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Abstract

Method: Taking advantage of the current rapid development in imaging systems and computer vision algorithms,
we present HPGA, a high-throughput phenotyping platform for plant growth modeling and functional analysis,
which produces better understanding of energy distribution in regards of the balance between growth and
defense. HPGA has two components, PAE (Plant Area Estimation) and GMA (Growth Modeling and Analysis). In
PAE, by taking the complex leaf overlap problem into consideration, the area of every plant is measured from top-
view images in four steps. Given the abundant measurements obtained with PAE, in the second module GMA, a
nonlinear growth model is applied to generate growth curves, followed by functional data analysis.

Results: Experimental results on model plant Arabidopsis thaliana show that, compared to an existing approach,
HPGA reduces the error rate of measuring plant area by half. The application of HPGA on the cfq mutant plants
under fluctuating light reveals the correlation between low photosynthetic rates and small plant area (compared to
wild type), which raises a hypothesis that knocking out cfq changes the sensitivity of the energy distribution under
fluctuating light conditions to repress leaf growth.

Availability: HPGA is available at http://www.msu.edu/~jinchen/HPGA.

Introduction
Growth is the increase in dry mass, volume, length, or
area that results from the division, expansion, and differ-
entiation of cells [1] (Figure 1a). Plant growth is a fun-
damental biological process studied in a wide range of
scientific fields, integrating across scales from physiology
to community dynamics and ecosystem properties [2].
Computational plant growth modeling [3,4] enables a
deeper understanding and more accurate predictions for
a wide range of plant physiological problems. Specifi-
cally, in the studies of the key biological pathways
responsive to bioitic or abotic stresses, probably the
only way to capture the exact changes in plant growth
rate (which may reflect how these pathways control

photosynthesis activity or energy distribution) is to
develop a precise and more efficient computational
plant growth model.
In order to precisely model plant growth rate, we pre-

sent a new computational model called HPGA (High-
throughput Plant Growth Analysis) which identifies leaf
tips and then uses the short curvature areas around
them to estimate the area of each leaf individually,
regardless whether they overlap or not. Then a non-
linear model is trained to learn growth characteristics in
different development stages.
Plant growth models quantify two kinds of measure-

ments: absolute growth rate (AGR) and relative growth
rate (RGR), both of which require measuring biomass or
plant area at successive time points. Traditionally, plant
growth is often fitted with linear or exponential equa-
tions such as a logistic model (one- or two-parameter
version) [5,6], comprising of initial exponential growth
and a term that reduces RGR as the area increases,
resulting in an asymptotic maximum area (Figure 1b) [7].
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However, although simple logistic models require rela-
tively few observations, they do not often fit with obser-
vations well [4]. In fact, there is an increasing amount of
contemporary research suggesting that traditional
approaches to modeling growth using linear and expo-
nential models are inadequate due to their oversimplified
assumptions [4]. Consequently, researchers have started
to apply nonlinear models, including three- and four-
parameter logistic [8,9], power-law, Gompertz [10,11]
and monomolecular model [11,12] to provide enough
flexibility to obtain the best fit between models and
observations [4]. To achieve satisfactory results, all these
models need abundant observations [4], which require
either a labor-intensive protocol to frequently measure
plant areas manually, or an automated phenotyping
approach using computational measurements of plant
area. Furthermore, in large-scale screen experiments
where hundreds of plants are monitored simultaneously,
manual inspection may not be an option. It is necessary
to automate the plant area measurement and therefore
recognize emergent growth phenotypes.
Taking advantage of the current rapid development in

imaging systems and computer vision algorithms, high-
throughput computational phenotyping techniques to
non-invasively monitor plant growth have been developed
[3,13-15]. In these approaches, top-view images are cap-
tured periodically and a growth curve is generated using
the observed pixels of the plant area over time [3,16,17].
However, the observed pixels is remarkably affected by
complex leaf overlap during growth (in addition to leaf
twisting and curling, and circadian movement), resulting
in inaccurate growth patterns. For old plants with many
overlapping large leaves, the bias becomes more severe
(Supplementary Fig S1). Mokhtarpour et al [18] have
setup a three-camera system with two side views and one
top view to correct for leaf overlapping areas, but the
setup of side-view cameras is not suitable in many cases,
e.g. large-scale screen of many plants simultaneously.
Since the observed value from a top-view will often

cause problems in modeling plant growth, and since

there is an emerging research demand for plant high-
throughput phenotyping, more advanced approaches for
plant growth analysis need to be developed. In this
paper, a new computational model HPGA is presented
to estimate leaf overlap percentage to measure plant
area more precisely. Our approach has the following
advantages.

• Unlike the existing approaches that simply counts
the number of valid pixels in an image [3,13-15],
HPGA estimates plant areas by explicitly taking leaf
overlaps into consideration. Specifically, with a leaf
development model [19], we address the leaf overlap
problem with a four-step approach: plant center
identification, leaf tip identification, leaf area estima-
tion and plant area measurement.
• Our approach avoids the leaf segmentation pro-
blem to recognize all the leaves of a plant from a
top-view image, which has been considered to be a
challenging problem in the computer vision commu-
nity due to high plant-to-plant variations (biodiver-
sity) [20].
• With our high-throughput phenotyping technique,
researchers are able to generate hundreds or even
thousands of observations for every plant automati-
cally. Feeding enough observations to a nonlinear
model ensures the robustness and precision of plant
growth modeling.
• In HPGA, functional data analysis is applied on
growth curves for better interpretation of the plant
growth scenarios. In our experiment, the coupling of
photosynthetic and growth rate phenotypes raises an
important hypothesis about gene function.

In summary, our study highlights a cost-effective,
high-throughput phenotyping approach that, coupled
with other phenotyping and genotyping techniques,
facilitates the dissection of the dynamics of plant
growth and development under varying environmental
conditions.

Figure 1 An example of plant growth and an idealized general curve of typical higher plants. (a) Top-view fluorescence images of
Arabidopsis wild type growing over 15 days. (b) An idealized growth curve of typical higher plants.
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Methods
HPGA is composed of two independent modules, PAE
(Plant Area Estimation) and GMA (Growth Modeling
and Analysis). In PAE, the plant area is measured in
four steps which will be described in the following text.
Given the abundant measurements obtained with PAE,
in the second module (GMA), a nonlinear growth
model is applied to generate a growth curve for each
plant, followed by functional data analysis. Modularity
in design combines the advantages of standardization
with those of customization [21]. In our case, it allows
researchers, for example, to explore different nonlinear
models without interfering the other parts of the
algorithm.

Plant area estimation
The most straightforward approach to measure plant
area which takes leaf overlap into account is to segment
every leaf, measure leaf areas and sum them up. How-
ever, given the complex and diverse plant layout, the
first step, leaf segmentation, is challenging [20]. Alterna-
tively, we observe that although it is difficult to segment
a complete leaf edge, it is practical to obtain a relative
small curvature area near every leaf tip, which provides
enough information about leaf shape, length and area,
since there is a strong correlation among these features
[19]. We propose PAE (Plant Area Estimation), a four-
step approach to precisely measure the plant area even
if leaves are heavily overlapped. The workflow of PAE is
shown in Figure 2.
Plant center identification
The center of a plant is the geometric location where a
plant starts to grow. In general, a plant center is the
center of mass because of the symmetry of plants [22].
But in many other cases, due to the loss of leaves or
light direction changes, a plant center is different from
the geometric center. Therefore, instead of using the
whole plant geometric properties, we develop a new
method to identify plant center from a top-view image.
The idea is to subdivide a top-view image into constitu-
ent regions, recognize a few leaves (≥ 2), and then locate
the plant center according to leaf orientations, in that all
the leaves arise from the center of a plant.
In the leaf segmentation step, the goal is to accurately

identify a few leaves. There are two kinds of leaves in a
top-view image: simple leaves and leaf complexes. Sim-
ple leaves refer to non-overlapping and separated leaves.

On the contrary, leaf complexes are either young leaves
that are fused together or overlapping large leaves. To
avoid utilizing complicated leaf segmentation approach
to identify all the leaves, which is often prone to errors,
only the simple leaves are considered here. An example
is shown in Figure 3 illustrating the idea of leaf segmen-
tation, where Figure 3a is the original fluorescence
image (12-bit gray scale) of a plant with four simple
leaves and two leaf complexes. Here fluorescence images
are used in order to observe the photosynthesis activity
and the growth of the plants simultaneously.
We first apply Gaussian smoothing [23], a common

approach for blurring images and removing details and
noises, to reduce the noise level in the top-view images
(Figure 3b). Then, Laplacian detector [23] is used to
identify simple leaves. As a second-order derivative
operator, Laplacian detector is suitable for edge location
by looking for zero crossings. With it, the edges of sim-
ple leaves can be well-isolated, while the edges of leaf
complexes are still crossed. Therefore, the regions con-
taining only simple leaves are correctly detected (Figure
3c). Since the second-order derivative is extremely sensi-
tive to noise, a fine edge detection approach called
Canny edge detector [23,24] (the most commonly
applied edge detector), is employed to accurately identify
intensity discontinuities that define the leaf edges of all
the simple leaves (Figure 3d).
After obtaining n segmented leaves (n ≥ 2), we deter-

mine the leaf orientation for each leaf with a “leaf orien-
tation line” which is the longest line across the leaf
(Figure 3e). For a round leaf the petiole that connects to
the leaf is used as additional information to determine
the leaf orientation. Based on all the leaf orientation
lines, a plant center is considered to be the point that is
the closest to all the lines (the square in Figure 3f). Math-
ematically, given all the leaf orientation lines {l1, l2, ..., ln},
a plant center c is a point that:

c = argminc

n∑
i=1

Dist(li, c) (1)

where Dist(li, c) is the perpendicular distance from c
to line li. In summary, we developed a plant center iden-
tification method based on a few segmented simple
leaves. It is theoretically more reasonable than to use
the center of mass (the square against the triangle in
Figure 3f).

Figure 2 Workflow of Plant Area Estimation (PAE).
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Leaf tip identification
With the recognized plant centers, we identify all the
leaf tips with three digital image process algorithms
applied successively. First, a binary mask is created, dis-
tinguishing foreground (plant) from the background.
This is done by dilating the output of the Sobel edge
detector [23], which is a linear filter that computes the
gradient by using a discrete differences between rows
and columns of a 3-by-3 neighborhood, followed by the
application of a flood fill algorithm [25] from the four
corners of the image to determine the connected back-
ground area, similar to the “bucket fill” tool of paint
programs. An example shown in Figure 4a is the binary
foreground mask of the fluorescence image in Figure 3a.
Next, starting from a plant center c, a horizontal line

is drawn to the right and rotated 360 degrees. For each
degree j, we compute the distance from the plant
center to the outermost edge of the foreground mask
(Figure 4b). This yields a vector of pairs of radius r and

degree j which describes, in polar coordinates, the
shape of the outermost edge of the foreground mask
(Figure 4c), with each peak representing a leaf tip.
In the third step, to avoid repeatedly counting the

same leaf tips, we smooth the radius-degree vector by
applying a moving average operation [26] that calculates
the unweighed mean of the radius in a window. Mathe-
matically, given a degree j, the smoothed radius rs(j) is:

rs (φ) =

∑k
i=1 Radius (φ, i)

k
(2)

where Radius(j, i) is the ith radius flanking j, and k is
the window size. An example of the smoothed radius for
three types of leaves is shown in Figure 5a. However, we
do not directly consider every local maximum in the
smoothed radius vector to be a separate leaf tip, because
the radius smoothing operation always underestimates
the leaf radius. Alternatively, we consider the non-
smoothed radius r at every jmax_local, the corresponding

Figure 3 PAE step 1: plant center identification. The plant center found by using a few segmented simple leaves (square in (f)) is
physiologically more reasonable than the center mass (triangle in (f)).
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degree of the local maximum in the smoothed radius
vector, to be a separate leaf tip (denoted as t). A radius
threshold Tr (the dotted line in Figure 4c) is applied to
avoid capturing false leaf tips when radius is very small.
Our approach ensures the successful identification of

all the outer leaf tips, as shown in Figure 4d. Its per-
formance may be reduced if a plant is over-grown
which, in fact, rarely happens in leaf based scientific
experiments.
Leaf area estimation
In early leaf development, because of cell proliferation,
the primordium (formed by apical and marginal meris-
tems) undergoes a slow limited expansion phase, fol-
lowed by a rapid dramatic expansion phase, principally
because of cell expansion [19]. Starting with this syn-
thetic model, recent studies reveal that there is a strong
relationship between leaf area and leaf properties such
as primary and secondary vein density [18,19]. In Sack
et al., a log-linear relationship between leaf area and leaf
dimension (length and width) has been discovered with
a significant p-value [19]. However, in our situation it is
difficult to measure the leaf width because of the chal-
lenging leaf segmentation problem. Therefore, we
develop a new leaf length-to-area model to infer the leaf
area with leaf length and a small area around leaf tip.
We first define the leaf length as the distance from the

base of the petiole of the leaf to the outermost point on

the leaf. In our model, we assume that all the leaves
have petiole bases at the same point, i.e., the center of
the plant. Therefore, a leaf length is estimated as being
the distance from the plant center to the leaf tip, which
is the radius (r). We include the petiole length because
of two reasons. First, it is difficult to identify the leaf
bottom because of the leaf overlap problem. Second, the
leaf length and petiole length are usually proportional,
except for a few genetic or natural variations. Conse-
quently, the proportion can be modeled in the leaf area
inference.
Due to the diversity of leaf shapes, leaves with the

same length can have very different areas. To this end,
we define “curvature ratio” cr = (r - rs)/r, where r is the
leaf length and rs is the smoothed leaf length defined in
Eq 2, to describe the shape of the small area around leaf
tip (Figure 5a). Curvature ratio is an indicator of leaf
shape, because the leaf edge is usually smooth, the small
area around leaf tip, which is the easiest to obtain, has
the complete information of leaf shape.
Next, we learn the relationship between leaf area and

the features we collected, i.e., the leaf length r and the
curvature ratio cr. Similar to the approach in Sack et al
[19], 87 leaves of wild type (WT) Arabidopsis plants were
collected with the plant ages ranging from 1-5 weeks old,
and then their leaf areas, lengths and curvature ratios
were attributed. In our training data, the distribution of

Figure 4 PAE step 2: leaf tip identification.

Figure 5 PAE step 3: leaf area estimation. In (c) and (d), each point represents a leaf, the 95% confidence intervals are the dashed lines, and the
95% prediction intervals are the grey dotted dash lines. (a) The definition of “curvature ratio” (cr). (b) The distribution of cr in the training data. (c)
The linear relationship between leaf length and leaf area if cr <0.07. (d) The exponential relationship between leaf length and leaf area if cr ≥ 0.07.
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cr fits a mixed Gaussian distribution (Figure 5b). Based
on this, a cutoff of cr at 0.07 was selected to split all the
leaves into two subsets: the round leaves and the elon-
gated leaves. For each of the leaf subset, the relationship
between leaf area and leaf length is fit to the best linear
or exponential model (Eq 3). Leaves below the cutoff
shows a linear relation between length and area (Figure
5c) with coefficient of determination (R2) value 0.90,
while leaves above the cutoff exhibited an exponential
relationship (Figure 5d) with R2 value 0.88. By dividing
the leaf length-to-area model into two categories, we are
able to increase the coefficient of determination (R2)
from 0.87 to 0.90 (cr < 0.07) and 0.88 (cr ≥ 0.07) respec-
tively.

l =

{
32.9 × r − 769.9 if cr < 0.07

513.8 × e0.0146 × r otherwise
(3)

where I is the leaf area, cr is the leaf curvature ratio
and r is the leaf length. The 95% confidence intervals
(CI) for cr < 0.07 are (29.9, 36.0) and (-1012.0, -527.6);
95% CI for cr ≥ 0.07 are (406.1, 621.6) and (0.0130,
0.0162), meaning 24.8% and 39.7% maximal leaf-to-leaf
variances respectively.
Plant area measurement
The summary of all the leaf areas is an important com-
ponent of the whole plant area. But it should also be
noted that some inner leaf tips may sometimes be
missed due to the leaf tip threshold Tr or smoothing
window width k. Therefore, adjustments should be
applied in the plant area measurement by taking both
the observed area from a top-view and the summary of
the leaf areas into consideration. In this paper, plant
area, denoted as a, is defined as:

a = al .
(
1 + poverlap

)
= al .

(
1 +

abs (at − al)

max (at, al)

)
(4)

where al is the summarized leaf area defined as
al =

∑m
i=1 li(li is the area of the ith identified leaf and m

is the number of leaf tips of a plant), at is the observed
value of plant area from a top-view, and poverlap is the
leaf overlap percentage which equals the absolute differ-
ence between at and al divided by the maximum value
of the two. In Eq 4, if poverlap = 0, plant area is exactly
the summary of all the leaf areas whose tips are identi-
fied; otherwise, plant area is estimated with al and at: if
al > at, a = 2 · al − at, else a = 2 · al − a2

l /at.

Growth modeling and analysis
Given the abundant plant area measures obtained with
PAE, a nonlinear model is applied to generate precise
growth curves which are suitable for the subsequent
functional data analysis.

Nonlinear growth model
Among the basic functional forms for plant growth
modelling, logistic model is the most commonly utilized
asymptotic form [6,7,11]. It has one-, two-, three-, four-
and five-parameter versions, where each version uses a
logistic function to relate examinee ability and the para-
meter(s) to the growth responding to time [27]. The
simple logistic models (one- and two-parameter ver-
sions, called 1PLM and 2PLM) do not often fit with
observations well [4], although they require relatively
few observations for the training.
In the three-parameter logistic model (3PLM), by

relaxing the 2PLM requirements of the model to allow
for a nonzero lower asymptote, the lower horizontal
asymptote is set at A0 (the initial plant area), and the
inflection point (the time at which AGR is maximized)
falls rigidly at the time when the plant area is half of the
upper horizontal asymptotes. It collapses to the expo-
nential in the limit as the upper horizontal asymptotes
approaches infinity. The model, as a function of time t,
is:

A (t) =
A0 · Aa

A0 + (Aa − A0) e−γ ·t (5)

where t is time, A(t) is plant area at time t (modelled
value, different from the plant area observation (a)), A0

is the initial plant area, Aa indicates the upper horizon-
tal asymptotes, and g is an acceleration or deceleration
parameter related to time. If t = 0, A = A0Aa /(A0 + (Aa

- A0)) = A0; if t ® ∞, A = A0Aa /(A0 + (Aa - A0)·0) =
Aa; if A = (Aa - A0)/2, A(t)“ = 0.
The four-parameter logistic model (4PLM) looses one

or the other of the constraints in 3PLM [8,28]. For
some data, the additional flexibility of the four-para-
meter version greatly increases the variance explained
by the model, although 3PLM provides a more parsimo-
nious and equally adequate fit in other situations. The
most general form of this is the five-parameter logistic
model (5PLM) [9], which provides maximum flexibility
and alleviates both restrictions.
Note that inappropriate functional forms will often fail

to converge; or in other cases, the wrong form can
result in convergence with unreasonable parameter esti-
mates [4]. Therefore, we choose 3PLM for plant growth
modeling to avoid over-parameterization, and use non-
linear least squares to fit the plant area observations to
3PLM.
Functional data analysis
Plants are self-assembled systems for solar harvesting. In
the early stages of plant growth, harvested energy is
used primarily for the creation of new light capture
facilities (leaves), resulting in an exponential growth
rate. As a plant matures, an increasing percentage of the
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energy captured can be redirected to storage for later
harvest. Studying plant growth over time is essential
towards the understanding of how plants manage
resources at different ages or under different environ-
mental stresses.
The absolute growth rate (AGR) and relative growth

rate (RGR) by the plant area can be calculated as:

AGR =
At − At−�t

�t
(6)

RGR =
ln (At) − ln (At−�t)

�t
(7)

where t is time, Δt is time interval and Ax is the plant
area at time x. Growth rate by mass can be further
assessed using additional measures {e.g., leaf mass frac-
tion (LMF) and unit leaf assimilation ratio (ULR)).
Knowledge of AGR and RGR is critical for researches to
relate growth to biomass, biofuels, and bioenergy.

velocity =
dA (t)

dt
=

A0 · Aa · (Aa − A0) · γ · e−γ ·t

((Aa − A0) · e−γ ·t + A0)
2 (8)

acceleration =
dA2 (t)

dt2
=

2A0 · Aa · (Aa − A0)
2 · γ ·2 · e−2γ ·x

((Aa − A0) · e−γ ·x + A0)
3 −A0 · Aa · (Aa − A0) · γ 2 · e−γ ·x

((Aa − A0) · e−γ ·x + A0)
2 (9)

The rate of change of the plant area sometimes is
more interesting than its actual value. To this end, we
need to study what alters velocity (the first order deriva-
tive of the growth curve, Eq 8) and acceleration (the
second order derivative of the growth curve, Eq 9)
which is instantaneous curvature in a growth curve [29].
The smoothed growth curve generated with 3PLM is
capable of giving a qualified impression of the velocity
and acceleration of the plant growth.

Experiments
To systematically evaluate HPGA and compare its per-
formance with the existing approach for plant area esti-
mation, a well-calibrated growth experiment was carried
out. In the experiment, three wild type (col-0) plants
and three cfq (AT3G24530; coupling factor quick recov-
ery) mutant Arabidopsis thaliana plants were grown
side by side in a fluctuate light condition (Supplemen-
tary Fig S3) for 15 days from 10 days old from seedling

to 25 days old, during which period rosette leaves grow
the most rapidly [30]. A top-view fluorescence image
was taken every 15 minutes during the day time, in
order to observe the photosynthesis activity and the
growth of the plants simultaneously for the dissection of
general basis of plant growth and development under
fluctuating light conditions. The overview of the experi-
mental results is shown in Figure 6. In total, 960 fluor-
escence images were collected, preprocessed and fed to
HPGA. We selected a small-scale experiment because
we can manually identify the inferior growth of the
mutant line and use them as the ground truth to evalu-
ate the algorithm performance. Certainly, HPGA is
designed for large-scale screen experiments with hun-
dreds of plants monitored simultaneously.
cfq is an AAA-type ATPase family protein which is

involved in ATP synthase regulation [31,32]. It harbors
a mutation on the gamma subunit of the ATP synthase,
which accelerates ATP synthetic activity at the cost of
accumulating pmf (and consequently the ΔpH required
for photoprotective, qE). Equilibrium redox titration
revealed that this mutation makes the regulatory sulfhy-
dryl group energetically much more difficult to reduce
relative to the wild type [33]. The growth of the mutant,
however, is not significantly impaired under standard
laboratory growth conditions (constant light at 150
μmol m-2 s-1) [33]. Here we investigate how the mutant
affects growth under non-static light conditions, in that
overlapping regulatory mechanisms can compensate for
loss of some processes under artificially static lab condi-
tions, but each underlying process may have different
dynamic responses and may be activated under different
sets of environmental conditions. In the following text,
we first evaluate HPGA in terms of measuring plant
area, followed by the dissection of the different growth
patterns of the cfq and wild type plants.

Results of plant area estimation
We first tested whether the plant centers are correctly
localized with our leaf orientation based approach by ran-
domly choosing 12 plant images and manually determin-
ing their actual centers. The shorter the distance from an
actual center to the output of our algorithm, the better
the algorithm is. In this analysis, we compared HPGA

Figure 6 Overview of the photosynthesis activity FII and growth of cfq and wild type (col-0) plants under fluctuating light conditions.
The mutant is clearly distinguished by its distinct area and colors (red and blue representing high and low FII values respectively).
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with the center of mass approach. The results shown in
Figure 7a reveals that our leaf orientation based method
is better (with shorter distance to actual plant center)
than the center of mass approach (p-value 0.18 with a
two-tailed t-test with unequal variance [34]). The p-value
is insignificant because of the symmetry of plants [22].
Nevertheless, our approach provides practically more pre-
cise plant centers. In a growth experiment, a plant center
does not move so the center of each plant was deter-
mined using a single image, which avoids applying the
algorithm on plants that too small or too large.
The leaf tip identification algorithm was tested for all

the images. The success rate of these identifications was
93.5% (on average). The true positive rate reduces gra-
dually with increasing plant area (from 98.5% to 86.5%;
Figure 7b, Table 1) due to the more complex plant lay-
out. The true positive rate can be further elevated by

tracking leaves in adjacent images to incrementally
update leaf tips. This analysis also shows that the suc-
cess rate of tip identification on the cfq plants is con-
stantly higher than on the wild type plants by 2-5%,
because the wild type plants have a more complex lay-
out and more inner leaves (Figure 10b).
Finally, the plant areas were computed using HPGA

on all of the images (Figure 8a). For the purpose of eva-
luation, eight plant areas were manually measured for
each of the six plants (young, middle and mature, in
total 48 plant areas), and compared to HPGA with the
observed value of plant area from a top-view (the exist-
ing common approach for plant area estimation [3],
which ignores the leaf overlap problem). In the manual
plant area measurement process, every leaf on an image
was manually segmented by a researcher and its edge
was completed if it is partially covered by other leaves.

Figure 7 Results on plant center identification and leaf tip identification. (a) Plant center identification. (b) Leaf tip identification.

Table 1 Results on leaf tip identification (true positive rate).

Days cfq WT

Sample 1 Sample 2 Sample 3 Avg (cfq) Sample 1 Sample 2 Sample 3 Avg(WT)

Day 1-5 100% 97% 99% 99% 98% 97% 94% 97%

Day 6-10 97% 96% 92% 95% 97% 89% 94% 93%

Day 11-15 94% 88% 92% 91% 89% 89% 82% 86%

Figure 8 Results on plant area measurement. (a) Results of plant area measurement with HPGA. (b) Comparison of HPGA with the observed
value from a top-view by plants. (c) Comparison of HPGA with the observed value from a top-view by age.
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The unit for all the measurements is the number of pixels.
The comparison results in Figure 8b shows that HPGA is
consistently better than directly using the observed value
of plant area from a top-view, with half of the error rate
(19.7% against 38.1%). Specifically, it reduces the error rate
from 43.5% to 20.3% for the cfq plants and reduces the
error rate from 32.7% to 19.1% for the wild type plants. In
addition, Figure 8c shows that HPGA is more accurate for
young and middle age plants, and its performance is simi-
lar to the top-view observations when plants are mature.
Figure 9 shows how the results of HPGA match the actual
(manually measured) values. Overall, the analysis suggests
that HPGA is a reliable high-throughput plant area mea-
suring platform for both wild type and the mutant from
young to mature plants.

Results on growth modeling and analysis
Using all of the output data from HPGA as observa-
tions, growth curves were generated for each of the six
plants using a three-parameter logistic model (3PLM)
(Eq 5). The solid line in Figure 9 is the growth curve,
the circles represent the plant areas obtained with
HPGA, and the squares are the actual plant area mea-
sured manually. The learned parameters of 3PLM and
their 95% CI are listed in Table 2. It shows that the
3PLM growth curves correlate well with the plant areas.
The growth model reveals two interesting results.

First, unlike the growth pattern under normal static

light conditions, which is similar for wild type and cfq
plants [33], the upper horizontal asymptotes of the wild
type plants (~65, 000 pixels) is almost three times that
of the cfq plants (~24, 000 pixels) (Table 2), suggesting
that by knocking out the cfq gene, plants have much
less potential to grow under fluctuating light conditions.
The slower growth rate of the mutant correlates well
with diminished photosynthetic efficiency compared to
the wild type (Figure 6), consistent with the higher
energy requirement for sustained activation of the ATP
synthase and a lower capacity of ATP synthesis in the
mutant [33]. The efficiency of cfq is continuously
repressed or unable to recover under fluctuating light.
This is probably because of the significantly lower light-
induced ATPase and ATP synthase activity in the
mutant compared with the wild type [33]. In summary,
the low photosynthetic rates correlates well with the
small plant area of the cfq plants, raising a hypothesis
that knocking out the cfq gene changes the sensitivity of
the energy distribution under fluctuating light condi-
tions to repress leaf growth.
Second, in the growth curve, the wild type plants reach

their upper horizontal asymptotes at around 25 days
from the start of our experiment, which is 35 days from
seedling. This matches with the Arabidopsis growth stage
description, which states that the rosette growth of wild
type plants completes after 29.3 days from seedling with
a standard deviation of 3.5 days [30]. The cfq plants

Figure 9 Growth curves (black) for six plants generated using 3PLM. The blue circles on day 1-15 represent plant areas measured with
HPGA and the red squares are the actual plant areas.
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reach the upper horizontal asymptotes at around 20 days
from the start of our experiment. This shorter growth
period (5 days less), combined with the decreased growth
rate, results in a smaller rosette leaf surface area in cfq.
The values of the cfq sample 1 and wild type sample 2

are statistically different from the rests (p-value 7.1E-14
and 3.6E-09 respectively with a two-tailed t-test with
unequal variance [34]; Supplementary Fig S2), probably
because of natural biological variability. Therefore, they
were excluded in the downstream growth analysis.

Figure 10 Growth analysis of cfq and wild type plants. (a) averaged growth curve of cfq and wild type. (b) cfq and wild type plants on the
15th day of the experiment, which is 25 days from seedling. (c) absolute growth rate. (d) relative growth rate. The solid and dashed lines in (a),
(c) and (d) represent the averaged growth curves of cfq and wild type plants respectively; and the grey areas represent the one standard
deviation of uncertainty.

Table 2 Parameters of 3PLM and their upper and lower bounds with 95% confidence.

Plant Parameters Lower bound of 95% Cl Upper bound of 95% Cl

g A0 Aa g A0 Aa g A0 Aa

cfq Sample 1 0.03711 129.9 17440 0.0334 93.55 12780 0.04081 166.3 22100

cfq Sample 2 0.04296 127.2 24850 0.03984 95.37 21300 0.04607 159.1 28390

cfq Sample 3 0.04128 167.3 22590 0.03916 139.9 20540 0.04340 194.7 24650

WT Sample 1 0.03823 210.1 53640 0.03502 156.2 35500 0.04144 263.9 71770

WT Sample 2 0.05020 127.5 38570 0.04835 107.7 36640 0.05205 147.3 40500

WT Sample 3 0.03907 304.8 66060 0.03656 243.8 52480 0.04159 365.9 79640

A0 is the initial plant area, Aa is the upper horizontal asymptotes, g is an acceleration or deceleration parameter related to time.
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The AGR and RGR of cfq and wild type plants were
calculated using Eq 6 and 7 (respectively) with Δt = 0.35
days. The averaged results shown in Figure 10a, b reveal
distinctive growth patterns between the two kinds of
plants. The wild type plant is almost three times of cfq
when reaching the upper horizontal asymptote, and it
have significantly higher AGR than cfq (Figure 10c). The
peak of AGR of the wild type plants is 2.28 days later
than the peak of cfq. The RGR of cfq is slight higher
(0.003) than that of the wild type plants during the first
a few days. The decreasing rates of RGR of both kinds
of plants are very similar, which means the RGR of the
cfq plants was shifted for about 2.5 days to the left, lim-
iting the plant to grow at a fast rate for a shorter period
of time (Figure 10d).

Discussion
The experiments on Arabidopsis thaliana wild type and
cfq mutant plants show that HPGA reduces the error
rate of measuring plant area by half in average if com-
pared with the existing approaches. The low photosyn-
thetic rates and small plant area of cfq suggests that
knocking out cfq changes the sensitivity of the energy
distribution under fluctuating light conditions to repress
leaf growth. If it is true, a key question regarding to
growth is whether the plant size difference changes line-
arly all through the developmental stages, or it actually
varies and there is a dominant period. To answer this
question, the following functional analysis on the growth
curves was conducted.
First, we generated the curves in the AGR against

RGR plot (Figure 11a), in which the x-axis is the AGR
and y-axis is RGR. It shows that there is a cross of cfq
and wild type curves in the early period. Before the
crossing the AGR of the cfq plants is lower than that of
the wild type plants while its RGR is higher than the lat-
ter. It suggests that the area of the young cfq plants
(before the measurement starts) is smaller than the wild
type plants, which consists with an earlier discovery that

the total chlorophyll content in cfq grown at low light is
lower than that in the wild-type plants [33].
Second, in Figure 11b, a phase-plane plot of accelera-

tion against velocity describes a basic harmonic process
that bounces between two states: potential and kinetic
[29]. In terms of plant growth, potential corresponds to
resources that are available to bring about some growth
activity such as cell proliferation, and kinetic corresponds
to the process when the resources are consuming (e.g.
cell expansion). At the point that a plant starts to grow
from its lower horizontal asymptote, its potential and
kinetic are both zero (Figure 11b point a); it overlaps
with the point that a plant reaches its upper horizontal
asymptote. Potential is also zero when kinetic is maxi-
mized (Figure 11b point c) which happens when plant
area increase is half of its maximum value ((Aa - A0)/2),
i.e., A(t)“ = 0. In the same figure, point b means no
kinetic but maximal potential, and point d means no
kinetic but maximal negative potential. The two points
represent two critical time points of growth, probably
related to the turn-over points of cell proliferation, sug-
gesting that point b relates to the most active cell prolif-
eration and point d relates to the most inhibition to cell
proliferation.
In our experiments, the wild type plants reach point b

at acceleration 8.6 and velocity 384.7 on the 12th day
and reach point d at acceleration -8.5 and velocity
-389.1 on the 20th day, with the absolute acceleration
values more than twice as high as that of cfq (4.0 on the
10th day and -4.1 on the 17th day), suggesting the regu-
lation of cell proliferation in cfq is much less active than
wild type under fluctuating light. The period from point
b to d is usually defined as the fast growing period.
While the wild type plants spent 8 days in the period,
cfq plants only spent 7 days and have much lower accel-
eration and velocity, resulting in much smaller plant
areas. The covered area in the phase-plane plot is pro-
portional to the amount of energy transferred during
the process. The area ratio 4.88 (WT 6819 against cfq

Figure 11 Functional analysis of cfq and wild type plants. (a) relative growth rate against absolute growth rate. (b) phase-plane plot of
velocity against acceleration.
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1398) indicates that in cfq much less energy has been
distributed to the growth.

Conclusion
HPGA is a high-throughput phenotyping platform for
plant growth modeling and functional analysis. It has
two components, PAE (Plant Area Estimation) and
GMA (Growth Modeling and Analysis). In PAE, by tak-
ing the complex leaf overlap problem into consideration,
the area of every plant is measured from top-view
images in four steps. In GMA, a nonlinear growth
model is applied to generate growth curves, followed by
functional data analysis. HPGA addresses the leaf over-
lap problem by counting leaves and then measuring leaf
lengths. It avoids segmenting all the leaves from a top-
view image, which is extremely challenging [20]. Feeding
enough and high-quality plant area measures to a non-
linear model (3PLM) ensures the robustness and preci-
sion of nonlinear plant growth estimation.
The major contribution in HPGA is a new plant area

measurement which takes leaf overlap into considera-
tion. We also noticed that the common approach in
fluorescence image segmentation is global thresholding
[16-18,35]. However, in a dynamic/natural condition,
fluorescence intensity varies from time to time, so that
applying a fixed global threshold for all the images may
result in significant artifacts and consequently not prac-
tical for our study. In HPGA, we processed the images
with a reasonable assemble of current images processing
techniques that are clearly better than the global thresh-
olding approach.
In HPGA, the leaf length-to-area model is genome

specific. Changing from one species to another needs
to train the model again with the new leaves. Seeking
new ways to relate leaf area to detectable attributes is
an essential future work. HPGA is developed for plant
science research focusing on 2D plant Arabidopsis
thaliana. Without knowing the height of each leaf, it is
impossible to apply HPGA on any 3D plants that are
seen more often in the field. By adding more cameras,
we plan to extend HPGA to model the growth of 3D
plants such as camelina, tobacco, tomato and bean.
Furthermore, it is frequently desirable to develop a
growth model with biologically interpretable para-
meters, which shall be addressed in our future model
as well.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
DMK and JC conceived the project. JAC conducted the Arabidopsis growth
and photosynthesis experiment. TLO and YJ designed and implemented the
algorithm, built the web site, and finished the computational experiment. All
prepared the manuscript.

Acknowledgements
We thank Dr Gregg Howe, Dr Thomas Sharkey, Dr Xiaoming Liu, Dr Yiying
Tong and Dr Jun Li for providing inspiring ideas to improve HPGA. We
thank Dr Linda Savage for managing the experiment. The project is
supported by Center for Advanced Algal and Plant Phenotyping, Michigan
State University to DMK, and Chemical Sciences, Geosciences and
Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S.
Department of Energy (grant no. DE-FG02-91ER20021) to DMK and JC.

Declarations
The funding to support the publication fees is Chemical Sciences,
Geosciences and Biosciences Division, Office of Basic Energy Sciences, Office
of Science, U.S. Department of Energy (grant no. DE-FG02-91ER20021) to
DMK and JC.
This article has been published as part of BMC Systems Biology Volume 7
Supplement 6, 2013: Selected articles from the 24th International Conference
on Genome Informatics (GIW2013). The full contents of the supplement are
available online at http://www.biomedcentral.com/bmcsystbiol/supplements/
7/S6.

Authors’ details
1Department of Computer Science and Engineering, Michigan State
University, East Lansing, Ml 48864 USA. 2Department of Biochemistry and
Molecular Biology, Michigan State University, East Lansing, Ml 48864 USA.
3MSU-DOE Plant Research Laboratory, Michigan State University, East
Lansing, Ml 48864 USA.

Published: 13 December 2013

References
1. Lambers H, Chapin FS, Pons TL: Plant Physiological Ecology. 2 edition.

Springer Science Business Media; 2008.
2. McMahon TA, Bonner JT: On Size and Life Scientific American Books, New

York; 1983.
3. Zhang X, Hause RJ, Borevitz JO: Natural genetic variation for growth and

development revealed by high-throughput phenotyping in arabidopsis
thaliana. G3: Genes Genomes Genetics 2012, 2(l):29-34.

4. Paine CE, Marthews TR, Vogt DR, Purves D, Rees M, Hector A, Turnbull LA:
How to fit nonlinear plant growth models and calculate growth rates:
an update for ecologists. Methods in Ecology and Evolution 2012,
3(2):245-256.

5. Vanclay JK: Modelling Forest Growth and Yield CAB International, Wallingford,
UK; 1994.

6. Hunt R: Plant Growth Curves: The Functional Approach to Plant Growth
Analysis Edward Arnold, London; 1982.

7. Zeide B: Analysis of growth equations. Forest Science 1993, 39:594-616.
8. Pinheiro J, Bates D: Mixed-Effects Models in S and S-PLUS Springer Verlag,

New York; 2000.
9. Gottschalk PG, Dunn JR: The five-parameter logistic: a characterization

and comparison with the four-parameter logistic. Analytical biochemistry
2005, 343:54-65.

10. Gompertz B: On the nature of the function expressive of the law of
humanmortality, and on a new mode of determining the value of life
contin-gencies. Philosophical Transactions of the Royal Society of London
1825, 115:513-583.

11. Heinen M: Analytical growth equations and their genstat 5 equivalents.
Netherlands Journal of Agricultural Science 1999, 47:67-89.

12. Richards FJ: A flexible growth function for empirical use. Journal of
Experimental Botany 1959, 10:290-300.

13. El-Lithy ME, Clerkx EJ, Ruys GJ, Koornneef M, Vreugdenhil D: Quantitative
trait locus analysis of growth-related traits in a new arabidopsis
recombinant inbred population. Plant Physiology 2004, 135:444-458.

14. Arvidsson S, Perez-Rodriguez P, Mueller-Roeber B: A growth phenotyping
pipeline for arabidopsis thaliana integrating image analysis and rosette
area modeling for robust quantification of genotype effects. New
Phytologist 2011, 191(3):895-907.

15. Granier C, Aguirrezabal L, Chenu K, Cookson SJ, et al: Phenopsis, an
automated platform for reproducible phenotyping of plant responses to
soil water deficit in arabidopsis thaliana permitted the identification of
an accession with low sensitivity to soil water deficit. New Phytologist
2006, 169(3):623-635.

Tessmer et al. BMC Systems Biology 2013, 7(Suppl 6):S17
http://www.biomedcentral.com/1752-0509/7/S6/S17

Page 12 of 13

http://www.biomedcentral.com/bmcsystbiol/supplements/7/S6
http://www.biomedcentral.com/bmcsystbiol/supplements/7/S6
http://www.ncbi.nlm.nih.gov/pubmed/15953581?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15953581?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15122039?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15122039?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15122039?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21569033?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21569033?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21569033?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16411964?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16411964?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16411964?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16411964?dopt=Abstract


16. Jansen M, Gilmer F, Biskup B, et al: Simultaneous phenotyping of leaf
growth and chlorophyll fluorescence via growscreen fluoro allows
detection of stress tolerance in arabidopsis thaliana and other rosette
plants. Functional Plant Biology 2009, 36:902-914.

17. Golzarian MR, Frick RA, Rajendran K, et al: Accurate inference of shoot
biomass from high-throughput images of cereal plants. Plant Methods
2011, 7(1):2.

18. Mokhtarpour H, Teh CB, Saleh G, et al: Non-destructive estimation of
maize leaf area, fresh weight, and dry weight using leaf length and leaf
width. Communications in Biometry and Crop Science 2010, 5(l):19-26.

19. Sack L, Scoffoni C, McKown AD, et al: Developmentally based scaling of
leaf venation architecture explains global ecological patterns. Nature
Communications 2012, 3:837.

20. Wang XF, Huang DS, Du JX, Xu H, Heutte L: Classification of plant leaf
images with complicated background. Applied mathematics and
computation 2008, 205(2):916-926.

21. Clark KB, Baldwin CY: In Design Rules. The Power of Modularity. Volume 1.
Cambridge, Massachusetts: MIT Press; 2000.

22. Jean RV, Barabe D: In Symmetry in plants. Volume 4. World Scientific
Publishing Co. Inc.,; 1998.

23. Burger W, Burge M: Digital Image Processing, An Algorithmic Introduction
using Java Springer-Verlag, New York; 2008.

24. Canny J: A computational approach to edge detection. IEEE Trans Pattern
Analysis and Machine Intelligence 1986, 8(6):679-698.

25. Zhou Z, Li L, Tan CL: Edge based binarization for video text images. Proc
of the 20th Intl. Conf. on Pattern Recognition 2010, 000:133-136.

26. Burgstahler L, Neubauer M: New modifications of the exponential moving
average algorithm for bandwidth estimation. Proc. of the 15th ITC
Specialist Seminar 2002.

27. Harris D: Comparison of 1-, 2-, and 3-parameter irt models. Educational
Measurement: Issues and Practice 1989, 8(1):35-41.

28. Barton MA, Lord FM: An Upper Asymptote for the Three-Parameter Logistic
Item-Response Model (Research Bulletin 81-20) Princeton, NJ: Educational
Testing Service; 1981.

29. Ramsay JO, Bernard WS: In Applied functional data analysis: methods and
case studies. Volume 77. New York: Springer; 2002.

30. Boyes DC, Zayed AM, Ascenzi R, et al: Growth stagecbased phenotypic
analysis of arabidopsis a model for high throughput functional
genomics in plants. Plant Cell 2001, 13(7):1499-1510.

31. Lamesch P, Berardini TZ, Li D, et al: The arabidopsis information resource
(tair): improved gene annotation and new tools. Nucleic acids research
2012, 40(D1):D1202-D1210.

32. Alonso JM, Stepanova AN, Leisse TJ, et al: Genome-wide insertional
mutagenesis of arabidopsis thaliana. Science Signaling 2003,
301(5633):653.

33. Wu G, Ortiz-Flores G, Ortiz-Lopez A, Ort DR: A point mutation in atpcl
raises the redox potential of the arabidopsis chloroplast atp synthase γ-
subunit regulatory disulfide above the range of thioredoxin modulation.
Journal of Biological Chemistry 2007, 282(51):36782-36789.

34. Markowski CA, Markowski EP: Conditions for the effectiveness of a
preliminary test of variance. The American Statistician 1990, 44(4):322-326.

35. Rousseau C, Belin E, Bove E, et al: High throughput quantitative
phenotyping of plant resistance using chlorophyll fluorescence image
analysis. Plant Methods 2013, 9(1):17.

doi:10.1186/1752-0509-7-S6-S17
Cite this article as: Tessmer et al.: Functional approach to high-
throughput plant growth analysis. BMC Systems Biology 2013 7(Suppl 6):
S17. Submit your next manuscript to BioMed Central

and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

Tessmer et al. BMC Systems Biology 2013, 7(Suppl 6):S17
http://www.biomedcentral.com/1752-0509/7/S6/S17

Page 13 of 13

http://www.ncbi.nlm.nih.gov/pubmed/21284859?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21284859?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22588299?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22588299?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11449047?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11449047?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11449047?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22140109?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22140109?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17959606?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17959606?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17959606?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/23758798?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/23758798?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/23758798?dopt=Abstract

	Abstract
	Method
	Results
	Availability

	Introduction
	Methods
	Plant area estimation
	Plant center identification
	Leaf tip identification
	Leaf area estimation
	Plant area measurement

	Growth modeling and analysis
	Nonlinear growth model
	Functional data analysis


	Experiments
	Results of plant area estimation
	Results on growth modeling and analysis

	Discussion
	Conclusion
	Competing interests
	Authors’ contributions
	Acknowledgements
	Declarations
	Authors' details
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 500
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 500
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


