues. 18F-FMISO uptake has been investigated 

because of correlation with polarographic oxygen electrodes, 
which is the gold standard in evaluating hypoxia.[5] Previous 
studies have confirmed the value of 18F-FMISO PET in evaluat-
ing hypoxic conditions and prognosis in GBM.[4,6]

Although 18F-FMISO PET is quite helpful in identifying the 
hypoxic region, the radioactivity of PET examination cannot 
be avoided.[4] In addition, preparation of 18F-FMISO was not 
easy, and patient blood should be collected to investigate the 
average blood activity to produce a pixel-level tissue-to-blood 
ratio.[7] These disadvantages may restrict the widespread use of 
18F-FMISO PET in clinical practice. Generating images giving 
the same information as 18F-FMISO PET images with other non-
radioactive imaging methods with easy accessibility is always 
desired and meaningful. Dynamic contrast-enhanced perfu-
sion-weighted imaging (DCE-PWI) and dynamic susceptibility 
contrast perfusion-weighted imaging (DSC-PWI) could reflect 
the permeability and hemodynamic characteristics of abnormal 
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vasculature in GBM.[8,9] An apparent diffusion coefficient (ADC) 
map has been validated to be correlated with tumor cell density, 
and a fractional anisotropy map can evaluate the conditions of 
white matter damage.[10] These pathophysiological processes 
reflected by the above advanced MR images are associated with 
hypoxia in GBM.[11–13] Generating images giving the same infor-
mation as 18F-FMISO PET images from these advanced MR 
images seemed feasible.

Neural networks are a subset of machine learning and are 
at the heart of deep learning algorithms. Their name and struc-
ture are inspired by the human brain, mimicking the way that 
biological neurons signal to one another. Neural networks are 
comprised of node layers, containing an input layer, one or 
more hidden layers, and an output layer. Each node, or artifi-
cial neuron, connects to another and has an associated weight 
and threshold. They have become popular and powerful tools 
in image translation.[14,15] This technique may be an appropriate 
tool for generating images that provide the same information as 
18F-FMISO PET images. Therefore, this study aimed to explore 
the feasibility of generating regional 18F-FMISO PET images 
with multiple advanced MR images via neural network methods 
and their predictive value for survival.

2. Materials and Methods

2.1. Study population

All imaging and clinical data were collected from the ACRIN-
FMISO-Brain dataset in The Cancer Imaging Archive. According 
to the description of the dataset, the patients in this dataset had 
some residual tumor (as determined by the treating physician) 
after surgery but before radiotherapy and chemotherapy, based 
on postcontrast T1WI or T2 fluid-attenuated inversion recovery 
(T2-FLAIR) imaging, although the minimum amount was not 
specified. Of the 45 patients in the ACRIN-FMISO-Brain dataset, 
17 patients were excluded because of no evaluable 18F-FMISO 
PET scans or advanced MR images. Finally, 28 patients with 33 
scans were included in this study. Figure 1 demonstrates how 
sample size was derived. The summarized clinical characteristics 
of the study population are provided in Table 1. The workflow 
of this study is provided in the Supplementary Files, http://links.
lww.com/MD/G930.

This retrospective study received approval from the hospital’s 
ethical committee. Written informed consent was not required 
for this study because the data were acquired from The Cancer 
Imaging Archive. All experiments were performed in compli-
ance with the Declaration of Helsinki.

2.2. MR examination and image acquisition

MR imaging (MRI) and 18F-FMISO PET were performed sepa-
rately during a small interval. All sites followed a standardized 
acquisition protocol for these scans. (e.g., see http://www.acrin.
org/Portals/0/Protocols/6684/ACRIN6684_Amend7_012412_
master_ ForOnline.pdf for full details). Only MRI data con-
sisting of precontrast T1WI, T2-FLAIR images, T1 mapping, 
DSC-PWI, DCE-PWI, DTI, and postcontrast T1WI were used 
in this study.

2.3. Generation of Quantitative MR images

First, T1 mapping, DSC-PWI, DCE-PWI, and DTI were used 
to generate advanced MR images. All the raw data were trans-
ferred to dedicated workstations, and postprocessing was per-
formed with commercial software (NordicICE, version 4.0.6; 
NordicNeuroLab, Bergen, Norway) by an experienced neurora-
diologist (over 15 years). Detailed processing information is pro-
vided in the Supplementary Files, http://links.lww.com/MD/G930.

Second, each of the generated maps was normalized by divid-
ing the mean value of the pons. This is necessary for advanced 
MR images and can be considered as the normalization step in 
individual level. Finally, 12 kinds of normalized advanced MR 
images, including T1 mapping, cerebral blood flow (CBF) map, 
cerebral blood volume (CBV) map, contrast agent transfer con-
stant Ktrans and Kep, vascular fraction (Vp), extravascular fraction 
(Ve), time to peak map, peak map, area under the curve map, 
ADC, and fractional anisotropy maps, were used to generate 
18F-FMISO PET images.

2.4. Processing of Quantitative MR images and FMISO 
image

The FMISO image data should be normalized by the aver-
age blood activity to produce pixel-level tissue-to-blood ratio 
(T/B) values for all image slices. In addition, the twelve kinds of 
advanced MR images and FMISO images have a similar scale.

First, they were registered to postcontrast T1WI images in 
noncommercial software (ITK-SNAP, Version 3.6.0; www.itk-
snap.org). Then, the moving images (advanced MR maps and 
18F-FMISO PET images) were resliced into the space of the post-
contrast T1WI images with linear interpolation. At last, smooth-
ing was performed on all the resliced images with a full width 
at half maximum of [8,8,8]. In addition, T2-FLAIR images were 
also processed as above steps.

2.5. Segmentation for further analysis

Segmentations were manually performed on ITK-SNAP by 
an experienced radiologist (over 10 years). The segmentations 
should cover the enhancing lesions in postcontrast T1WI (after 
normalization and smoothing) and high-intensity peritumoral 
region areas in the processed T2-FLAIR images (after normaliza-
tion and smoothing). Hypoxia may be in peritumoral regions.[16] 
In addition, another neuroradiologist (with >15 years of experi-
ence) confirmed the segmentations.

2.6. Training the fitting model by neural networks

Only the voxels within the segmentation were used for fur-
ther analysis. The values of voxels were extracted in MATLAB 
(version 2020a, Mathwork, Inc., Natick, MA, USA). First, the 
matrix data form within the segmentation of each scan was 
transformed to the vector data form within a fixed arrange-
ment principle provided by MATLAB. Second, the values of 
all scans were combined into a matrix dataset (the column 
represents the variables, and the rows represent the scans). 
As there are 12 kinds of advanced MR images and 1 FMISO 
PET image, therefore, there are 13 columns in total. Advanced 
MR values were treated as numeric predictors and FMISO 
PET value was treated as response variable. The data of each 
column (voxels values from the same advanced MR images) 
would be rescaled into 0 to 1, and it is considered as the nor-
malization step in pixels level. Normalization at individual 
level and pixel level would help us improve the performance of 
training models. Voxel-by-voxel correlation between FMISO 
images and 12 advanced MR images was evaluated to explore 
the relationships between FMISO images and advanced MR 
images.

Two-layer feed-forward networks were used to train the 
fitting model in this study. The voxel values of 12 advanced 
MR images were treated as predictor data and those of FMISO 
images were treated as response values. The first fully con-
nected layer of the neural network has a connection from the 
network input (predictor data), and each subsequent layer has 
a connection from the previous layer. Each fully connected 
layer multiplies the input by a weight matrix and then adds 
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a bias vector. An activation function follows each fully con-
nected layer, excluding the last. The final fully connected layer 
produces the network’s output, namely predicted response 
values.

The dataset was transported to the Neural Net Fitting App 
in MATLAB, among which 70 percent, 15 percent, and 15 per-
cent of the dataset were used for training, validation, and test-
ing, respectively. The number of hidden neurons was 10. Three 
training algorithms, Levenberg-Marquardt, Bayesian regulariza-
tion, and scaled conjugate gradient, were selected separately to 
train the data. Evaluate the model at each iteration by using the 
validation set. By default, the training process ends early if the 
validation loss is greater than or equal to the minimum valida-
tion loss computed so far, 6 times in a row. The mean square 
error (MSE) was used to select the best fitting algorithm. All the 
network computations were performed on a GPU workstation 
(Nvidia Tesla P4 GPU with Intel Xeon[R] central processing 

unit [CPU] E5-2667 v4 at 3.20). The neural network diagram is 
shown in Figure 1.

2.7. Analysis of generated regional FMISO image

The predicted FMISO values of each patient were in the vector 
data form. Therefore, to generate regional FMISO images, the 
vector data form was reorganized to the matrix data form within 
the same arrangement principle provided by MATLAB. To quan-
titate hypoxia in each tumor region on the generated regional 
FMISO image, the pixel with the maximum T/B value (TBmax) and 
the hypoxic volume (HV) were determined. The HV was deter-
mined as the volume of pixels in the tumor ROI with a T/B ratio 
> 1.2. This cutoff value was previously shown to indicate signifi-
cant hypoxia.[17] HV determines the spatial extent of hypoxia in a 
tumor, whereas TBmax reports the severity of hypoxia. Both HV and 
TBmax have been shown to be independent predictors of outcome in 

Figure 1. Flowchart of patient inclusion and diagram of neural network. (A) Patients inclusion and exclusion. (B) Input: this layer corresponds to the predictor 
data. First FC layer: this layer has 10 outputs by default; ReLU activation function is applied to the first fully connected layer. Final FC layer, this layer has one 
output. Output, this layer corresponds to the predicted response values. N in part A represents the number of scans. DCE-PWI = dynamic contrast-enhanced 
perfusion-weighted imaging, DSC-PWI = dynamic susceptibility contrast perfusion-weighted imaging, FC = fully connected, FMISO = fluoromisonidazole, PET 
= positron emission tomography, ReLU = rectified linear unit.
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brain cancer.[16] The root mean squared error was used to evaluate 
the accuracy of the predicted TBmax and HV.

2.8. Statistical analysis

Pearson correlation analysis was performed to investigate the 
relationship between FMISO images and 12 kinds of advanced 
MR images. Survival events were defined as death from any cause 
for overall survival (OS) and as disease progression for progres-
sion-free survival (PFS). OS was calculated from the time of his-
tologic diagnosis of the tumor, and PFS was calculated from the 
time of resection to tumor progression using the Kaplan-Meier 
method. The prognostic values of HV and TBmax were evaluated 
by the log-rank (Mantel-Cox) test. A P value of < .05 was consid-
ered statistically significant. For multiple tests, Bonferroni correc-
tion was used. All tests were performed using MATLAB.

3. Results

3.1. Correlations between advanced MR images and 
FMISO image

In total, 299 831 voxels were extracted from all the patients, and 
the values of all modalities were recorded. All advanced MR 
images excluding Kep were significantly correlated with FMISO 
images (all P < .001), among which normalized CBV had the high-
est correlation efficiency. Therefore, Kep was not used for further 
image generation. The results of the correlation analysis between 
advanced MR images and FMISO images are shown in Table 2.

3.2. Fitting performance of neural networks

The training algorithm of Bayesian regularization[18] achieved 
the highest fitting performance, and the MSEs of the training, 
validation, and testing groups of Bayesian regularization were 
2.92 × 10E-2, 2.9E-2, and 2.92E-2, respectively. The results of 
3 training algorithms are summarized in Table 3. The detailed 
results of the Bayesian regularization algorithms are displayed 
in Figure 2. One case with obvious hypoxic conditions is shown 
in Figure 3, and another case with limited hypoxic conditions is 
shown in Figure 4.

3.3. Accuracy of predicted TBmax and HV and their 
prognostic value

The ground-truth value of TBmax was 2.11 ± 0.79, and the pre-
dicted value of TBmax was 2.09 ± 0.73. The RMSE between them 
was 0.077. The ground-truth value of HV was 13.18 ± 11.52, 
and the predicted value of HV was 13.21 ± 11.57. The root 
mean squared error between them was 0.054.

Previous study has found that an HV value of 4.0 cc and TBmax 
of 1.5 could be selected as the cutoff values to separate the patients 
into good and poor prognostic groups.[19] The 2 groups separated 
by ground-truth TBmax or HV were the same as those separated by 
predicted TBmax or HV. The log-rank (Mantel-Cox) test showed that 
both TBmax (P = .017) and HV (P = .023) were predictive factors of 
OS. HV (P = .029) was a predictive factor of PFS, but TBmax was 
not (P = .064). The Log-rank (Mantel-Cox) is shown in Figure 5.

4. Discussion
18F-FMISO PET is a useful but radiotoxic and inconvenient 
method to evaluate the hypoxic condition and prognosis of 
GBM. This article explored the feasibility of generating regional 
18F-FMISO PET images from multiple advanced MR images via 
neural network fitting methods. The results showed that this non-
invasive method could provide appropriate regional 18F-FMISO 
PET images for clinical hypoxic and prognostic evaluation.

4.1. Association between MRI parameters and the degree 
of hypoxia

Gerstner et al[20] reported that there was a moderate positive 
correlation between normalized CBF (nCBF) and HV. In addi-
tion, Bekaert et al[21] reported a significant correlation between 
rCBV and the degree of hypoxia (HV and SUVmax). Recently, 
Keven et al[22] found a tight association between hypoxia and 
angiogenesis in GBM. These findings suggested that advanced 
MR parameters, especially perfusion parameters, could reflect 
the degree of hypoxia. Our results showed that all advanced 
MR images excluding Kep were significantly correlated with the 
uptake of 18F-FMISO. The results indicate that changes in the 
permeability and hemodynamic condition of tumor vessels may 
take part in the process of hypoxia in GBM, as well as the cellu-
lar density and damage to white matter.[4]

However, the abnormal vasculature in GBM is immature and 
inefficient to deliver enough oxygen and nutrients to tumor cells, 
and hypoxic conditions upregulate the expression of vascular 

Table 1 

Participant characteristics.

Characteristics Descriptive information 

Total number 28
Age, y, mean ± SD 56.3 ± 8.8
Gender, n, male, (%) 17 (60.7%)
Time from surgery to FMISO PET, d, median [IQR]* 1 [0–4]
Time from surgery to MRI, d, median [IQR]† 1.5 [0–6]
Residual tumor size, cc, [IQR] 4.6 [1.3–11.8]
Survival
  OS, months, median, [IQR] 15 [9.8–21]
  Alive over 1 year, n (%) 15 (53.6%)
  PFS, months, median, [IQR] 9 [6–12]
  Progression-free over 9 months, n, (%) 11 (39.3%)

FMISO = fluoromisonidazole, IQR = interquartile range, MRI = magnetic resonance imaging,  
OS = overall survival, PET = positron emission tomography, PFS = progression-free survival,  
SD = standard deviation.
*Multiple FMISO PET scans in one patient were all recorded.
†Multiple MRI scans in one patient were all recorded.

Table 2 

Correlations between advanced MR images and FMISO image.

 r 95% CI R squared P value 

ADC −0.252 [−0.256 to −0.249] 0.064 <.001
AUC 0.183 [0.179 to 0.186] 0.033 <.001
nCBF 0.35 [0.347 to 0.353] 0.123 <.001
nCBV 0.418 [0.415 to 0.421] 0.174 <.001
FA 0.082 [0.078 to 0.085] 0.007 <.001
Ktrans 0.152 [0.149 to 0.156] 0.023 <.001
Kep −0.002 [−0.005 to 0.002] 2.87E-6 .35
Peakmap 0.175 [0.171 to 0.178] 0.03 <.001
T1 0.178 [0.174 to 0.181] 0.032 <.001
TTP 0.068 [0.064 to 0.071] 0.005 <.001
Ve 0.134 [0.13 to 0.137] 0.018 <.001
Vp 0.268 [0.264 to 0.271] 0.072 <.001

ADC = apparent diffusion coefficient, AUC = area under the curve, FA = fractional anisotropy, 
FMISO = fluoromisonidazole, MR = magnetic resonance, nCBF = normalized cerebral blood flow, 
nCBV = normalized cerebral blood volume, Ve = extravascular fraction, Vp = vascular fraction.

Table 3 

Mean squared error of 3 neural network algorithms.

 Training Validation Test 

Bayesian regularization 2.92E-2 2.90E-2 2.92E-2
Levenberg-Marquardt 3.01E-2 3.0E-2 3.02 E-2
Scaled conjugate gradient 5.15E-2 5.06E-2 5.25E-2
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endothelial growth factors, which further promotes aggressive 
and immature angiogenesis and leads to worse hypoxia.[23,24] 
A recent animal study also confirmed the correlation between 
18F-FMISO uptake and blood flow, blood volume, and the met-
abolic rate of oxygen,[25] which could explain why nCBV, nCBF, 
and Vp had a higher correlation with the uptake of 18F-FMISO 
than other parameters. However, a higher cellular density means 
more oxygen occupation than under normal conditions,[10] which 
may explain why ADC values also had a higher correlation. Other 
quantitative parameters with an absolute R value < 0.2 may indi-
cate that the physiological changes associated with them play less 
important roles in the development of hypoxic environments.

4.2. Potential influence on treatment strategy

PET could provide functional information by visualizing the 
metabolism of the cell. In radiation therapy for cancer, the tumor 
oxygen concentration is an important factor that greatly affects 
the therapeutic effects.[3,7] The radiation sensitivity of cells is 
thus reduced under hypoxic conditions below a certain oxygen 

concentration threshold.[3,21] In addition to causing radioresis-
tance, tumor hypoxia also interferes with the cytotoxic activities 
of many types of chemotherapy, a phenomenon known as che-
moresistance.[26] Evaluation of the hypoxic subregion of tumors 
would help adjust the treatment strategy. For example, to achieve 
better disease control, a higher dose of radiation would be deliv-
ered to the tumor if it had a severely hypoxic environment.

4.3. Potential influence on predicting prognosis

Gerstner et al[20] and Bekaert et al[21] reported a different predic-
tive value of 18F-FMISO PET in PFS and OS.[20,21] This difference 
may result from the various criteria for separating the 2 groups 
with different prognoses. Gerstner et al[20] found that only 
SUVmax could predict the one-year OS of patients with GBM. 
Bekaert et al[21] found that patients with no uptake of 18F-FMISO 
had a longer PFS and OS than those without 18F-FMISO. In this 
study, using the same follow-up results but a different cutoff 
value of TBmax and HV from Gerstner et al[20], we found that 
both TBmax and HV could be predictors of patient prognosis. 

Figure 2. Detailed results of Bayesian regularization algorithms. (A) Regression performance of training data; (B) regression performance of validation data; 
(C) regression performance of test data; (D) regression performance of all datasets; (E) best validation performance; (F) error histogram with 20 bins (errors = 
ground truths - predictive values).
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These findings may reveal the importance of the cutoff value in 
evaluating prognosis.

However, the ground-truth TBmax and HV had a small vari-
ance compared to the predicted values, and the 2 prognostic 

groups separated by ground-truth TBmax or HV were the same 
as those separated by predicted TBmax or HV. This result indi-
cates the validity and feasibility of the predicted TBmax or HV. 
However, although controversy exists regarding the prognostic 

Figure 3. Demonstration of one case with obvious hypoxic conditions. An old female patient with newly diagnosed GBM. (A) Twelve kinds of advanced MR 
images of these patients; (B) postcontrast T1WI and region of interest (with the red line); (C) whole 18F-FMISO PET image and the same region of interest; 
(D) ground-truth regional 18F-FMISO PET; (E) generated regional 18F-FMISO PET, which has a high concordance with ground truth. ADC = apparent diffusion 
coefficient, AUC = area under the curve, FA = fractional anisotropy, FMISO = fluoromisonidazole, GBM = glioblastoma multiforme, MR = magnetic resonance, 
nCBF = normalized cerebral blood flow, nCBV = normalized cerebral blood volume, PET = positron emission tomography, Ve = extravascular fraction, Vp = 
vascular fraction.

Figure 4. Demonstration of one case with limited hypoxic conditions. An old male patient with residual GBM after surgical resection. (A) Twelve kinds of 
advanced MR images of these patients; (B) Postcontrast T1WI and region of interest (with the red line); (C) Whole 18F-FMISO PET image and the same region 
of interest; (D) ground-truth regional 18F-FMISO PET; (E) Generated regional 18F-FMISO PET, which has a high concordance with ground truth. ADC = apparent 
diffusion coefficient, AUC = area under the curve, FA = fractional anisotropy, FMISO = fluoromisonidazole, GBM = glioblastoma multiforme, MR = magnetic res-
onance, nCBF = normalized cerebral blood flow, nCBV = normalized cerebral blood volume, PET = positron emission tomography, Ve = extravascular fraction, 
Vp = vascular fraction.
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value, the predicted TBmax or HV could still provide some prog-
nostic value to clinicians. However, whether the spatial extent 
of hypoxia (HV) plays a more vital role than the severity of 
hypoxia (TBmax) when predicting prognosis still needs to be 
explored in a large study.

Some limitations should be addressed here. Only a limited 
number of patients were included in this study because we could 
only obtain these valuable data from the public dataset. To guar-
antee the training efficiency of input data under the condition of 
limited training data, on the one hand, instead of using image-
to-image translation/generation, we used a voxel-to-voxel value 
regression method to achieve data augmentation; on the other 
hand, we made the regional part of brain images the input of 
machine learning to only generate regional 18F-FMISO images 
to improve the data quality.

In conclusion, we developed a feasible approach to generating 
regional 18F-FMISO images from multiple advanced MR images 
to evaluate the hypoxic condition and prognosis of GBM, mak-
ing the process of assessing tumoral hypoxia nonradiotoxic and 
noninvasive, facilitating the adjustment of treatment strategy 
and prognosis prediction.
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