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Abstract: Gentiana rigescens is a precious herbal medicine in China because of its liver-protective and
choleretic effects. A method for the qualitative identification and quantitative evaluation of G. rigescens
from Yunnan Province, China, has been developed employing Fourier transform infrared (FT-IR)
spectroscopy and high performance liquid chromatography (HPLC) with the aid of chemometrics
such as partial least squares discriminant analysis (PLS-DA) and support vector machines (SVM)
regression. Our results indicated that PLS-DA model could efficiently discriminate G. rigescens
from different geographical origins. It was found that the samples which could not be determined
accurately were in the margin or outside of the 95% confidence ellipses. Moreover, the result implied
that geographical origins variation of root samples were more obvious than that of stems and
leaves. The quantitative analysis was based on gentiopicroside content which was the main active
constituent in G. rigescens. For the prediction of gentiopicroside, the performances of model based on
the parameters selected through grid search algorithm (GS) with seven-fold cross validation were
better than those based on genetic algorithm (GA) and particle swarm optimization algorithm (PSO).
For the SVM-GS model, the result was satisfactory. FT-IR spectroscopy coupled with PLS-DA and
SVM-GS can be an alternative strategy for qualitative identification and quantitative evaluation of
G. rigescens.

Keywords: FT-IR spectroscopy; qualitative; partial least squares discriminant analysis; quantitative;
support vector machines regression; Gentiana rigescens

1. Introduction

Herbal products, a complementary and alternative therapy, are increasingly gaining popularity in
daily life and health care all over the world [1]. In the Western world, herbal medicine is mainly applied
in promoting health and treatment of chronic diseases. It also plays a crucial role in multi-component
therapeutics [2]. With the increasing usages of herbal medicine, the need for quality control has
also increased. Currently, the regulations and pharmacovigilance about herbal medicines are still
incomplete and need to be enhanced and improved [1,3]. The issues of quality control such as lack of
safety and efficacy in herbal medicine are worthy of attention, because of the lack of reliable, fast and
simple technical methods for the quality analysis of herbal medicines [4,5].

Gentiana rigescens (family Gentianaceae) is a precious and highly appreciated Chinese herbal
medicine, which is widely distributed in the southwest of China, especially in Yunnan Province [6].
As a perennial herb, the root and rhizome are used as the primary medicinal part. This medicine
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mainly contains iridoids, lignans, triterpenes and others [7]. Among them, gentiopicroside, which
belongs to the iridoid class of compounds, is the main active constituents of G. rigescens and it is
recorded in Chinese Pharmacopoeia (version 2015) as a quality criterion [8]. This compound has long
been used in the treatment of hepatic and cholalic diseases, as it has liver-protective and choleretic
functions [9].

To our best knowledge, there are many external factors which can influence the quality of herbal
medicines, such as geographical origin, harvest time, processing methods, etc. [10–12]. According
to Yu et al. [13], traditional Chinese medicines and constitutional medicines from China, Japan and
Korea differ due to geographical, social environment and other factors. The secondary metabolite
composition of herbal medicines varies due to different geographical factors [14,15]. For example,
Xia et al. [16] found that phenylalanine, tryptophan, chlorogenic acid syringin and lobetyolin levels in
Codonopsis lanceolata samples were different depending on the geographical origin and harvesting time.
Therefore, with its wide spectrum of therapeutic properties, it is crucial to provide guidance for the
quality control of G. rigescens.

The conventional analytical methods for qualitative and quantitative analysis usually require
operative skills, experience and are labor-intensive in addition to involving organic solvents for sample
preparation. In this research, FT-IR spectroscopy, which is fast, clean and cost-effective, was developed
to obtain chemical information about G. rigescens. It can provide qualitative information about the
molecular structure of the components in G. rigescens with little or no sample pretreatment [17,18].
In addition, FT-IR spectroscopy, as a powerful analytical technique, has been widely used in the
field of qualitative identification and quantitative evaluation in Chinese herbal medicines [19,20].
For these studies, FT-IR spectroscopy combined with multivariate analysis techniques has been
applied to identify G. rigescens from different geographical origins and determine the iridoids in
G. rigescens, and the results showed that FT-IR spectroscopy was suitable to provide qualitative and
quantitative analyses of G. rigescens [21,22]. Similarly, Qi et al. [23], developed a HPLC and FTIR
quantitative and qualitative analysis method to distinguish G. rigescens samples from different parts
and cultivation years.

The objective of this study was to provide an efficient, easy-to-operate and non-hazardous
alternative to evaluate the quality variation in different parts of G. rigescens from Dali, Lijiang, Diqing
and Yuxi in Yunnan Province. Therefore, a method for the qualitative and quantitative analysis of
G. rigescens has been developed employing FT-IR spectroscopy and chemometrics methods such as
partial least squares discriminant analysis (PLS-DA) and support vector machines (SVM) regression.
The results of gentiopicroside content determined by high performance liquid chromatography (HPLC)
have been used as reference data to build our quantitative analysis model.

2. Result and Discussion

2.1. HPLC Analysis

All 179 samples were quantified by the HPLC method. Prior to sample determination, the
methodology was validated by measuring the stability, repeatability and recovery based on the
previous work in our laboratory [24]. The linear relationship of the peak areas and standards
of gentiopicroside was y = 7975.52946x + 25.05267, and the correlation coefficient was 0.9999.
Therefore, the HPLC method could be considered an accurate and dependable method for measuring
gentiopicroside content in G. rigescens.

Figure 1 shows the average contents of gentiopicroside in different parts of G. rigescens from
different geographical origins. For the date it can be concluded that samples from Diqing have the
greatest gentiopicroside content, followed by those from Lijiang, Dali and Yuxi. Except for the samples
from Dali which had the highest gentiopicroside content in leaf, the other three sources showed the
highest abundance of gentiopicroside in the roots. It was thus found that not only in the same parts
from different geographical origins but also the same part from different geographical origins, the
content of gentiopicroside varies greatly. In addition, all samples conformed to the quality standards



Molecules 2017, 22, 1238 3 of 17

in the Chinese Pharmacopoeia except the stems from Yuxi (the content of gentiopicroside should be
higher than 1.5%).
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stretching vibration of esters, respectively. The peak around 1937 cm−1 is assigned to the C=O stretching 
vibration of acid amides [27]. In addition, the intense absorption peaks in 1070 and 1619 cm−1 are the 
main absorption bands of iridoids or glycosides, which correspond to C–O or C–O–C stretching and 
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Figure 1. Contents of gentiopicroside in G. rigescens (mg/g) with different parts of plants from different
geographical origins by HPLC.

The above results show that G. rigescens samples show a great dependence on geographical origin,
which might be influenced by the conditions of these geographical origins. For example, Yuxi is in
the central part of Yunnan Province which is mainly a subtropical area, while the others are in the
northwest of Yunnan Province, which belongs to the temperate climate zone area [25]. This indicates
that the quality of the herb showed geographical and habitat dependences to some extent. Similar
results have been reported for the quality of Paris from different geographic origins [26].

2.2. FT-IR Spectral Features

The average 4000–400 cm−1 FT-IR spectra of different parts of G. rigescens from different
geographical origins are shown in Figure 2. On the whole, there is no distinct difference among
the average FT-IR spectra, which overlap. However, the absorption intensities of the average FT-IR
spectra vary a lot. Compared to other geographical origins, the absorption intensity is obviously lower
in the root sample of Yuxi (Figure 2A). A broad absorption band is found at around 3399 cm−1, which is
due to the O–H stretch. The bands at 2933 and 2856 cm−1 are CH3 asymmetric stretching and stretching
vibration of esters, respectively. The peak around 1937 cm−1 is assigned to the C=O stretching vibration
of acid amides [27]. In addition, the intense absorption peaks in 1070 and 1619 cm−1 are the main
absorption bands of iridoids or glycosides, which correspond to C–O or C–O–C stretching and C–C
asymmetric stretching vibrations [28,29]. According to studies of G. rigescens by Mi et al. [29] and
Yang et al. [30], the active compounds gentiopicroside, swertiamarin, and chiratin and other iridoids
in G. rigescens all contain C–O or C–O–C and C–C bonds.
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Figure 2. The average FT-IR spectra of root (A), stem (B) and leaf (C) in G. rigescens from different
geographical origins (Dali, Lijiang, Diqing and Yuxi) in the 4000–400 cm−1 range.

2.3. Multivariate Analysis

In the PLS-DA and SVM regression models, the samples were divided into two categories: training
set and validation set. Two-thirds of the samples were classified as training set and the others were
assigned to the validation set by the Kennard-Stone algorithm [31].

2.3.1. PLS-DA Models

Four PLS-DA models were built: roots from different geographical origins (model 1), stems from
different geographical origins (model 2), leafs from different geographical origins (model 3) and three
different parts (root, stem and leaf) (model 4). In order to solve the problem of band overlap, baseline
drift and noise, spectral preprocessing was applied [32–34]. For the PLS-DA models 1, 2, 3 and 4,
the optimized spectral preprocessing were second derivation (2Der), multiplicative scatter correction
(MSC) + 2Der, standard normal variate (SNV) + 2Der and MSC + 2Der, respectively. After optimized
spectral preprocessing of the FT-IR spectra, the PLS-DA models were established by the first two
principal components (PC1 and PC2) for qualitative analysis of all G. rigescens samples (Figure 3).

Figure 3A displays the score plot of G. rigescens roots from Dali, Lijiang, Diqing and Yuxi. In the
score plot, samples from different geographical origins can be clustered in a range and distinguished
from others. Samples from Yuxi are far away from the other three geographical origins, while the
distance of the other three geographical origins are closer. It can be seen that PC1 separates the samples
of Yuxi from others, the former is in the central of Yunnan Province and the latter is in the northwest of
Yunnan Province, which matches the regularities of gentiopicroside content distribution analyzed by
HPLC. PC2 separates the samples of Diqing and Dali from samples of Lijiang.

The prediction results of the model parameters determination coefficient (R2), root-mean-square
error of estimation (RMSEE) and root-mean-square error of cross validation (RMSECV) are listed in
Table 1. The first six principal components (96.0%) are employed for model 1. The R2 is greater than
0.94 and the RMSEE and RMSECV are low, which are less than 0.25. Thereinto, model 1 of samples
from Yuxi have the best performance with the highest R2 and lowest RMSEE and RMSECV. As seen
in Table 2, according to the Galtier criterion, all the samples are identified correctly except the four
samples numbered 4, 6, 13 and 57. Sample 13 from Lijiang was misidentified as coming from Diqing,
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and the three other samples (4, 6 and 57) can’t be judged accurately. More interestingly, the uncertain
samples are all outside of the 95% confidence ellipses in the scatter plot (Figure 3A). The prediction
accuracy of model 1 is 80%.Molecules 2017, 22, 1238 5 of 17 
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The score plot of G. rigescens stems from Dali, Lijiang, Diqing and Yuxi is described in Figure 3B.
The G. rigescens stems from different geographical origins can be separated except for a few that were
mixed. The stems from Lijiang are distributed widely, while the samples from the other three origins
are centrally distributed. It is shown that PC1 separates the samples of Lijiang and Yuxi from those of
Dali and Diqing while PC2 separates the samples of Dali from those from Diqing.

Table 1 shows the parameters of R2, RMSEE and RMSECV in model 2. The first four principal
components are employed for model 2, and the cumulative contribution reached 88.5%. The model
of samples from Yuxi have the best precision, with high R2 (0.9472) and low RMSEE (0.0877) and
RMCECV (0.1689).

According to the Galtier criterion, two samples from Diqing (104 and 107) are identified as
Lijiang samples erroneously and sample 76 can’t be judged accurately (Table 3). As seen in Figure 3B,
samples 104 and 107 are close to the samples from Lijiang which is the same as the results from Table 3.
The prediction accuracy of model 2 is 85%.
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Table 1. Statistics of the optimal calibration models.

Types
Parameter

Model 1 Model 2 Model 3 Model 4

Dali,
Root

Diqing,
Root

Lijiang,
Root

Yuxi,
Root

Dali,
Stem

Diqing,
Stem

Lijiang,
Stem

Yuxi,
Stem

Dali,
Leaf

Diqing,
Leaf

Lijiang,
Leaf

Yuxi,
Leaf Root Stem Leaf

R2 0.9543 0.9654 0.9426 0.9762 0.8346 0.8464 0.9098 0.9472 0.9031 0.8964 0.8854 0.9231 0.8334 0.8425 0.9331
RMSEE 0.0852 0.0985 0.1247 0.0615 0.1552 0.1999 0.1531 0.0877 0.1364 0.1695 0.1464 0.1140 0.1835 0.1927 0.1295

RMSECV 0.1785 0.2313 0.1992 0.0709 0.2740 0.2688 0.1807 0.1689 0.1614 0.1924 0.1680 0.1713 0.2272 0.2304 0.1445

Model evaluation statistics for partial least squares discriminant analysis (PLS-DA) models. R2: determination coefficient; RMSEE: root-mean-square error of estimation; RMSECV:
root-mean-square error of cross-validation.

Table 2. Results of the PLS-DA model 1 validation set samples.

Samples Actual Class Calculated Class YPre Ydev

2 Dali, Root Dali, Root 1.1112 0.4306
4 Dali, Root Uncertain 1.5243 0.6372
6 Dali, Root Uncertain 1.5774 0.6637
7 Dali, Root Dali, Root 1.2030 0.4765

13 Lijiang, Root Diqing, Root 0.4190 0.1300
14 Lijiang, Root Lijiang, Root 0.6108 0.2930
18 Lijiang, Root Lijiang, Root 0.8904 0.3202
20 Lijiang, Root Lijiang, Root 0.8029 0.3449
21 Lijiang, Root Lijiang, Root 1.1986 0.4743
24 Lijiang, Root Lijiang, Root 1.0592 0.4046
25 Lijiang, Root Lijiang, Root 0.8340 0.2920
31 Diqing, Root Diqing, Root 0.7014 0.2522
40 Diqing, Root Diqing, Root 0.8934 0.3217
42 Diqing, Root Diqing, Root 0.7153 0.2364
44 Diqing, Root Diqing, Root 0.7702 0.2601
45 Diqing, Root Diqing, Root 1.0444 0.3972
47 Diqing, Root Diqing, Root 0.8626 0.3079
54 Yuxi, Root Yuxi-Root 0.9195 0.3351
57 Yuxi, Root Uncertain 1.3332 0.5416
59 Yuxi, Root Yuxi-Root 1.1181 0.4341

Ypre: predicted value; Ydev and deviation values.
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Table 3. Results of the PLS-DA model 2 validation set samples.

Samples Actual Class Calculated Class YPre Ydev

61 Dali, Stem Dali, Stem 0.9741 0.4110
62 Dali, Stem Dali, Stem 1.1943 0.4722
66 Dali, Stem Dali, Stem 0.8053 0.2776
70 Dali, Stem Dali, Stem 0.5274 0.1387
72 Lijiang, Stem Lijiang, Stem 1.0518 0.4318
74 Lijiang, Stem Lijiang, Stem 0.9547 0.3524
76 Lijiang, Stem Uncertain 1.3367 0.6355
81 Lijiang, Stem Lijiang, Stem 0.7931 0.2796
87 Lijiang, Stem Lijiang, Stem 1.0656 0.4078
88 Lijiang, Stem Lijiang, Stem 1.0032 0.3766
91 Diqing, Stem Diqing, Stem 1.2258 0.4879
94 Diqing, Stem Diqing, Stem 1.1724 0.4612
95 Diqing, Stem Diqing, Stem 1.0654 0.4077

104 Diqing, Stem Lijiang, Stem 0.4763 0.2348
105 Diqing, Stem Diqing, Stem 0.6590 0.2045
107 Diqing, Stem Lijiang, Stem 0.3148 0.2175
112 Yuxi, Stem Yuxi, Stem 0.9311 0.3704
117 Yuxi, Stem Yuxi, Stem 0.9702 0.3601
120 Yuxi, Stem Yuxi, Stem 0.9334 0.3417

Ypre: predicted value; Ydev and deviation values.

Figure 3C displays the score plots of G. rigescens leaves from Dali, Lijiang, Diqing and Yuxi.
The cumulative contribution reached 90.2%, when the first four principal components are employed.
In Figure 3C, the samples from Dali, Diqing and Yuxi can be clustered into three groups, while Lijiang
samples are distributed dispersedly. The samples from Diqing and Dali can be separated from the Yuxi
and Lijiang ones by PC1. In addition, the samples from Yuxi and Lijiang can be distinguished by PC2.

The R2, RMSEE and RMSECV of model 3 are shown in Table 1. The performances of the different
geographical origin discrimination are good, with high R2 (>0.88) and low RMSEE (<0.17) and RMSECV
(<0.20). Thereinto, the best performance is for the samples from Yuxi. In Table 4, the samples 128 and
137 can’t be confirmed. Moreover, a sample from Lijiang (146) is judged as a Dali sample by mistake.
More interestingly, the uncertain samples are in the margin of the 95% confidence ellipses (Figure 3C)
like the result of model 1. The prediction accuracy of model 3 is 85%.

The score plot (Figure 3D) shows that all G. rigescens samples can be separated based on three
parts (root, stem and leaf). The first four principal components which represent 87.0% of the explained
variance are applied to model 4. It is clear that the roots, stems and leaves can be separated completely.
Thia indicates that the metabolic profiles of different parts in G. rigescens are unlike. The stems and
leaves samples cluster in two concentrated regions and the distance between them is close, however,
the root samples distribute dispersedly whereby the root samples from Yuxi cluster outside the 95%
confidence ellipses and the distance between the roots samples from Yuxi and the other root samples
are large (Figure 3D). This indicates that the geographical origins variation of root samples are more
obvious than those of stems and leaves. Moreover, it is shown that PC1 separates the root samples
from stem and leaf samples and PC2 separates the stem samples from leaf samples.

As shown in Table 1, the best performance of model 4 is leaf samples, followed by stem and
root. The prediction accuracy of model 3 is 86.7%, which six samples (29, 51, 61, 62, 106 and 111) are
uncertain whether class belongs to, and three stem samples (63, 78 and 83) are regarded as root samples
(Table 5). The result shows that the metabolic profiles of leaf samples may be similar to root samples.
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Table 4. Results of PLS-DA model 3 validate set samples.

Samples Actual Class Calculated Class YPre Ydev

123 Dali, Leaf Dali, Leaf 0.7455 0.2478
128 Dali, Leaf Uncertain 1.4334 0.5917
133 Lijiang, Leaf Lijiang, Leaf 0.8984 0.3242
134 Lijiang, Leaf Lijiang, Leaf 0.6928 0.2214
135 Lijiang, Leaf Lijiang, Leaf 0.5073 0.1949
136 Lijiang, Leaf Lijiang, Leaf 0.8768 0.3134
137 Lijiang, Leaf Uncertain 1.1790 0.6497
139 Lijiang, Leaf Lijiang, Leaf 0.9106 0.3494
140 Lijiang, Leaf Lijiang, Leaf 0.5083 0.1241
141 Lijiang, Leaf Lijiang, Leaf 0.9160 0.3330
144 Lijiang, Leaf Lijiang, Leaf 1.0707 0.4103
145 Lijiang, Leaf Lijiang, Leaf 1.3312 0.5406
146 Lijiang, Leaf Dali, Leaf 0.3026 0.1056
154 Diqing, Leaf Diqing, Leaf 1.1157 0.4329
160 Diqing, Leaf Diqing, Leaf 0.8556 0.3242
165 Diqing, Leaf Diqing, Leaf 0.5760 0.1630
166 Diqing, Leaf Diqing, Leaf 1.1611 0.4555
170 Yuxi, Leaf Yuxi, Leaf 0.9046 0.3273
176 Yuxi, Leaf Yuxi, Leaf 0.8712 0.3127
178 Yuxi, Leaf Yuxi, Leaf 0.9259 0.3379

Ypre: predicted value; Ydev and deviation values.

Table 5. Results of PLS-DA model 4 validation set samples.

Samples Actual Class Calculated Class YPre Ydev

5 Root Root 0.7803 0.3378
6 Root Root 0.9955 0.4414
7 Root Root 0.7524 0.2794

12 Root Root 0.9642 0.4205
13 Root Root 0.9584 0.4167
14 Root Root 0.8682 0.3566
15 Root Root 0.7034 0.2467
18 Root Root 0.8453 0.3500
19 Root Root 0.8823 0.3660
20 Root Root 0.8876 0.3695
21 Root Root 0.6858 0.2350
22 Root Root 0.8692 0.3573
24 Root Root 0.9851 0.4345
29 Root Uncertain 1.1444 0.5407
30 Root Root 0.9511 0.4118
31 Root Root 0.6869 0.2357
32 Root Root 0.9623 0.4193
34 Root Root 0.8161 0.3218
38 Root Root 0.9635 0.4201
40 Root Root 1.0701 0.4912
41 Root Root 0.6536 0.2135
43 Root Root 0.7605 0.2848
49 Root Root 0.9819 0.4324
50 Root Root 0.7037 0.3252
51 Root Uncertain 1.2548 0.6143
52 Root Root 0.9847 0.4343
53 Root Root 0.8527 0.3462
57 Root Root 0.8420 0.3391
58 Stem Stem 0.5076 0.1588
61 Stem Uncertain 1.1209 0.5250
62 Stem Uncertain 1.2384 0.6033
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Table 5. Cont.

Samples Actual Class Calculated Class YPre Ydev

63 Stem Root 0.2768 0.2470
70 Stem Stem 0.6177 0.1896
71 Stem Stem 0.7688 0.2903
73 Stem Stem 0.6066 0.1822
78 Stem Root 0.1209 0.2604
82 Stem Stem 0.7153 0.2596
83 Stem Root 0.4597 0.0842
84 Stem Stem 0.6782 0.2299
86 Stem Stem 1.0495 0.4932
89 Stem Stem 0.7826 0.2995

104 Stem Stem 0.7306 0.2648
106 Stem Uncertain 1.2252 0.5946
108 Stem Stem 0.8728 0.3596
110 Stem Stem 0.7044 0.2639
111 Stem Uncertain 1.5978 0.8430
112 Stem Stem 1.0158 0.4550
122 Leaf Leaf 1.0092 0.4505
123 Leaf Leaf 0.9702 0.4246
129 Leaf Leaf 0.6900 0.2377
130 Leaf Leaf 0.9760 0.4285
132 Leaf Leaf 0.7933 0.3066
133 Leaf Leaf 0.8667 0.3556
141 Leaf Leaf 0.8623 0.3526
149 Leaf Leaf 0.9041 0.3805
153 Leaf Leaf 0.9990 0.4438
159 Leaf Leaf 0.8485 0.3434
163 Leaf Leaf 0.9792 0.4325
165 Leaf Leaf 1.0081 0.4499
170 Leaf Leaf 0.9311 0.3985

Ypre: predicted value; Ydev and deviation values.

2.3.2. SVM Regression Model

After optimized spectral preprocessing by orthogonal signal correction (OSC) and 2Der, all data
was normalized in the region between 1 and 2. Then, the parameters c and g in the SVM regression
model were selected by a grid search algorithm (GS) with seven-fold cross validation, genetic algorithm
(GA) and particle swarm optimization algorithm (PSO). The GS with cross-validation can prevent
the problem of overfitting and can be easily parallelized on account of parameters (c and g) [35].
The algorithm of GA is based on the principle of survival of the fittest. In GA algorithm, the most
obvious superiority is that it can find the optimal or near the optimal solutions in the relatively low
computation [36]. The basic concept of PSO algorithm is derived from the study of bird predation
behavior. It is a new stochastic optimization algorithm based on the intelligent [37]. Finally, the best
parameters were used to train the training set.

In this study, the GS algorithm was applied to screen the parameters c and g in the region of 1 to
220 and 2−20 to 1, respectively. As can be seen in Figure 4, the results of c, g and cross-validation mean
square error (CVmse) which are calculated by the GS algorithm are 0.5, 0.0039 and 0.0149, respectively.
In addition, the terminate algebra was set as 200 and population quantity was set as 40 in the GA
algorithm. It is shown that the optimum parameters c, g and CVmse are 0.4572, 0.01 and 0.0163,
respectively (Figure 5). Finally, the PSO algorithm was also applied to select the parameters and the
detail parameter (terminate algebra and population quantity) of PSO was the same as the GA algorithm
(Figure 6). The results of the PSO algorithm are as follows: c = 0.4453, g = 0.01 and CVmse = 0.01624.
The aforementioned algorithms were all applied for building the SVM regression models.
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Table 6 shows the performances achieved by the GS, GA and PSO SVM regression models for
predicting the content of gentiopicroside. From Table 6, it is observed that the highest Rt

2 (96.39%)
and RMSEE (3.1056) for training set and the highest Rv

2 (83.57%) and the lowest RMSEP (11.1421) for
validation set is obtained by the GS algorithm. Therefore, the GS method gives the best performance
for the prediction of gentiopicroside content in G. rigescens.

Table 6. Statistics of the SVM models.

Model c g CVmse Rt
2 (%) RMSEE Rv

2 (%) RMSEP

GS-SVM 0.5000 0.0040 0.0149 92.7143 3.1056 83.5721 11.1421
GA-SVM 0.4573 0.0100 0.0163 96.3977 3.1760 82.3279 11.1504
PSO-SVM 0.4454 0.0100 0.0162 96.3120 3.2131 82.3529 11.1506

Rt
2: determination coefficient for training set; Rv

2: determination coefficient for validated set; RMSEE:
root-mean-square error of estimation; RMSEP: root-mean-square error of prediction.

Figure 7 shows the result of validation set for prediction vs. measured gentiopicroside content
which was achieved by the GS algorithm in the SVM regression model. The samples from the
training and validation sets are all symmetrically distributed on the both sides of the regression line.
Satisfactory predictions with Rt

2, Rt
2, RMSEE and RMSEP are achieved and good agreement with the

SVM regression model built for predicting gentiopicroside content in G. rigescens is observed.
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3. Materials and Methods

3.1. Plant Materials and Reagents

Wild fresh G. rigescens samples were collected from Dali, Lijiang, Diqing and Yuxi in Yunnan
Province, China (Table 7). Specimens were identified by Prof. Jinyu Zhang (Institute of Medicinal
Plants, Yunnan Academy of Agricultural Sciences).

Table 7. Information of G. rigescens.

No. Site Description No. Site Description No. Site Description

1–10 Dali, Yunnan Root 61–70 Dali, Yunnan Stem 121–130 Dali, Yunnan Leaf
11–30 Lijiang, Yunnan Root 71–90 Lijiang, Yunnan Stem 131–149 Lijiang, Yunnan Leaf
31–50 Diqing, Yunnan Root 91–110 Diqing, Yunnan Stem 150–169 Diqing, Yunnan Leaf
51–60 Yuxi, Yunnan Root 111–120 Yuxi, Yunnan Stem 170–179 Yuxi, Yunnan Leaf
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Potassium bromide (KBr) was purchased from Tianjin Fengchuan Fine Chemical Research Institute
(Tianjin, China). A gentiopicroside standard was supplied by the National Institute for the Control
of Food and Drug control (Beijing, China). Analytical grade methanol (80%, v/v) used as extraction
solvent was obtained from Xilong Chemical Company (Guangdong, China). Chromatography grade
acetonitrile and formic acid were purchased from Sigma-Aldrich (Flanders, NJ, USA).

3.2. Sample Preparation

The G. rigescens samples were divided into three parts (root, stem and leaf) after cleaning and
dried for 24 h at 60 ◦C. Then, all samples were powdered in a high-speed blender and passed through
an 80 mesh stainless steel sieve, separately. Then, the sieved powders were kept in Ziploc bags and
stored at room temperature prior to analysis.

A sample (25 mg) of each powder was weighed accurately using an electronic balance (XS125A,
Precisa, Basel, Switzerland) and soaked with 1.5 mL of 80% methanol for 30 min under ultrasonication
at room temperature. Before analysis by HPLC, the extracts were filtered through a 0.22 µm membrane
filter (Millipore, Bedford, MA, USA). All the extracts of G. rigescens samples were subjected to analysis.

3.3. HPLC Conditions

Gentiopicroside was determined using an Agilent 1260 Infinity system (Agilent Technologies,
Palo Alto, CA, USA) equipped with a G1311 diode array detector, a quaternary pump and an
on-line degasser. An Agilent Zorbax AB-C18 column (5 µm, 4.6 × 250 mm) was utilized for the
chromatographic separations. The mobile phase consisted of 0.1% aqueous formic acid in water
(A) and acetonitrile (B). The gradient elution procedure was as follows: the initial mobile phase
composition was set to 5% B for 5 min, then increased stepwise linearly first to 10% B from 5 to 10 min,
then to 26% B from 10 to 26 min, and finally decreased to 30% for 30 min. The column temperature
was maintained at 30 ◦C. The flow rate was set at 0.3 mL/min and the injection volume was 10 µL.
During the experiment, the detective wavelength was set at 241 nm. Every samples were detected
three times, and the averaged spectra were employed for further analysis.

3.4. FT-IR Spectra Acquisition

FT-IR spectra acquisition was performed by using a Fourier transform infrared spectrometer
(Perkin Elmer, Norwalk, CT, USA) equipped with a deuterated triglycine sulfate detector. Powdered
samples (1.2 mg) and 100 mg of KBr were precisely weighed and mixed evenly. Then, the mixed
powder was pressed into a tablet by using a table press (YP-2, Shanghai Shanyue Instrument Inc.,
Shanghai, China) for detection. Each FT-IR spectrum was collected in the region of 4000–400 cm−1

with a resolution of 4 cm−1 and a total of 16 co-added scans. Pure KBr spectra were recorded as
background spectra for deducting the CO2 and H2O peaks in real-time. Each spectrum was scanned in
triplicate under constant temperature (25 ◦C) and humidity conditions, and the averaged spectra were
employed for further analysis.

3.5. Multivariate Data Analysis

Before analysis, two-thirds of the samples were classified as the training set and the others were
assigned to the validation set using the Kennard-Stone algorithm. Qualitative and quantitative models
were developing with PLS-DA and SVM regression, respectively. PLS-DA, a supervised analysis
method, was successfully applied to the classification of the FT-IR spectra [38]. The basic principle of
PLS-DA was to reduce the independent variables X for obtaining a maximum covariance between X
and Y variables [39,40]. SVM, a state-of-the-art method of classification and regression technique, was
proposed on the basis of statistical learning theory by Vapnik [41]. The fundamental objective of SVM
was to construct a separating plane that all the data points have the shortest distance to [42]. SVM
is famous for its advantages which avoid over-fitting problems and improve the generalization and
accurate prediction ability by introducing a structure risk function. Rather than empirical risk that
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minimizes the misclassification errors in the training set, structural risk minimizes the misclassification
error on a settled but unware probability distribution in which previously invisible data points are
drawn at random [43,44]. Moreover, SVM can effectively overcome the “curse of dimensionality” by
introducing a kernel function. SVM thus successfully solves non-linear prediction problems [45].

In this paper, a library for the SVM toolkit LIBSVM 3.21 was applied in data processing which
was developed by Chang and optimized by Lin [46]. The performance of SVM depends mainly on the
type of kernel function and its parameters [47]. There are four kinds of kernel function types in this
toolkit, including: linear, radial basis function (RBF), polynomial and sigmoid. Usually, RBF is selected
to build the regression models for prediction [42,48,49]. The error penalty parameter c and RBF kernel
parameter g are the major parameters in the SVM model with RBF [50]. The RBF kernel parameter g,
as kernel width, had an impact on the prediction of the SVM model, while c controls the complexity of
the SVM model.

3.6. Evaluation of Model Performance

The determination coefficient (R2), root-mean-square error of estimation (RMSEE),
root-mean-square error of cross validation (RMSECV) and root-mean-square error of prediction
(RMSEP) were considered to evaluate the performance of qualitative and quantitative model.

R2 (Equation (1)) is the correlation between the measured values and predicted values. Generally,
a higher R2 (<1) value means a better performance of both kinds of models [51]:

R2 = ∑N
i=1(yi − ŷi)

2/∑N
i=1(yi − y)2 (1)

where, yi is the measured value while ŷi is the predicted value. y is the mean value, and N is the
number of samples.

RMSEE, RMSECV and RMSEP were applied to evaluate the precision of model performance
(Equations (2)–(4)). The lower RMSEE, RMSECV and RMSEP are, the fitter the models obtained [52–54].
Moreover, the robustness of models depends on the difference between the determination coefficient
for the training set (R2

v) and the determination coefficient for the validation set (R2
v). The smaller the

difference between them, the more satisfactory the model [55]:

RMSEE =

√
∑Nt

i=1(ŷi − yi)
2

Nt − 1
(2)

RMSECV =

√
∑Nt

i=1(ŷi − yi)
2

Nt
(3)

RMSEP =

√
∑Nv

i=1(ŷi − yi)
2

Nv
(4)

where, Nt is the number of the training set and Nv is the number of validation set. In addition, in
the qualitative model, the classification accuracy of the validation set depends on the predicted value
(Ypre), and deviation values (Ydev) which are based on the following standards: (1) when Ypre > 0.5
and Ydev < 0.5, the sample of validation set belongs to the class; (2) when Ypre < 0.5 and Ydev < 0.5, the
sample of validation set does not belong to the class; (3) when Ydev > 0.5, it means that the sample
can’t judge accurately whether it belongs to the class or not [56,57].

3.7. Software

The FT-IR spectra were processed using Omnic (Version 8.2, Thermo Fisher Scientific, Madison,
WI, USA). The chromatographic fingerprints were conducted using the Similarity Evaluation
System for Chromatographic Fingerprints of traditional Chinese Medicines (Version 2004a, Chinese
Pharmacopoeia Commission, Beijing, China). The PLS-DA models were created by Simca (Version 13.0,
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Umetrics, Umea, Sweden), while the MSV regression model was created by MATLAB (Version R2014a,
MathWorks, Natick, MA, USA) with the LIBSVM-Faruto toolkit (Version Ultimate 3.1M) [58]. All the
figures were drawn by Origin (Version 8.0, Originlab, North Hampton, MA, USA) and MATLAB.

4. Conclusions

In this study, a rapid FT-IR spectroscopic method combined with a chemometrics procedure
was developed for the qualitative and quantitative analysis of G. rigescens. The discrimination of
different parts of G. rigescens plants from different geographical origins by using FT-IR spectroscopy
in combination with PLS-DA was presented. The feasibility of rapid quantitative analysis of
gentiopicroside content in G. rigescens by application of FT-IR spectroscopy in combination with
SVM regression was investigated. The results showed that for gentiopicroside determination, the
parameter selection method of GS of a SVM regression model provided a good prediction. Overall,
FT-IR spectroscopy combined with chemometrics could be a promising method for quality assessment
of G. rigescens.
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